Phase I Environmental Site Assessment

2.40<u>+</u>-Acre Proposed Dollar General Store Site NC Highway 87 Pittsboro, Chatham County, North Carolina PES Project Number: R24-528

August 29, 2024

Prepared For:

Glandon Forest Equity, LLC c/o Mr. George T. Barnes 3825 Barrett Drive, Suite 100 Raleigh, North Carolina 27609

Prepared By:

5113 Yachtsman Court Raleigh, North Carolina 27615 North Carolina Corporate License No. C-520 919-630-0721

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 SITE AND VICINITY DESCRIPTION2
3.0 USER-PROVIDED INFORMATION3
3.1 Title Records
3.2 Environmental Liens, Activity, and/or Use Limitations
3.3 Specialized Knowledge
3.4 Valuation Reduction for Environmental Issues
3.5 Commonly Known or Reasonably Ascertainable Information4
3.6 Identification of Owner, Key Site Manager and Occupant(s)4
3.7 Reason for Performing the Phase I ESA4
4.0 RECORDS REVIEW4
4.1 Physical Setting4
4.2 Historical Use Information5
4.4 Aerial Photographs5
4.5 Sanborn Fire Insurance Maps6
4.6 Topographic Maps
4.7 Review of Historical Environmental Reports or Investigations7
5.0 FEDERAL, STATE, LOCAL & TRIBAL DATABASE LISTINGS
5.1 On-Site Regulatory Issues
5.2 Off-Site Regulatory Issues
6.0 INTERVIEWS
6.1 Interview with the Site Owner or Key Manager9
6.2 Local Fire Officials10
7.0 SITE RECONNAISSANCE
7.1 General Site Characteristics
7.2 Solid Waste, Drinking Water / Sewer System10
7.3 Site Operations, Processes, and Equipment11
7.4 Aboveground Chemical or Waste Storage11
7.5 Underground Chemical or Waste Storage, Drainage, or Collection Systems11
7.6 Electrical Transformers / PCBs11
7.7 Releases or Potential Releases11
7.8 Other Notable Site Features12
8.0 VAPOR INTRUSION CONDITIONS ASSESSMENT12
8.1 Vapor Intrusion Conditions12
8.2 Potential Vapor Intrusion Conditions12
9.0 NON-ASTM SCOPE CONCERNS13
9.1 Radon13
9.2 Wetlands / Erosion and Soil Control Concerns13
9.3 Lead in Drinking Water
PES

13
14 14
-

12.0 ENVIRONMENTAL PROFESSIONAL CERTIFICATION......14

Figures

Figure 1 – Site Location Map Figure 2 – Site Plan Figure 3 – WSW Location Map

Appendices

Appendix A: REC Acronyms and Phase I Product Information Appendix B: Site Photographs Appendix C: City Directories Appendix D: Aerial Photographs Appendix E: Sanborn Maps Appendix F: Topographic Maps Appendix G: Prior Site Investigation Report Appendix H: Supporting Documentation Appendix I: Regulatory Records Documentation Appendix J: Qualifications of Assessor

References

- 40 Code of Federal Regulations Part 312, Standards and Practices for All Appropriate Inquiries; Final Rule.
- 42 United States Code §9601 *et seq*, Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA) and Small Business Liability Relief and Brownfields Revitalization Act of 2002 (Brownfields Amendments).
- 42 United States Code §9601 *et seq*, Resource Conservation and Recovery Act as amended (RCRA).
- ASTM International, 2021, *Standard Practice for Environmental Site Assessments: Phase I Environ. Site Assessment Process*: Designation E 1527-21, W. Conshohocken, PA.
- United States Department of Agriculture, Natural Resources Conservation Service, *Soil Survey of Chatham County, NC*, reviewed on-line at http://websoilsurvey.nrcs.usda.gov.
- USGS, 2022, Silk Hope, NC topographic quadrangle.

Page 1

1.0 INTRODUCTION

Proctor Environmental Services, Inc. (PES) was retained by Glandon Forest Equity, LLC to conduct a Phase I Environmental Site Assessment (ESA) in compliance with the ASTM Standard Practice E1527-21 and the EPA Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), as discussed herein. The Purpose, Scope of Services, Limitations and User Reliance, as well as definitions for the ASTM-related environmental conditions and acronyms used throughout this assessment report can be found in **Appendix A**.

1.1 Executive Summary

The following summary of our findings is not intended to replace more detailed information contained elsewhere in the body of this report.

The subject Property consists of approximately 2.40-acres of unoccupied, wooded and undeveloped land. It is a portion of a larger, approximately 5.53<u>+</u>-acre tract located on the east side of NC Highway 87 in Pittsboro, North Carolina. The adjoining property to the west, across NC Highway 87, was formerly occupied with an apparent agricultural residence but is now unoccupied and lightly wooded; the adjoining property to the south is a former convenience store known as Mann Store. The site is now occupied by an automotive detailing shop and several unoccupied work bays.

Historical resources were available from 1939 to 2022. Based on readily available information, the Site does not appear to have been developed or used for any purpose other than being occupied by several mobile homes during the 1970s and 1980s. The Site is presently wooded, undeveloped and unoccupied.

No Recognized Environmental Conditions (RECs), historical recognized environmental conditions (HRECs), controlled recognized environmental conditions, (CRECs) and/or de minimis conditions requiring additional assessment and/or corrective action were revealed on the project Site. However, the adjacent and topographically upgradient, off-Site property located at 7070 NC Highway North has been identified as a leaking underground storage tank (LUST) site. A petroleum release was during the closure by removal of four petroleum USTs in 1991. Free product was noted floating on the water in the UST excavation and 217 cubic yards of soil was removed and disposed off-site. Based upon these conditions, nearby water-supply wells have been sampled to determine if they have been adversely impacted by the petroleum release. The most recent sampling event occurred in April 2024 when the well at 7042 Highway 87 and the well located on the subject Site were sampled. Both supply-well samples exhibited benzene concentrations in excess of its North Carolina Groundwater Quality Standard of 1 ug/L. Specifically, the sample from WSW-7070, located immediately adjacent to the subject Site's southern

boundary, exhibited 19 ug/L of benzene.

Based upon these documented conditions in conjunction with the anticipated groundwater flow direction (from south to north; i.e., from the impacted LUST site towards the subject Site), the UST release and impacted groundwater originating from 7070 NC Highway 87 presents an environmental concern to the subject Site and is considered an REC. It is our opinion that petroleum release may have or may, in the future, migrate under the proposed Dollar General store footprint. Further assessment is necessary to determine if drinking water at the subject Site may become impacted or potential vapor intrusion conditions may exist under the proposed building footprint.

2.0 SITE AND VICINITY DESCRIPTION

The subject Property consists of undeveloped wooded property. The adjoining properties to the north and east are also wooded and undeveloped. The adjoining property to the west, across NC Highway 87, was formerly occupied with an apparent agricultural residence but is now unoccupied and lightly wooded; the adjoining property to the south is a former convenience store known as Mann Store. The site is now occupied by an automotive detailing shop and several unoccupied work bays. Photographs of the Site and surrounding properties can be found in **Appendix B**. A Site Location Map is attached as **Figure 1** and an Aerial Site Plan is attached as **Figure 2**. General information describing the Project and Site is summarized below:

Project Name	Proposed Dollar General Store Site
Street Address	Not yet Assigned. NC Highway 87
City & County	Pittsboro, Chatham
State	North Carolina
Vicinity Characteristics	Mostly wooded and light residential and commercial
Site Acreage/Source	~2.40+ Acres. Source – Glandon Forest Equity, LLC
Property Type	Undeveloped
Site Use	Wooded
Parcel ID Number	Portion of 0068537 (5.527-acres in total)

General information describing the Site's buildings and usage is summarized below:

Number of Buildings	NA
Year(s) of Construction	NA
Number of Floors	NA
Basement or Subgrade Area	NA
Number of Units	NA
Building Area (sf)	NA
Building Description(s)	NA
Building Occupant	NA

Additional Improvement(s)	NA
Current On-Site Operation(s)	NA
Current Use of Haz Substance(s)	None Known or Suspected

General information describing the Site's adjoining properties and usage is summarized below:

Direction from Site	Tenant/Use (Address)	Regulatory Listing(s)*
North	Wooded	None
East	Wooded	None
South	Former Convenience Store	LUST
West	Lightly Wooded	None

*Refer to **Section 5.0** of this Report for additional information regarding regulatory listings, if any.

3.0 USER-PROVIDED INFORMATION

PES interviewed via a written questionnaire Ms. Tiffani Bylow, Business Manager of Glandon Forest Equity, LLC, the User of this Phase I ESA. According to Ms. Bylow, she is unaware of any known environmentally related issues or concerns associated with the Site. A record of the questionnaire completed by Ms. Bylow can be found in **Appendix H**.

3.1 Title Records

PES was not contracted to perform a chain of title for the subject property and no title records were provided for our review. The Property's tax record, deed and plat from the Chatham County Tax Office is in **Appendix H**.

3.2 Environmental Liens, Activity, and/or Use Limitations

The User stated that they are unaware of environmental liens and/or activity and use limitations connected with the subject property.

3.3 Specialized Knowledge

The User stated that they do not have any specialized knowledge regarding the Site or nearby properties.

3.4 Valuation Reduction for Environmental Issues

The User stated they believe the Site's purchase price reflects its fair market value and has no knowledge of valuation reduction for environmental issues associated with the Site or nearby properties.

3.5 Commonly Known or Reasonably Ascertainable Information

The User that they are not aware of any commonly known or reasonably ascertainable information regarding the Site or nearby properties.

3.6 Identification of Owner, Key Site Manager and Occupant(s)

Mr. Ronald E. Vaughn identified himself as the owner of the Site according to the Chatham County Tax Office, as documented in the Site's Appraisal Card found in **Appendix H**. The Site is in use for unoccupied and wooded.

3.7 Reason for Performing the Phase I ESA

It is our understanding that this Phase I ESA is being used as part of the environmental inquiry into the Property in association with the proposed purchase and development of the Site.

4.0 RECORDS REVIEW

4.1 Physical Setting

The geologic and hydrogeologic settings of a site are considered of interest since they may provide information related to the direction and physical mechanisms of contaminant migration, if present, from on-site and off-site sources. PES personnel have reviewed readily available information with regard to the following geologic and hydrogeologic characteristics of the Site and surrounding area:

Topography	
Site Elevation (amsl*)	Approximately 500 ft (SW) to 490 ft (NE)
Surface Runoff / Topographic Gradient	Generally towards the North
Closest Surface Water	An unnamed tributary about 1000 feet north of the Site's northern property boundary
Source of Information	USGS Topographic Map, Silk Hope, NC Quadrangle, 2022

Soil Characteristics	
Soil Types	Herndon Silty Loam
Description	Class B – Moderate Infiltration Rates. Deep and Moderately Deep, Moderately Well Drained and Well Drained Soils with

Soil Characteristics	
	Moderately Coarse Textures.
	EDR Radius Report, USDA Soil
Source of Information	Conservation Service, National Cooperative
	Soil Survey (Appendix I)

Geology/Hydrogeology	
Formation	Paleozoic Era Eugeosynclinal Deposits of the Piedmont Physiographic Province of North Carolina
Description	Surficial deposits of sand, clay, and gravel
Estimated Depth to First	Unknown but estimated to be less than 20
Occurrence of Groundwater	feet below land surface
Primary Aquifer	Bedrock Aquifer
Hydrogeologic Gradient**	Towards the North

* amsl – Above Mean Sea Level

** The groundwater flow direction and the depth to shallow, unconfined groundwater, if present, would likely vary depending upon seasonal variations in rainfall and other hydrogeological features. Without the benefit of on-site groundwater monitoring wells surveyed to a datum, groundwater depth and flow direction beneath the site cannot be directly ascertained but are estimated based on our review of the topographic map and Site conditions.

4.2 Historical Use Information

Historical resources were available from 1939 to 2022. As discussed below and based on readily available information, the Site does not appear to have been developed or used for any purpose other than being occupied by several mobile homes during the 1970s and 1980s. The Site is presently wooded, undeveloped and unoccupied.

4.3 City Directories

Historical city directories were made available from EDR for the area of the subject Site for the years **2000 through 2022** at approximately five-year increments. City directories have tenant listings by address. Our review of the city directories of the Property, as documented in **Appendix C**, indicates no listings of any nearby topographically upgradient sites of potential environmental concern associated with the Property.

4.4 Aerial Photographs

Aerial photographs were made available from EDR. As found in **Appendix D**, photographs dated **1939**, **1950**, **1961**, **1964**, **1973**, **1983**, **1993**, **1998**, **2006**, **2009**, **2012**,

2016 and 2020 were obtained for the Site. Our review of the aerial photographs for the Site and adjoining properties is summarized below:

Year	Subject Site
1939 through 1964	Site appears wooded and undeveloped.
1973 through 1993	Two apparent mobile homes are located on the west side of the Property along Highway 87.
1998 through 2020	Site appears wooded and undeveloped.

Year	Adjoining Properties
1939	Adjoining property to the southwest, across NC Highway 87, has an apparent
through	residence. Remaining adjoining properties are wooded and undeveloped (South,
1961	east, northeast) or agricultural (Northwest and west).
1964	The adjoining property to the south, along Highway 87, is developed with an
through	apparent convenience store and/or possible automotive garage. The remaining
1998	adjoining properties appear similar to previous years.
2006	The adjoining property to the southwest, previously occupied by a residence, now
through	appears undeveloped, partially cleared and partially wooded. The remaining
2020	adjoining properties appear similar to previous years.

With the possible exception of the apparent convenience store located adjacent and east of the Site, no historically significant environmental sites or indications of concern were noted either on or off-Site during our review of the available aerial photographs.

4.5 Sanborn Fire Insurance Maps

No historical Sanborn maps were available for the Site. A copy of the Sanborn map search by EDR for the area of the Site confirming this is documented in **Appendix E**.

4.6 Topographic Maps

As found in **Appendix F**, United States Geological Society (USGS) topographic quadrangle maps for the years **1974**, **2013**, **2016**, **2019**, **2022** were reviewed by PES personnel. The Site appears wooded and undeveloped over the timeframe reviewed. Adjoining properties in all directions appear undeveloped as well. No historically significant environmental sites or indications of concern were noted either on or off-Site during our review of the available topographic maps.

4.7 Review of Historical Environmental Reports or Investigations

No historical environmental reports of investigative results for the Property were made available by the User or Property Owner during this investigation.

5.0 FEDERAL, STATE, LOCAL & TRIBAL DATABASE LISTINGS

PES contracted EDR, Inc. to conduct a regulatory database search in accordance with ASTM E 1527-21 standards. The purpose of the search is to identify properties and facilities located within an ASTM-specific search radius of the Site (including the Site, as applicable) which are regulated by the United States Environmental Protection Agency (EPA) and various state and local environmental regulatory agencies. Detailed information pertaining to each database researched is presented in the EDR Radius Report, dated **August 19, 2024**, a copy of which is included in **Appendix I**.

The **Table** below presents a summary of data with the number of plottable listings within ASTM-specified search radii, as well as those located adjacent to and/or hydraulically upgradient of the Site. The EDR database uses a physical street address to map the location of a facility in relation to the subject site. Reported facilities without an exact physical street address are not mentioned in this review. Some existing USTs might not appear in the databases because they have not been registered by the owners or, due to the size and contents, may be exempt from registration.

PES limits discussion to only include information pertaining to sites located on: 1) the subject Site; 2) adjacent properties; and/or 3) hydraulically upgradient to the subject site. During performance of this assessment, PES obtained listings of sites on Federal, State, local, and tribal environmental regulatory databases, which meet the minimum search distances recommended in ASTM Standard E 1527-21; however, only those sites located on properties in one of the three aforementioned categories are discussed in this report.

Database		Number of Listings Found in Search Radii			
		Total Off-Site	Adjacent Property	Upgradient (South)	
STANDARD ENVIRONMENTAL RECORDS					
Federal NPL (National Priorities List)	0	0	0	0	
Proposed NPL	0	0	0	0	
NPL Liens	0	0	0	0	
US Brownfields	0	0	0	0	
Federal CERCLIS	0	0	0	0	
Federal CERCLIS / NFRAP	0	0	0	0	
Federal CORRACTS (RCRA Corrective Actions)		0	0	0	
Non-CORRACTS (RCRA TSD Facilities)		0	0	0	
RCRA - Sm. Quantity & Lg. Quantity Generators	0	0	0	0	

Database		Number of Listings Found in Search Radii			
		Total Off-Site	Adjacent Property	Upgradient (South)	
RCRA - Cond. Exempt Sm. Quantity Generators	0	0	0	0	
RCRIS-TSD (RCRA Treatment, Storage, & Disposal site)	0	0	0	0	
Federal ERNS (Emergency Response Notification System)	0	0	0	0	
State NPL (HSDS - Hazardous Substance Disposal Site)	0	0	0	0	
State CERCLIS (IHSI - Inactive Haz Sites Inventory)	0	0	0	0	
State CERCLIS (SHWS - State Haz Waste Sites)	0	0	0	0	
State Landfill (SWLF - Solid Waste Disposal Facilities)	0	0	0	0	
SWRCY (Recycling Center Directory)	0	0	0	0	
State LUST (Leaking Underground Storage Tank)	0	0	1	1	
State UST (Underground Storage Tank)	0	0	0	0	
State LAST (Leaking Aboveground Storage Tank)	0	0	0	0	
State AST (Aboveground Storage Tank)	0	0	0	0	
State VCP (Voluntary Cleanup Program)	0	0	0	0	
State IMD (Incident Management Database)	0	0	0	0	
State LCID (Land-Clearing & Inert Debris Landfill)	0	0	0	0	
State Institutional Controls	0	0	0	0	
State Brownfields Site	0	0	0	0	
OTHER ASCERTAINABLE RECORDS					
RCRA Non-Generator / NLR	0	0	0	0	
PFAS ECHO	0	0	0	0	
UST Finder Release	0	0	1	1	
FINDS (Facility Index System)	0	0	0	0	
NC Drycleaners	0	0	0	0	
EDR HIGH RISK HISTORICAL & GOVT RECORDS					
MGP (Manufactured Gas Plant)	0	0	0	0	
Historic Dry Cleaners	0	0	0	0	
Historic Auto Stations		0	0	0	
State Historic Landfills		0	0	0	
State RGA LUST		0	0	0	
State RGA HWS	0	0	0	0	
Total Regulatory Listings Mapped		0	2	2	

5.1 On-Site Regulatory Issues

The Site was not identified as a listed site in the EDR database search.

5.2 Off-Site Regulatory Issues

One reported adjacent and topographically upgradient, off-Site release, the **Mann Store Site** located at 7070 NC Highway North was identified by EDR. This site, located south of the subject Site, is identified as a leaking underground storage tank (LUST) site as well as a UST Finder Release site. According to the EDR report, a petroleum release was reported to the Raleigh Regional Office of the NCDEQ on January 7, 1991 during the closure by removal of four USTs. As documented in **Appendix H**, a March 8, 2019 Phase I Limited Site Assessment (LSA) prepared by S&ME, four petroleum USTs were removed from the site in 1990. Free product was noted floating on the water in the UST excavation and 217 cubic yards of soil was removed and disposed off-site. The adjacent LUST site, as well as numerous other nearby occupied properties in the area, are served by private drinking water wells. Over the years, several of these wells have been sampled under the direction of the NCDEQ to determine if they have been adversely impacted by the documented UST release.

The most recent sampling event occurred earlier this year, in April 2024, by Catlin Engineers and Scientists. As documented in Catlin's May 3, 2024 letter report, as found in **Appendix H**, two nearby supply wells were sampled for petroleum constituents. As shown in **Figure 3**, Well WSW-8 (7042 Highway 87, located about 80 feet due south of the former LUST site), and Well WSW-7070 (located at the northeast corner of the building at 7070 NC Highway 87) were sampled for laboratory analysis. Both supply well samples exhibited benzene concentrations in excess of its North Carolina Groundwater Quality Standard of 1 ug/L. Specifically, the sample from WSW-8 exhibited 3.9 ug/L of benzene and the sample from WSW-7070 exhibited 19 ug/L of benzene. Based on the results from the UST closure activities, receptor surveys and water-supply wells sampling, the NCDEQ has assigned a High-Risk classification to the petroleum release site and issued letters to nearby property owners that their well water should not be used for drinking or cooking purposes.

Based upon these documented conditions in conjunction with the anticipated groundwater flow direction (from the impacted LUST site towards the subject Site), the UST release and impacted groundwater originating from 7070 NC Highway 87 presents an environmental concern to the subject Site and is considered an REC. No other properties within the regulatory databases searched had documented adverse environmental conditionals.

6.0 INTERVIEWS

PES interviewed or attempted to interview various persons familiar with the project Site and surrounding properties, as follows:

6.1 Interview with the Site Owner or Key Manager

PES interviewed the Site's owner, Mr. Ronald Vaughn, via a written questionnaire regarding known environmental conditions at the Site. Mr. Vaughn's completed questionnaire survey regarding the subject Site is contained in **Appendix H**. Mr. Vaughn stated that the Site has been in his family for 60 years and is now vacant. He stated that

several mobile homes were located on the Site 20+ years ago. He stated that the adjacent property to the south was formerly a "gasoline station" 40 years ago and that he is unaware of any environmental concerns related to the Site.

6.2 Local Fire Officials

PES contacted the Chatham County Fire Marshall's Office regarding any known records of responses to incidents involving hazardous materials, including fires, chemical spills, hazardous material releases, and incidents of environmental concern. As of the issuance of this report, no response has been received to our request. In the event a response is received which negatively impacts the findings of this assessment, the client will be notified.

7.0 SITE RECONNAISSANCE

Mr. Tom Proctor of PES performed a Site reconnaissance on August 24, 2024, to review current site conditions. PES personnel had full access to all areas of the subject Site. The Property and boundaries were walked, and the adjacent parcels were viewed. An escort was not provided during the Site reconnaissance. The following information summarizes the findings of our Site reconnaissance:

7.1 General Site Characteristics

The subject Property consists of approximately 2.40-acres of unoccupied, wooded and undeveloped land. It is a portion of a larger, approximately 5.53<u>+</u>-acre tract located on the east side of NC Highway 87 in Pittsboro, North Carolina. The adjoining property to the west, across NC Highway 87, was formerly occupied with an apparent agricultural residence but is now unoccupied and lightly wooded; the adjoining property to the south is a former convenience store known as Mann Store. The site is now occupied by an automotive detailing shop and several unoccupied work bays. Photographs of the Site and surrounding properties can be found in **Appendix B**. A Site Location Map is attached as **Figure 1** and a Site Plan is attached as **Figure 2**.

7.2 Solid Waste, Drinking Water / Sewer System

Item	Observed?	Comment
Solid Waste Disposal	No	None
Potable Water	No	None
Sewage Discharge	No	None
Surface Water Drainage	No	None
Heating and Cooling	No	None
Wells and Cisterns	No	None

Masta Matar	Na	None
vvaste vvater	NO	None

7.3 Site Operations, Processes, and Equipment

Item or Feature	Observed	Photo #	REC
Emergency generators	No		
Air compressors	No		
Hydraulic lifts	No		
Dry cleaning	No		
Photo processing	No		
Laboratory hoods and/or incinerators	No		
Waste treatment systems and/or water treatment systems	No		
Heating and/or cooling systems	No		
Other processes or equipment	No		

7.4 Aboveground Chemical or Waste Storage

Item or Feature	Observed	Photo #	REC
Aboveground storage tanks	No		
Drums, barrels and/or containers > 5 gallons	No		
MSDS	No		
Parts Washer	No		
Other	No		

7.5 Underground Chemical or Waste Storage, Drainage, or Collection Systems

Item or Feature	Observed	Photo #	REC
Underground storage tanks or ancillary UST equipment	No		
Sumps, cisterns, catch basins and/or dry wells	No		
Grease traps	No		
Septic tanks and/or leach fields	No		
Oil/water separators	No		
Pipeline markers	No		
Interior floor drains	No		
Other	No		

7.6 Electrical Transformers / PCBs

Item or Feature	Observed	Photo #	REC
Pad or pole mounted transformers and/or capacitors	No		
Other equipment	No		

7.7 Releases or Potential Releases

Item or Feature	Observed	Photo #	REC
Stressed vegetation	No		
Stained soil	No		

Item or Feature	Observed	Photo #	REC
Stained pavement or similar surface	No		
Leachate and/or waste seeps	No		
Trash, debris and/or other waste materials	No		
Dumping or disposal areas	No		
Construction/demolition debris and/or dumped fill dirt	No		
Surface water discoloration, odor, sheen, free floating product	No		
Strong, pungent or noxious odors	No		
Exterior pipe discharges and/or other effluent discharges	No		
Other	No		

7.8 Other Notable Site Features

Item or Feature	Observed	Photo #	REC
Surface water bodies	No		
Quarries or pits	No		
Monitoring Well(s)	No		
Water-Supply Well(s)	No		
Stormwater	No		
Other site features	No		

8.0 VAPOR INTRUSION CONDITIONS ASSESSMENT

8.1 Vapor Intrusion Conditions

As discussed in **Section 5.2** of this report, the adjacent property to the south has been identified as a LUST site and petroleum-impacted groundwater is known to be present near the Site's southern property boundary. The degree and extent of impacted groundwater is unknown. Therefore, based on the records review and site reconnaissance, the potential exists for vapor intrusion conditions (VICs) on the subject Site. Further assessment would be necessary to confirm the VI conditions.

8.2 Potential Vapor Intrusion Conditions

In accordance with the ASTM E2600-10 standard, a non-invasive Tier-1 assessment of potential vapor intrusion conditions (pVICs) was performed for the Site to identify potential VICs. The Tier-1 assessment involves a search distance test that evaluates the proximity of the planned or existing structures on the subject Property to the nearest known edge of contamination (100 feet for volatile contaminants other than dissolved petroleum hydrocarbon chemicals and 30 feet for petroleum chemicals). In conjunction with the discussion above in Section 8.1, potential VICs may exist. Further assessment would be necessary to confirm the VI conditions on the subject Site.

9.0 NON-ASTM SCOPE CONCERNS

No Non-ASTM Scope concerns were addressed in this Phase I ESA except for radon, wetlands, and lead in drinking water, as discussed below. This information is summarized from the attached EDR report or based on local knowledge. Further assessment would be necessary to verify these EDR-based findings.

9.1 Radon

According to the attached EDR report (**Appendix I**), the Project is in an area designated as Zone 3, characterized by indoor average radon level of less than 2 pCi/L. The EPA has set a national action level of 4.0 pCi/L for radon, so the Property is in an area that should be less than the EPA's national action level. To confirm the actual radon levels at the Project, a formal radon survey would be required.

9.2 Wetlands / Erosion and Soil Control Concerns

According to the map in the attached EDR report (**Appendix I**), none of the Site or adjoining properties are listed in the National Wetland Inventory.

9.3 Lead in Drinking Water

Municipal water is reportedly not available to the area of the Site and nearby properties, including the adjacent property to the south, obtain their drinking water from private wells. Based on the environmental conditions observed on the site to the south, testing and analysis of the Site's proposed water-supply would be necessary to verify the condition of the drinking water at the Site.

10.0 DEVIATIONS AND DATA GAPS

10.1 Deviations

There were no significant deviations from the proposed scope of work.

10.2 Data Gaps

ASTM 1527-21 states that "A data gap occurs as a result of a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information." The ASTM practice requires that use of the Site be researched back to 1940, or earlier if possible. Information regarding the historical use of the Site was readily available back to 1939. No data gaps were identified during the preparation of this report which may have affected the ability of the Environmental

Professional to identify on-site or offsite recognized environmental conditions in connection with the project site.

11.0 FINDINGS, OPINIONS AND RECOMMENDATIONS

11.1 Findings

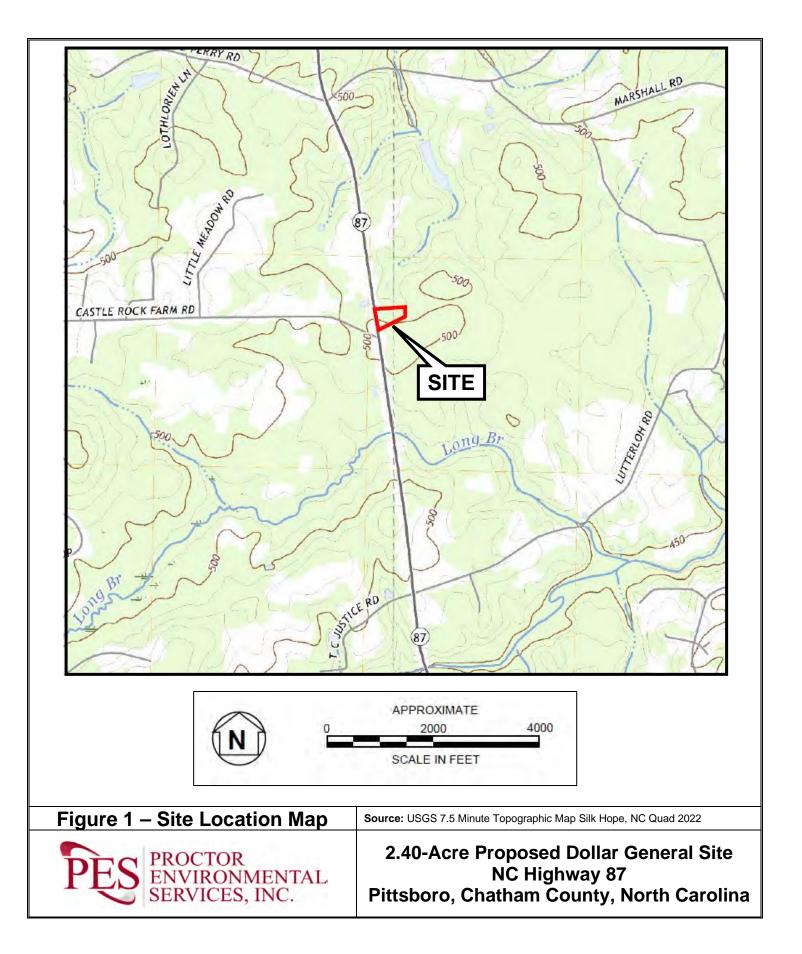
A reported adjacent and topographically upgradient, off-Site release, the **Mann Store Site** located at 7070 NC Highway North was identified by EDR as a leaking underground storage tank (LUST) site. Soil and groundwater contamination are present at levels exceeding regulatory guidelines and standards. Based upon these documented conditions in conjunction with the anticipated groundwater flow direction (from south to north; i.e., from the impacted LUST site towards the subject Site), the UST release and impacted groundwater originating from LUST site presents an environmental concern to the subject Site and is considered an REC. It is our opinion that the petroleum release may have or may, in the future, migrate under the proposed Dollar General store footprint. Further assessment is necessary to determine if drinking water at the subject Site may become impacted or potential vapor intrusion conditions may exist under the proposed building footprint.

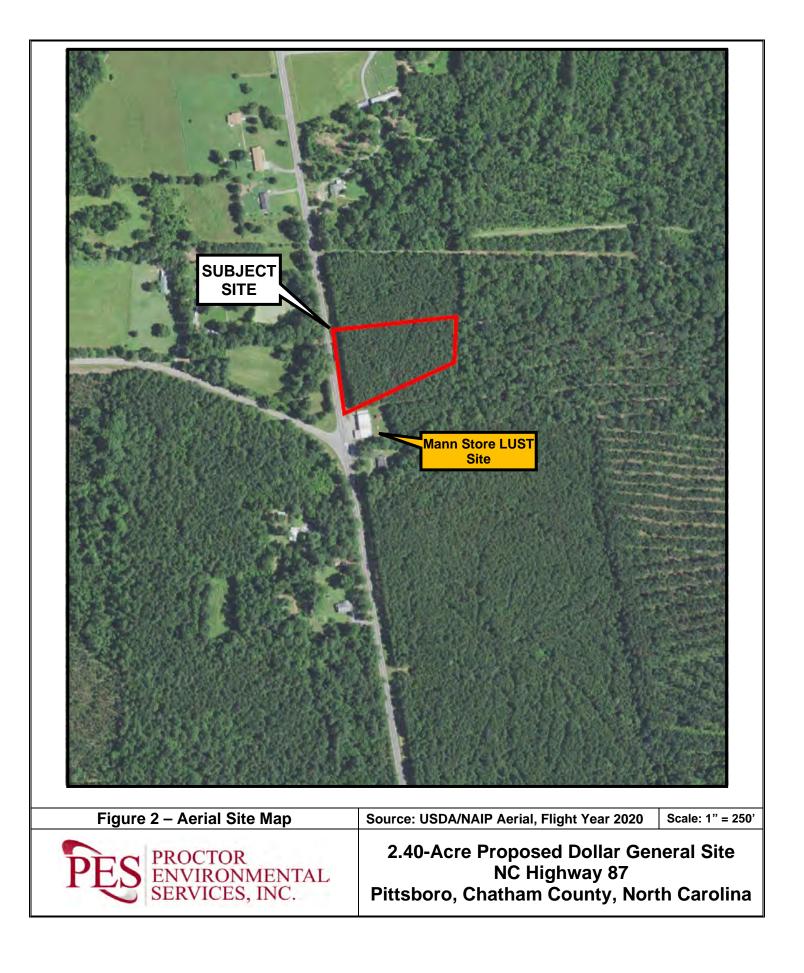
11.2 Opinion(s) and Conclusions

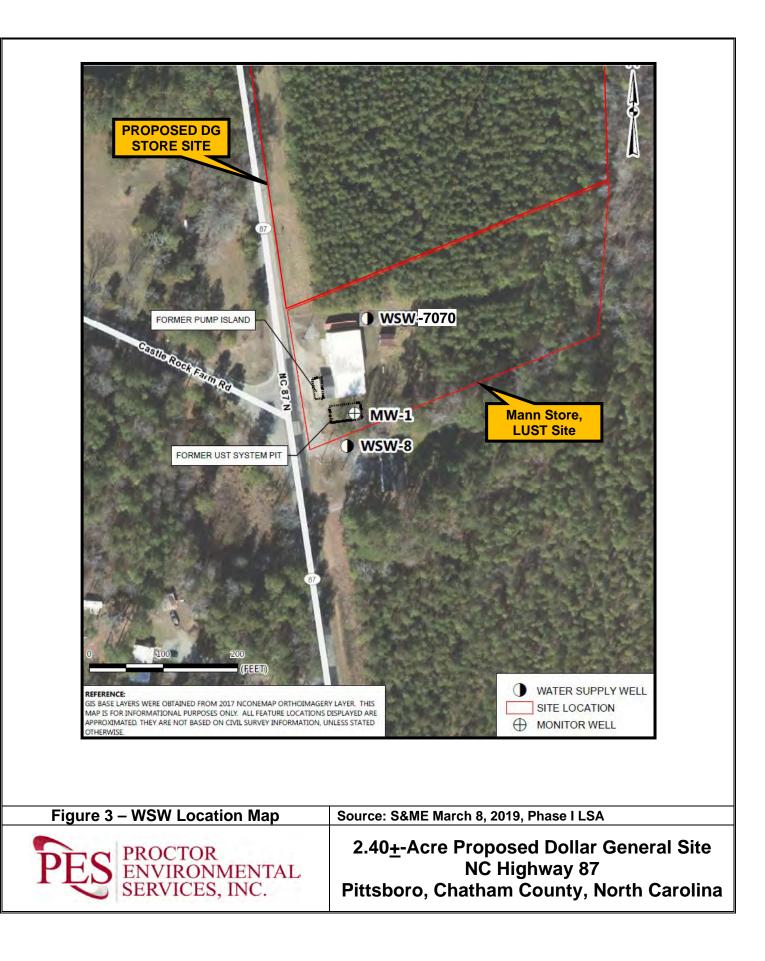
Further assessment is necessary to determine if drinking water at the subject Site may become impacted or potential vapor intrusion conditions may exist under the proposed building footprint.

12.0 ENVIRONMENTAL PROFESSIONAL CERTIFICATION

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in 40 CFR Part 312.


I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.


Thomas A. Proctor, L.G., RSM



FIGURES

APPENDICES

APPENDIX A

REC ACRONYMS AND PRODUCT INFORMATION

Phase I ESA Product Information

Purpose

The purposes of this ESA are to identify existing or potential RECs (as defined by ASTM Standard E1527-13, hereinafter defined) affecting the subject property that: 1) constitute or result in a material violation or a potential material violation of any applicable environmental law; 2) impose any material constraints on the operation of the subject property or require a material change in the use thereof; 3) require clean-up, remedial action or other response with respect to hazardous substances or petroleum products on or affecting the subject property under any applicable environmental law; 4) may affect the value of the subject property, and; 5) may require specific actions to be performed with regard to such conditions and circumstances. This ESA report will be used by Client to: 1) evaluate its legal and financial liabilities for transactions related to foreclosure, purchase, sale, loan origination, loan workout or seller financing; 2) evaluate the subject property's overall development potential, the associated market value and the impact of applicable laws that restrict financial and other types of assistance for the future development of the subject property; and/or 3) determine whether specific actions are required to be performed prior to the foreclosure, purchase, sale, loan origination, loan workout or seller financing of the subject property.

Scope of Services

This ESA was conducted in substantial compliance with ASTM Designation: E 1527-13 - *Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.* The intention of the ASTM E 1527-13 practice is "to permit a user to satisfy one of the requirements to qualify for the *innocent landowner defense* to CERCLA liability: that is, the practices that constitute 'all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice' as defined in 42 USC 9601(35)(B)." Specifically, this Phase I ESA included the following scope of services:

(A) Site and Vicinity Reconnaissance - PES conducted a site and vicinity reconnaissance, the objective of which was to obtain information indicating the likelihood of the existence of "recognized environmental conditions" in connection with the subject property, as defined in ASTM E-1527-13. PES's site and vicinity reconnaissance included an evaluation of the site and nearby properties with respect to existing conditions and with respect to obvious indications and evidence of past conditions;

(*B*) *Records Review* - PES conducted a records review, the objective of which was to obtain and review records (of both current and historical significance) in order to help identify "recognized environmental conditions" in connection with the subject property. Those specific records reviewed, including those records which were sought and were not readily available or reasonably ascertainable, are identified in the report; and

(C) Interviews - PES conducted interviews with persons associated with the subject property and with appropriate local government officials in order to identify "recognized environmental conditions" in connection with the subject property. The specific parties interviewed, and the nature and scope of the interviews are described in the report.

The goal in conducting the ESA was to identify the presence or likely presence of any hazardous substances or petroleum products on the subject property that may indicate an existing release, a past release, or a material threat of a release of any hazardous substance or petroleum product into the soil, groundwater, or surface water of the subject property.

Other environmental considerations such as ACMs, LBP, lead in drinking water, radon, mold, and wetlands can result in business environmental risks for property owners which may disrupt current or planned operations or cash flow and are generally beyond the scope of a Phase I assessment as defined by ASTM E1527-13. Based upon the agreed-on scope of services this ESA did not include subsurface or other invasive assessments, business environmental risks, or other services not specifically identified and discussed herein.

The following assumptions are made in this report. PES relied on information derived from secondary sources including governmental agencies, the client, designated representatives of the client, property contact, property owner, property owner representatives, computer databases, and personal interviews. PES has reviewed and evaluated the thoroughness and reliability of the information derived from secondary sources including government agencies, the client, designated representatives of the client, property contact, property owner, property owner representatives, computer databases, or personal interviews. It appears that all information obtained from outside sources and reviewed for this assessment is thorough and reliable. However, PES cannot guarantee the thoroughness or reliability of this information.

Groundwater flow and depth to groundwater, unless otherwise specified by on-site well data, or well data from adjacent sites are assumed based on contours depicted on the United States Geological Survey topographic maps. PES assumes the subject property has been correctly and accurately identified by the Client, designated representative of the Client, site contact, subject property owner, and subject property owner's representatives.

Property conditions, as well as local, state, tribal and federal regulations can change significantly over time. Therefore, the recommendations and conclusions presented as a result of this study apply strictly to the environmental regulations and site conditions existing at the time the study was performed. Available information has been analyzed using currently accepted assessment techniques and it is believed that the inferences made are reasonably representative of the subject property. PES makes no warranty, expressed or implied, except that the services have been performed in accordance with generally accepted environmental property assessment practices applicable at the time and location of the study.

Considerations identified by ASTM as beyond the scope of a Phase I ESA that may affect business environmental risk at a given property include the following: ACMs, radon, LBP, lead in drinking water, wetlands, regulatory compliance, cultural and historical resources, industrial hygiene, health and safety, ecological resources, endangered species, indoor air quality, mold, and high voltage lines. These environmental issues or conditions may warrant assessment based on the type of the property transaction; however, they are considered non-scope issues under ASTM Standard Practice E1527-13.

Limitations

This investigation is site-specific in that it relates to assessment of environmental conditions on the specific subject parcel of commercial real estate. This assessment does not address many additional issues raised in transactions such as purchases of business entities, or interests therein, or of their assets, that may well involve environmental liabilities pertaining to properties previously owned or operated or other off-site environmental liabilities. As stipulated by the ASTM E-1527-13 Process, this ESA does not formally address certain non-scope issues including, but not limited to the following, unless otherwise noted in the body of the report:

- Asbestos-Containing Materials
- Biological Agents
- Cultural and Historic Resources
- Ecological Resources
- Endangered Species
- Regulatory Compliance (Health and Safety)
- Indoor Air Quality
- Industrial Hygiene
- Lead in Drinking Water
- Lead-based Paint
- Mold Growth in Structures
- Radon
- Wetlands

Reliance

The "Client" (and the "Relying Party", if relevant) as identified in the General Information section of this report may rely on the contents of the ESA subject to the limitations placed on the scope, nature and type of PES's services as stated in the ESA and subject to those Terms and Conditions as stated in PES's contract with the Client. The Client (and the "Relying Party", if relevant) is the only party to whom PES grants the right to rely upon the ESA. No other party may rely on the ESA unless the express written consent of PES is first obtained.

Acronyms

NFA: No Further Action Recommended.

BER: Business Environmental Risk, is defined as "a risk which can have a material environmental or environmentally-driven impact on the business associated with the current or planned use of a parcel of commercial real estate, not necessarily limited to those environmental issues required to be investigated under ASTM standards. Consideration of business environmental risk issues may involve addressing one or more non-scope considerations." Common non-scope environmental business risk items include but are not limited to: asbestos, biological agents, cultural and historic resources, ecological resources, endangered species, industrial hygiene health and safety, indoor air quality, lead paint, lead in drinking water, mold, radon, and wetlands. Environmental Risk is, by definition, very broad and can encompass many types of risk, not included in the above list. This PESA was performed recognizing that identification of all types of business environmental risk cannot reasonably be included in the study for practical reasons. As such, the contract-imposed limitations with regard to the

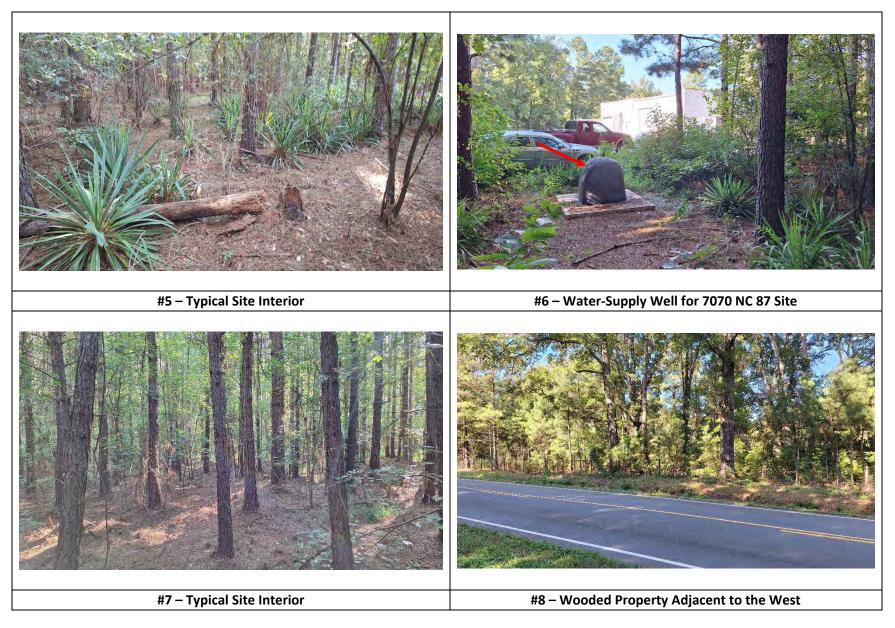
identification of business environmental risk. These contractual/client-imposed limitations have been identified in this report and the corresponding contract to perform this PESA.

REC: A Recognized Environmental Condition is the presence or likely presence of any hazardous substances or petroleum products in, on or at a property: 1) due to release to the environment, 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment." The terms, "migrate' and "migration" refer to the movement of contamination (i.e. hazardous substances or petroleum products) in any form including solid and liquid at the surface or subsurface and vapor in the subsurface. For the purposes of this report, the identification of RECs includes potential Vapor Encroachment Conditions (VECs) in the subsurface as described in ASTM Guide E2600-10 *Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions*. In the process of performing a PESA, the ability to identify VECs is limited due to the technical challenges associated with identification and evaluation of potential vapor intrusion risk.

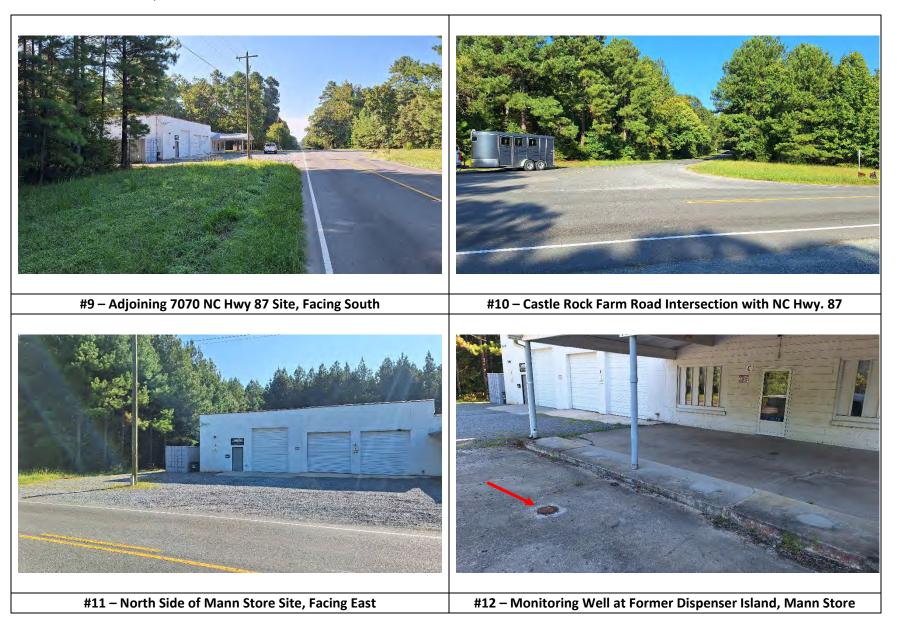
HREC: Historic Recognized Environmental Condition is "a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)." This includes a past release that has been remediated to below "residential" standards and given regulatory closure with no use restrictions. The HREC category is distinct from the Controlled Recognized Environmental Condition (CREC), which applies to sites that have received regulatory closure but are still subject to controls.

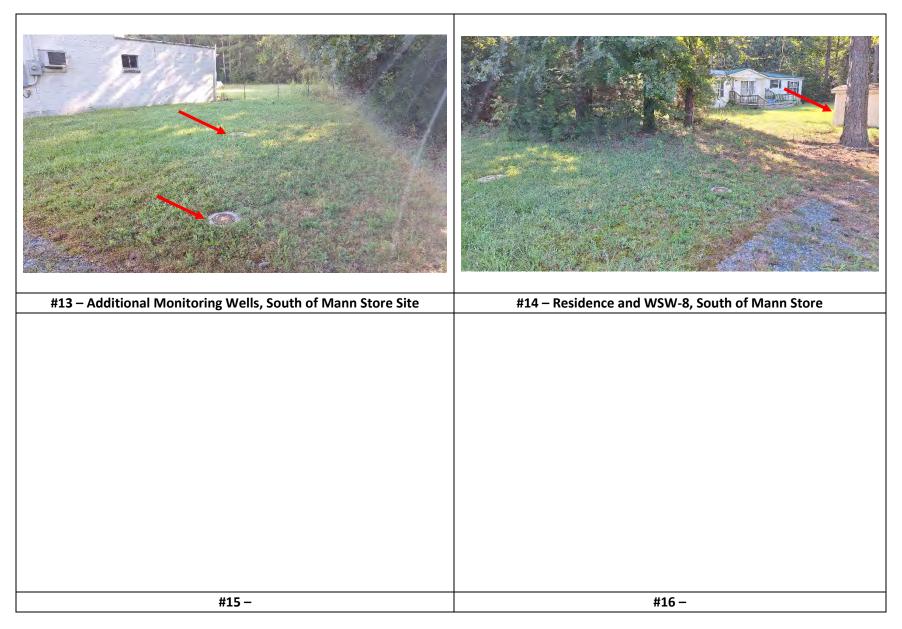
CREC: Controlled Recognized Environmental Condition is "a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."

The CREC concept was introduced to address contaminated sites that have received risk-based regulatory closure and where no further remediation is required. However, residual contamination is still documented at a site and the risk the contamination poses to future site occupants is managed through regulated engineering controls and/or Land Use restrictions (LURs). The associated regulatory requirements often pose ongoing or future obligations on the owner (such as special precautions during construction or grading activities). The CREC, is a subset of the REC category and is intended to clarify the level of risk these sites represent. Note that identification of a CREC does not imply that the environmental professional has evaluated or confirmed the adequacy, implementation, or continued effectiveness of the required control that has been, or is intended to be, implemented. If CREC(s) are identified during the PESA, they will be listed in the Findings section of the report and as an REC in the Conclusions Section.


APPENDIX B

SITE PHOTOGRAPHS





APPENDIX C

CITY DIRECTORIES

Proposed DG Store

Not Reported Pittsboro, NC 27312

Inquiry Number: 7739974.5 August 22, 2024

The EDR-City Directory Image Report

6 Armstrong Road Shelton, CT 06484 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES. LLC OR ITS SUBSIDIARIES. AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT. INCIDENTAL, INDIRECT, SPECIAL. CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities.EDR's City Directory Report includes a search of available business directory data at approximately five year intervals.

RECORD SOURCES

The EDR City Directory Report accesses a variety of business directory sources, including Haines, InfoUSA, PoIk,Cole, Bresser, and Stewart. Listings marked as EDR Digital Archive access Cole and InfoUSA records. The various directory sources enhance and complement each other to provide a more thorough and accurate report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	<u>Target Street</u>	<u>Cross Street</u>	<u>Source</u>
2020		\checkmark	EDR Digital Archive
2017		\checkmark	Cole Information
2014		\checkmark	Cole Information
2010		\checkmark	Cole Information
2005		\checkmark	Cole Information
2000		\checkmark	Cole Information
1995			Cole Information
1992			ColeInformation

FINDINGS

TARGET PROPERTY STREET

Not Reported Pittsboro, NC 27312

No Addresses Found

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>	
<u>NC HIGHW</u>	<u>AY 87 N</u>		
2020	pg.A2	EDR Digital Archive	
2017	pg.A8	Cole Information	
2014	pg.A9	Cole Information	
2010	pg. A13	Cole Information	
2005	pg. A17	Cole Information	
2000	pg. A21	Cole Information	
1995	-	Cole Information	Target and Adjoining not listed in Source
1992	-	Cole Information	Target and Adjoining not listed in Source

City Directory Images

-

Cross Street ✓ Source EDR Digital Archive

NC HIGHWAY 87 N 2020

136	LORETTA NEELY
148	ABRAHAM TUTTLE
	CAROL KLEVAY
	FORREST TUTTLE
170	MARGARET BYELICK
170	NATHAN BYELICK
180	DEMOND HARRIS
100	JAMILLA ALSTON
	PHYLLIS LEAK
205	FAYE TILLMAN
365	
	LINDSAY HICKLING
	LINDSEY PARSON
	LIZ LAHTI
	RAMONA HILL
374	JANICE BRITSON
412	CHRISTINE MAURER
	STEVEN CORY
421	RAYMOND WATTS
	STORMI JARMON
425	ALAN CUNNINGHAM
	JONATHAN MC GEE
	MICHELLE CUNNINGHAM
434	PAIGE ROBINSON
464	ALFRED UHLMANN
	GRANT WHITAKER
	KATHLEEN UHLMANN
	STEPHEN EVANS
	TYLER WHITAKER
485	CRAIG KANE
	JOHNATHAN VANFAUSSIEN
488	PETER WASKO
515	MARY SHEPPARD
543	LINDA BLAND
564	EMILY FOUSHEE
582	BRIAN CARR
605	DORA FRIEDMAN
000	MICHAEL YINGLING
626	CORBIE HILL
020	RACHEL HILL
676	ANDREW ROSS
070	RONNIE ROSS
606	GABRIEL NICOLAU
696	
76.4	
734	
	JESSE BEAVER
	JUDY BEAVER
765	JUAN MARIN

-

Source EDR Digital Archive

NC HIGHWAY 87 N

765	WALTER CAVINESS
821	CAROLYN ESSLINGER
868	JACQUELINE STPE
	JOAN ST. PE
875	CARMEN MOA-RIVERA
926	LAUREN HAYES
520	LAUREN WOMACK
988	FREDERICK STAGG
1003	
4000	KURT WORMSBECHER
1033	MACK THORPE
	PAM THORPE
1103	HERBERT RECORE
1149	SERGEI JOHNSON
1166	MICHAEL DUBEAU
	ROBIN DUBEAU
1171	BRICE BRIAN
	CHERYL BRICE
	JOHN BRICE
1190	BARBARA EESLEY
	GARY EESLEY
1195	EMILY FOUSHEE
1290	MICHAEL BRYAN
	PATSY BRYAN
1291	MARGARET CONDON
	MARJORIE NEUMANN
1352	ANITA MUEHLBACH
	BRIAN THOMAS
	JAKE MUEHLBACH
	JAMES MUEHLBACH
	MARGARET TORBERT
1412	CYNTHIA BOULDIN
	JAMES BOULDIN
1532	LORRIE WELSH
1588	CHARLES SHIELDS
2419	WILLIAM BURKE
2492	DOROTHY WHITAKER
2531	DEMETRIX ALLEN
2001	ERNESTINE ALLEN
	KANDEIA ALLEN
0500	
2580	
0500	
2582	CAROLYN WHITAKER
2654	
0040	
2916	
0040	
2918	CHRISTOPHER PERRY
	ELAINE PERRY

-

Cross Street ✓ Source EDR Digital Archive

NC HIGHWAY 87 N

2994	BRUCE MARTINDALE
3038	LISA PERRY
	MICHAEL PERRY
3072	ASHLEY PERRY
	WESLEY COOLEY
3164	CRYSTAL LONG
	LISA HILL
	MICHAEL JOHNSON
	NORMAN HILL
3191	ETHEL MILLIKEN
0101	HATTIE MILLIKEN
	WYOMIE MILLIKEN
3231	
3231	CLYDE BROOKS
0057	MABEL BROOKS
3357	GEORGE LEE
	INGRID CAMPBELL
	MARCIA LEE
	ROSELIN LEE
3469	EUPHALIA FARRAR
	JIMMY FARRAR
	RUFUS HORTON
3511	ERIK FARRAR
	JAMES FARRAR
	RICHARD HORTON
	WILEEN FARRAR
3518	CLARENCE JOHNSON
	MOLLIE JOHNSON
3603	JEAN BOGGESS
	JOHN BOGGESS
	KEIFER BOGGESS
3643	AARON JORDAN
	MICHAEL JORDAN
3692	DONALD ELLIS
	SAMANTHA ELLIS
	TAMMY ELLIS
3699	DANIEL GLOSSON
	FRED PUGH
3730	BOBBY CRAWLEY
0.00	DANIEL GLOSSON
	WANDA CRAWLEY
4034	JONATHAN LORBACHER
4004	KARAH LORBACHER
	KERRI ROGERS
4051	DARRELL ROBERSON
4095	CARL RENZ
4095 4195	JOHN EAKES
4195	TAMMY EAKES
4000	
4263	
4265	KRISTEN TILLMAN

-

NC HIGHWAY 87 N

4276	NICHOLAS JOHNSON
	ROBERT JOHNSON
	SHON JOHNSON
4280	JOHNSON JOHN
4414	NICHOLAS HOLLAND
	STEPHEN BOYTE
4453	DELLA HOLLAND
4455	JACQUELINE CONDREY
	KIRBY CONDREY
	STEVE ROSE
4501	BONNIE KIDD
	JACOB KIDD
4546	BOBBY HOLT
	DONNA HOLT
4548	CIARA HOLT
	LISA HOLT
	VAN HOLT
4626	THERESE LUTTERLOH
4713	LAURA FAIRCLOTH
4774	RICHARD BARBER
4864	JOHN MARSH
4874	MILLARD RODGERS
4914	MARVIN CHALMERS
4947	JAMES CHALMERS
4969	NORRIS LEE
5001	ERIKA ALSTON
5001	JARED RICHMOND
5058	DELORES FERGUSON
5050	ELIZABETH WEATHERSPOON
	OLGA PEREZ
5154	RHONDA SEABROOK
5154	RHONDA SLOAT
5280	THOMAS NAIL
5200 5291	GERALD SMITH
5332	BARBARA PUGH
5345	KATHERINE SMITH
5429	CHASE GIBSON
5429 5430	JO HILL
5450 5455	KAREN SIRLS
5455	KAREN WEBSTER
	LAWRENCE WEBSTER
5457	STACEY JACKSON
5457 5475	BRITTANY KIDD
5475	
	LYANNE SPANGLER PHYLLIS SPANGLER
E604	
5684	
5821 5916	MICHAEL KIDD
0310	
	ASHLEY NUNN
	CHARLES NUNN

-

Cross Street ✓ Source EDR Digital Archive

NC HIGHWAY 87 N

5934	JUSTIN LINDLEY
	MARLA LINDLEY
	SHERRILL LINDLEY
6155	KEVIN FUTRELL
6475	JANET MOXLEY
6545	BEVERLY NEELEY
0040	DIANA DODGE
	RONALD NEELEY
0044	SCOTT SCHULTZ
6941	CODY CHRISTIE
0000	SHEILA PENDERGRASS
6989	AUTUMN FOGLEMAN
	CAROLINE FOGLEMAN
	JAMES FOGLEMAN
	SUMMER FOGLEMAN
	TOMMY FOGELEMAN
7042	DYLAN LOWE
	JESSICA WIMBERLY
	TRENTON HARRIS
	TYLER LOWE
7192	JANICE JOHNSON
7236	DAVID DOMINGUEZ
	KELLY DOMINGUEZ
	LENORE BRAFORD
	PAUL DRAKE
7239	DAWN SAUNDERS
	RUTH WATKINS
7267	JEAN STUBBS
7393	MELISSA MANN
7432	DAVID MINOR
1402	SANDA MINOR
7610	FREDERICK DICKMAN
7690	B GRANGER
7090	BRUCE GRANGER
0004	SUSANNA GRANGER
8394	ELAYNE PRETE
	ELIZABETH PRETE
	EVELYN PRETE
	JOSEPH PRETE
8485	ADAM THOMAS
	BEVERLY THOMAS
	GREGG THOMAS
8524	DEAN MOSER
	LEIGH MOSER
8847	GLENETTE VAUGHN
	RONALD VAUGHN

_

Source EDR Digital Archive

2020

(Cont'd)

NC HIGHWAY 87 N

9402 **BETTY TALLMAN** RONALD LILLY STEPHANIE LILLY TRAVIS LILLY 9435 DAWN GLOSSON PATRICIA GLOSSON 9474 CATHERINE MCDIARMID **GRACE MCDIARMID** JAMES MCDIARMID KIMMEL MCDIARMID MADISON MCDIARMID MATTHEW MCDIARMID 9680 JOHNNY GLOSSON 9961 ESTHER LINDBLAD JEFF GIBISCH LANA BRADLEY MICHAEL LENCZNER **REGULA FREI** MARK METCALF 9998

Source Cole Information

NC HIGHWAY 87 N 2017

170 THE GARDEN PLACE

-

- 365 CHATHAM COUNTY COUNCIL ON AGING
- HILL HOUSE SENIOR CENTER
- 3692 ELLIS DISPOSAL LLC
- 4548 HOLTS FLOOR SANDING INC
- 7610 NORTHWIND PAINTING CO

-

Source Cole Information

NC HIGHWAY 87 N 2014

136	NEELY, LORETTA H
180	HARRIS, THOMAS
365	CHATHAM COUNTY COUNCIL ON AGING
000	HILL HOUSE SENIOR CENTER
374	BRITSON, ROBERT D
412	
421	DASHNAW, DANIEL R
425	CUNNINGHAM, ALAN J
434	HARWARD, LOUISE A
485	KANE, CRAIG J
488	WASKO, EDITH C
515	SHEPPARD, JEFFREY F
536	SHAW, BRIAN K
543	BLAND, LINDA S
575	WILLIAMS, ALMA L
582	CARR, BRIAN A
605	FRIEDMAN, DORA
626	HILL, CORBIE J
676	ROSS, JOHN A
687	TORBERT, REBA W
696	WIELAND, DOUGLAS J
734	BEAVER, JESSE C
765	CAVINESS, WALTER C
821	VAUGHN, DORIA M
842	METTER, ALAN
868	JACQUES, ROBERT S
875	OCCUPANT UNKNOWN,
926	MONTGOMERY, HUGH R
929	BRADLEY, RICHARD D
947	COOPER, MARY C
988	STAGG, FRED
1003	COOPER, JOHN S
1033	NUTILE, ALBERTA A
1103	RECORE, HERBERT A
1149	JOHNSON, TODD F
1166	DUBEAU, MICHAEL E
1171	BRICE, JOHN P
1190	OCCUPANT UNKNOWN,
1190	FOUSHEE, FRANK T
1228	
1231	
1291	SHEETS, ELIJAH M
1352	MUEHLBACH, JAMES
1412	BOULDIN, JAMES A
1456	BROOKS, JUDITH M
1532	WELSH, LORRIE L
1588	DEMARE-STIVERS, MARY C
1654	MURRAY-LICHTMAN, SAMUEL N
1714	RONE, WANDA Y
1716	ATKINSON, THOMAS M

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

1927	
	MEGGINSON, KEITH
2356	HADLEY, ISAIAH
2374	STONE, BRIGAL
2384	FARRAR, KELVIN L
2397	BROOKS, BEN
2419	BURKE, WILLIAM K
2478	OCCUPANT UNKNOWN,
2492	WHITAKER, TIMOTHY E
2531	ALLEN, PIERRE L
2565	ANDRUF, REGINALD
2580	ELKINS, WILLIAM C
2621	OCCUPANT UNKNOWN,
2654	JUSTICE, JERRY R
2695	PERRY, KATHERINE J
2827	LAMBETH, CONNIE
2916	OCCUPANT UNKNOWN,
2918	OCCUPANT UNKNOWN,
2994	MARTINDALE, BRUCE L
3164	LONG, STACY S
3191	MILLIKEN, KEVIN C
3231	BROOKS, CLYDE
3252	JOHNSON, JACK
3312	OCCUPANT UNKNOWN,
3357	LEE, GEORGE W
3469	FARRAR, JIMMY G
3518	JOHNSON, CLARENCE H
3603	OCCUPANT UNKNOWN,
3643	JORDAN, MICHAEL M
3692	ELLIS DISPOSAL LLC
	ELLIS, DONALD W
3730	CRAWLEY, BOBBY J
3986	LUTTERLOH, CHARLES S
3990	OCCUPANT UNKNOWN,
4034	LORBACHER, KARAH
4095	RENZ, CARL E
4121	MERRITT, BILLY C
4188	WILSON, SONJA M
4249	OCCUPANT UNKNOWN,
4263	JACOB, DARA E
4265	SUGIYAMA, DYLAN
4276	OCCUPANT UNKNOWN,
4280	JOHNSON, JOHN R
4414	OCCUPANT UNKNOWN,
4453	HOLLAND, NICHOLAS V
4455	CONDREY, KEVIN B
4501	KIDD, BONNIE G
4546	HOLT, BOBBY K
4548	HOLT, VAN J
	HOLTS FLOOR SANDING INC
4626	LUTTERLOH, WILBER W
.520	

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

4713	B OCCUP	ANT UNKNOWN,
4864	4 MARSH	, JOHN H
4874	4 RODGE	RS, WILLIE D
4914	4 OCCUP	ANT UNKNOWN,
4947	7 CHALM	ERS, MARVIN T
4969	EE, NO	DRRIS V
500 ⁻	I ALSTO	N, WILLIAM E
5058	3 FERGU	SON, DELORES J
5154	4 STROW	/D, ROBERT C
5280) SPINKS	, CHRISTOPHER L
529 ⁻	I SMITH,	GERALD R
5332	2 PUGH,	BARBARA C
5345	5 PASCO	NE, CHANNING
5429	OCCUP	ANT UNKNOWN,
5430) BARNE	S, WILLIAM H
5458	5 WEBST	ER, LAWRENCE A
5457	7 JACKS	ON, ARRON
5475	5 SPANG	LER, PHILLIP L
5534	4 OCCUP	ANT UNKNOWN,
5560	OCCUP	ANT UNKNOWN,
5684	4 BEAL, D	OUGG R
5759) LOVE, P	K G
582 ⁻	I KIDD, N	1ICHAEL T
5916	6 NUNN,	CHARLES E
5934	4 LINDLE	Y, JUSTIN M
6127	7 TAMUL	EVICZ, WILLIAM
615	5 OCCUP	ANT UNKNOWN,
6475	5 MOXLE	Y, JANET B
6545	5 SCHUL	TZ, SCOTT H
694 <i>°</i>	I FOGEL	MAN, TOMMY
6989	OCCUP	ANT UNKNOWN,
7042	2 WIMBE	RLY, JESSICA R
7080	OCCUP	ANT UNKNOWN,
7118	B OCCUP	ANT UNKNOWN,
7162	2 OCCUP	ANT UNKNOWN,
7236		GUEZ, DAVID K
7239	9 WATKIN	NS, TED J
7267	7 STUBB	S, DONALD W
7393		MELISSA L
7432		DAVID R
7610		AN, FREDERICK N
		WIND PAINTING CO
7690		ER, BRUCE T
8394		ANT UNKNOWN,
848		S, HERBERT G
8524		, DEAN B
8743		ANT UNKNOWN,
8847		N, RONALD E
9402		ON TREE SERVICES INC
	MCDIAF	RMID, JAMES L

Source Cole Information

2014

(Cont'd)

NC HIGHWAY 87 N

9402 OCCUPANT UNKNOWN,

-

- WOFFORD, TRAVIS O
- 9435 OCCUPANT UNKNOWN,
- 9680 GLOSSON, JOHNNY S
- 9925OCCUPANT UNKNOWN,9998METCALF, GEORGE H

-

Source Cole Information

NC HIGHWAY 87 N 2010

148	WHITE, CAROL B
170	GARDEN PLACE
180	LEAK, PHYLLIS
374	BRITSON, ROBERT D
412	OCCUPANT UNKNOWN,
421	DEESE, JAMES O
425	CUNNINGHAM, ALAN J
434	HARWARD, LOUISE A
464	LORBACHER, JOHNNIE A
488	WASKO, EDITH C
515	SHEPPARD, JEFFREY F
536	SHAW, COLON L
543	BLAND, LINDA S
564	AHIHETRA LIFTING SYSTEMS
	OCCUPANT UNKNOWN,
575	WILLIAMS, ALMA L
582	ROBERTS, DAVE
605	FRIEDMAN, DORA
626	HILL, CORBIE J
649	PERRY, HERBERT T
676	ROSS, JOHN A
687	TORBERT, REBA W
696	JOHNSTON, DONNA C
734	BEAVER, JAY C
765	CAVINESS, WALTER C
842	METTER, ALAN
868	JACQUES, ROBERT S
875	SHUEY, KEVIN A
926	MONTGOMERY, HUGH R
929	BRADLEY, RICHARD H
947	COOPER, MARY C
988	OCCUPANT UNKNOWN,
1003	COOPER, JOHN S
1033	REZEN, JOHN K
1057	HARRISON, SUSAN N
1103	RECORE, HERBERT A
1149	JOHNSON, TODD F
1166	DUBEAU, MICHAEL E
1171	BRICE SERVICES CORP
	BRICE, JOHN P
1195	FOUSHEE, MATTHEW W
1228	WARFFORD, LINDA T
1291	LINDSEY, CLEATON M
1352	OCCUPANT UNKNOWN,
1412	BOULDIN, JAMES A
1456	BROOKS, J
1588	DEMARE-STIVERS, MARY D
1654	MURRAY-LICHTMAN, SAMUEL N
1704	ROBERSON, ALLEN H
1927	MEGGINSON, KEITH

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

2241 2356	BURGESS, BRANDON HADLEY, ISAIAH
2374	STONE, BRIGAL
2397	BROOKS, CATHERINE J
2419	BURKE, HAZEL H
2478	OCCUPANT UNKNOWN,
2492	OCCUPANT UNKNOWN,
2531	BROOKS, KIRSTIE
2565	ANDRUF, REGINALD
2580	ELKINS, WILLIAM C
2582	WHITAKER, CAROLYN D
2621	OCCUPANT UNKNOWN,
2654	JUSTICE, JERRY R
2695	PERRY, KATHERINE J
2722	GREEN, LARRY L
2836	EUBANKS, PAMELA G
2916	BROWN, HAZEL
2918	OCCUPANT UNKNOWN,
2994	OCCUPANT UNKNOWN,
3164	LONG, STACY S
3191	MILLIKEN, KEVIN C
3231	BROOKS, CLYDE
3252	JOHNSON, JANICE W
3312	KINTON, RHONDA
3357	LEE, GEORGE W
3469	OCCUPANT UNKNOWN,
3511	FARRAR, ERIK
3518	JOHNSON, CLARENCE H
3603	OCCUPANT UNKNOWN,
3643	OCCUPANT UNKNOWN,
3692	DONS DISPOSAL
	ELLIS, DONALD W
3699	PUGH, ANDREW C
3730	CRAWLEY, BOBBY J
3986	LUTTERLOH, CHARLES S
3990	FROST, ASHLEY
4034	LUTTERLOH, CHARLES W
4121	MERRITT, BILLY C
4188	WILSON, SONJA M
4249	OCCUPANT UNKNOWN,
4263	
4265	SUGIYAMA, DYLAN
4280	JOHNSON, JOHN R
4414	WALSH, BRIAN
4453 4455	HOLLAND, MARTIN A CONDREY, KEVIN B
4455 4501	-
4501 4546	KIDD, DARRELL L HOLT, BOBBY K
4546 4548	HOLTS FLOOR REFINISHING
4548 4626	LUTTERLOH, THERESE R
4020	LUTTERLUN, INERESER

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

4713 4774 4864 4874 4914 4947 4969 5001 5154 5291 5332 5429 5430 5455 5457 5455 5534 5560 5684 5759 5821 5916 5934 6127 6301 6475 6401 6401 6401 6401 6401 6401 6401 6401	OCCUPANT UNKNOWN, HODGIN, BILLY MARSH, JOHN H RODGERS, WILLIE D OCCUPANT UNKNOWN, CHALMERS, JAMES P LEE, NORRIS V ALSTON, WILLIAM E STROWD, ROBERT C SMITH, GERALD R PUGH, FRED OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, PRATT, WILLIAM G OCCUPANT UNKNOWN, JACKSON, ARRON SPANGLER, LYANNE S OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, BEAL, DOUG LOVE, CHARLES M GAMBOS, CHRIS E NUNN, CHARLES E LINDLEY, SHERRILL F TAMULEVICZ, WILLIAM SHUSKEY, GERALDINE P HIPPLE, ROY G MOXLEY, JANET B SCHULTZ, SCOTT H FOGLEMAN, SHEILA N FOGELMAN, TOMMY OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, OCCUPANT UNKNOWN, STUBBS, DONALD W MANN, LEE N MINOR, DAVID R DICKMAN, FREDERICK N GRANGER, BRUCE T
8394	MCDANIEL, CLIFTON R
8485	THOMAS, HERBERT G
8524	MOSER, DEAN B
8743	OCCUPANT UNKNOWN,
9402	OCCUPANT UNKNOWN,
	POTTS, JEFFREY W

Source Cole Information

2010

(Cont'd)

NC HIGHWAY 87 N

9474 MCDIARMID, MATTHEW J

-

- 9680 GLOSSON, JOHNNY S
- 9961 OCCUPANT UNKNOWN,
- 9998 METCALF, GEORGE H

-

NC HIGHWAY 87 N 2005

180	OCCUPANT UNKNOWN,
365	CHATHAM COUNTY COUNCIL OF AGING
374	BRITSON, ROBERT D
377	KEARNS, BRENDAN
415	OCCUPANT UNKNOWN,
421	DEESE, JAMES O
425	CUNNINGHAM, ALAN
434	HARWARD, LOUISE A
464	LORBACHER, JOHNNIE A
485	MAYNARD, KITTY
488	WASKO, EDITH C
515	OCCUPANT UNKNOWN,
536	SHAW, COLON L
543	BLAND, LINDA S
564	FOUSHEE, MATTHEW W
575	OCCUPANT UNKNOWN,
605	OCCUPANT UNKNOWN,
626	ROBERTS, R L
676	ROSS, JOHN A
687	TORBERT, REBA W
696	GILMORE, WARD
734	BARACHEL INC
	JAYS HYDRAULIC SERVICE INC
	OCCUPANT UNKNOWN,
756	CAVINESS, CRAIG
765	SIERRA, JACOB
804	ARTHURS, JOHN W
842	METTER, ALAN
868	JACQUES, ROBERT S
923	MCNEILL, TERRY
929	BRADLEY, RICHARD H
947	COOPER, MARY C
988	SANDERS, MICHAEL
1003	COOPER, JOHN S
1033	WEBSTER, KELLY P
1057	HARRISON, SUSAN M
1103	RECORE, HERB A
1149	JOHNSON, TODD F
1166	MOORE, MALCOLM
1171	BRICE SERVICES CORP
	BRICE, JOHN P
1190	JOHNSON, TOMMY
1195	CONRAD, ALLEN F
1228	WARFFORD, REUBEN B
1291	LINDSEY, CLEATON M
1352	GRIFFIN, MARGARET
1412	BOULDIN, JAMES E
1532	WILLIAMS, BOBBY
1588	QUINN, JERRY W
1704	ROBERSON, ALLEN H

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

1716	ATKINSON, DONALD M
1927	MEGGINSON, KEITH
2241	BURGESS, WILLIE E
2356	HADLEY, ISAIAH
2374	STONE, BRIGAL
2397	BROOKS, BEN
2419	BURKE, KENNETH I
2478	WHITAKER, DOROTHY
2492	OCCUPANT UNKNOWN,
2515	NEFF, ROBERT A
2531	THOMAS, M
2565	ANDERS, REGGIE
2580	ELKINS, CLYDE
2621	OCCUPANT UNKNOWN,
2654	JUSTICE, JERRY R
2695	PERRY, KATHERIN C
2095	GREEN, LARRY L
	WILLIAMS, JACKIE
2725	
2836	EUBANKS, PAMELA E
2916	BROWN, HAZEL
2918	OCCUPANT UNKNOWN,
2994	OCCUPANT UNKNOWN,
3164	LONG, STACY S
3191	MILLIKEN, KEVIN C
3231	BROOKS, CLYDE
3252	JOHNSON, JACK
3312	OURS, CRYSTAL
3357	LEE, GEORGE W
3469	FARRAR, JIMMY G
3518	JOHNSON, CLARENCE
3603	ALSTON, EMMA L
3692	ELLIS, DONALD W
3699	PUGH, ANDY
3730	EUBANKS, LEONARD T
3986	LUTTERLOH, CHARLES S
3990	LUTTERLOH, CHARLES
4034	LUTTERLOH, CHARLES W
4095	SMITH, RENEE
4121	MERRITT, BILLY C
4188	WILSON, SONJA M
4249	OCCUPANT UNKNOWN,
4263	JACOB, DARA E
4265	MILLER, MIKE T
4276	JOHNSON, SHON
4280	JOHNSON, JOHN R
4414	HOLLAND, DELLA R
4453	CONDREY, KEVIN B
4501	KIDD GRADING
	KIDD, BONNIE G
4548	HOLT, LISA

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

4606	
4626	
4774	
4864	MARSH, JOHN H RODGERS, WILLIE D
4874	
4914	OCCUPANT UNKNOWN,
4947	CHALMERS, JAMES P
4969	DEGRAFFENREIDT, LUCILLE
5001	ALSTON, WILLIAM E
5154	STROWD, ROBERT C
5280	SMITH, MICHAEL R SMITH, GERALD R
5291 5332	CEDAR BRAKES SHEEP & LAMB
000Z	PUGH, FRED
5215	BRYARLEY, NATHAN
5345 5429	SIRLS, CHARLES D
5429 5430	PRATT, WILLIAM G
5450 5455	SIRLS, JODIE A
5455 5457	JACKSON, ARRON
5475	SPANGLER, LYANNE
5534	OCCUPANT UNKNOWN,
5560	HENDERSON, WALTER
5759	LOVE, K G
5821	JOHNSON, KEVIN
5863	LEIGHT, EDWIN M
5865	DELP, MARK A
5867	SCOTT, ROBERT W
5916	NUNN, CHARLES E
5934	LINDLEY, SHERRILL F
6127	TAMULEVICZ, WILLIAM
6301	HIPPLE, ROY G
6475	MOXLEY, JANET B
6545	NEELEY, RONALD L
6941	FOGLEMAN, SHEILA N
6989	FOGELMAN, TOMMY
7042	OCCUPANT UNKNOWN,
7080	OCCUPANT UNKNOWN,
7118	OCCUPANT UNKNOWN,
7162	OCCUPANT UNKNOWN,
7192	JOHNSON, SUSAN H
7236	OCCUPANT UNKNOWN,
7239	OCCUPANT UNKNOWN,
7267	STUBBS, DONALD W
7393	MANN, LEE N
7432	MINOR, DAVID R
7610	DICKMAN, NORTON
7690	GRANGER, BRUCE T
8394	OCCUPANT UNKNOWN,
8485	THOMAS, GREGG
8524	
8743	MANN, GLENN W

Cross Street

Source Cole Information

(Cont'd)

2005

NC HIGHWAY 87 N

8890 GLOSSON, BOBBY E

-

9402 AUDUBON TREE SERVICE INC OCCUPANT UNKNOWN, WOFFORD, TRAVIS O GLOSSON, CHARLES F 9435 9474 OCCUPANT UNKNOWN, 9680 GLOSSON, PATRICIA D 9925 THOMAS, HERBERT 9961 OCCUPANT UNKNOWN, 9998 METCALF, GEORGE H

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N 2000

365	CHATHAM COUNTY COUNCIL ON AGING
	HILL HOUSE SENIOR CENTER
377	KEARNS, BRENDAN
425	HRABAK, DONALD L
464	LORBACHER, J A
485	REAVIS, J G
543	BLAND, L S
564	JOHANSSON CHARITY
582	ROBERTS, DAVE
605	LEFTWICH, BRYAN E
626	ROBERTS, R L
676	ROSS, JOHN A
687	TORBERT, JOE T
734	BEAVER, JAY
842	METTER, ALAN
868	JACQUES ROBERT S DR
	JACQUES, ROBERT S
926	MONTGOMERY, HUGH
929	BRADLEY, RICHARD H
1057	HARRISON, PERRY
1166	MOORE, MALCOLM
1412	BOULDIN, JAMES
1456	BROOKS, J J
1704	ROBERSON, ALLEN
1927	MEGGINSON, KEITH
2241	BURGESS, WILLIE E
2356	HADLEY, ISAIAH
2397	BROOKS, BEN
2397	BURKE, KENNETH I
2531	NETTLES, LATANYA N
2001	TAYLOR, EDWARDS S
2654	JUSTICE, JERRY R
2654	
2695	HERNDON, JOHN J
2916	BROWN, HAZEL
2994	ROGERS, CHARLES
3164	LONG, S S
3231	BROOKS, CLYDE
3252	JOHNSON, JACK
3357	LEE, GEORGE W
3469	FARRAR, JIMMY
3518	JOHNSON, C
3699	THOMAS, R D
3984	FROST, ANDREW
3986	LUTTERLOH, CHARLES S
4034	LUTTERLOH, C W
4095	HACKNEY, TONY
4121	MERRITT, BILLY C
4123	LEE, LARRY
4125	BILLINGSLEY, KAREN
4154	THOMAS, RUSTY

-

Cross Street ✓ Source Cole Information

NC HIGHWAY 87 N

4265	MOORE, BONNIE
4276	JOHNSON, SHON
4414	HOLLAND, DELLA R
4501	KIDD DARRELL GRADING
	KIDD, BONNIE
4548	HOLT, VAN
4626	LUTTERLOH, WILBER
4874	RODGERS, WILLIE D
5430	RODRIGUEZ, FELIPE
5475	KIDD, LYANNE
5534	ROSS, CHARLES J
5560	HENDERSON, WALTER
5759	LOVE, CHARLES M
5821	BRUNFIELD, KIM
5863	LEIGHT, M T
5934	LINDLEY, MARLA
6127	MAY, AARON J
6301	HIPPLE, ROY G
6303	BAMPTON, C L
6475	BEAMAN, CHARLES
6545	NEELEY, RONALD
6941	FOGLEMAN, SHEILA
7070	KENLAN JOSEPH STONEMASONRY LIMITED
7118	JOHNSON, LARRY
7192	JOHNSON, H S
7236	MOORE, FAY
7239	DAVIS, JESSICA
7393	MANN, LEE N
8485	THOMAS, GREGG
8524	MOSER, DEAN
8743	MANN, GLENN W
8892	HAYES, S
9402	AUDUBON TREE SERVICES INCORPORATED
	MCDIARMID, MATTHEW
9925	THOMAS, HERBERT
9998	METCALF, GEORGE H

APPENDIX D

AERIAL PHOTOGRAPHS

Proposed DG Store

Not Reported Pittsboro, NC 27312

Inquiry Number: 7739974.8 August 21, 2024

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Site Name:

Client Name:

Proposed DG Store Not Reported Pittsboro, NC 27312 EDR Inquiry # 7739974.8 Proctor Environmental Services, Inc. 5113 Yachtsman Court Raleigh, NC 27615 Contact: Tom Proctor

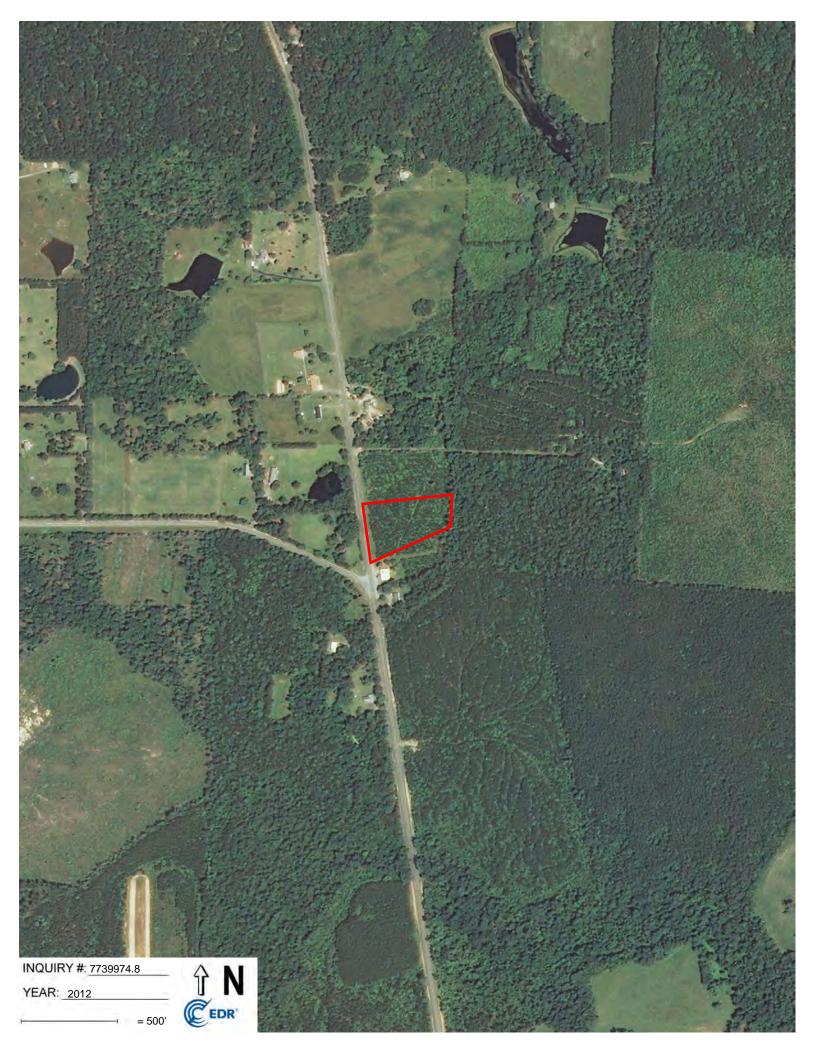
Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

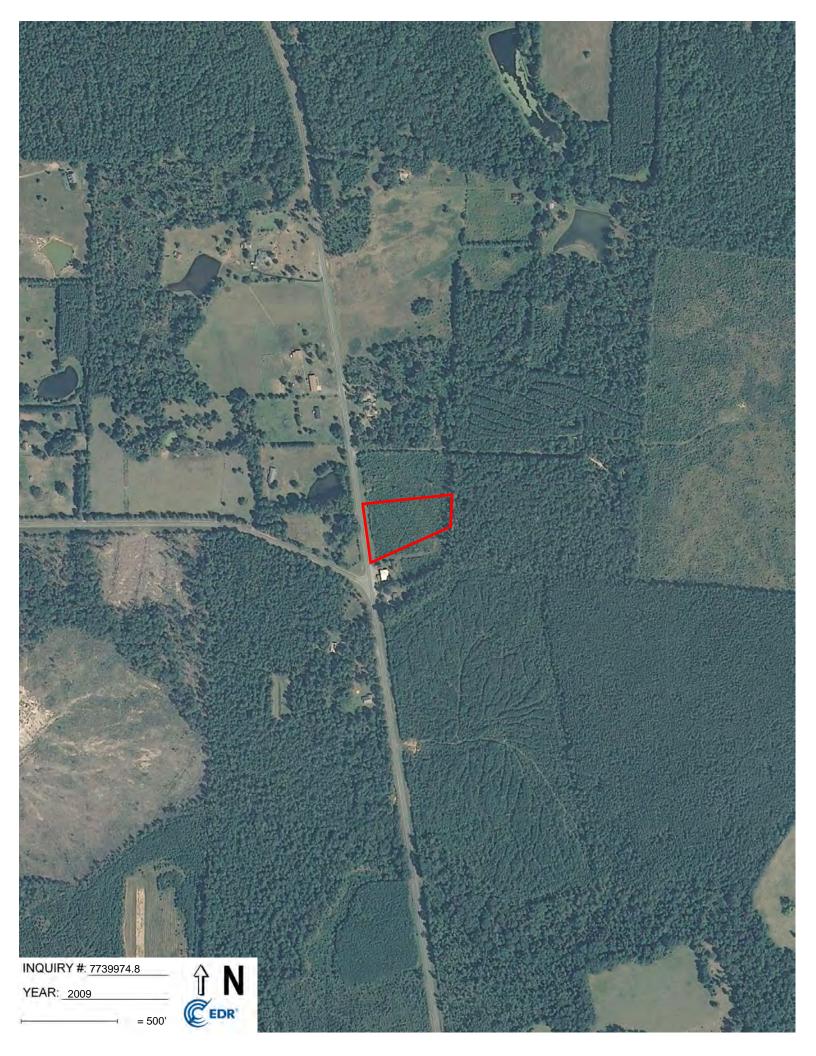
Search Results:

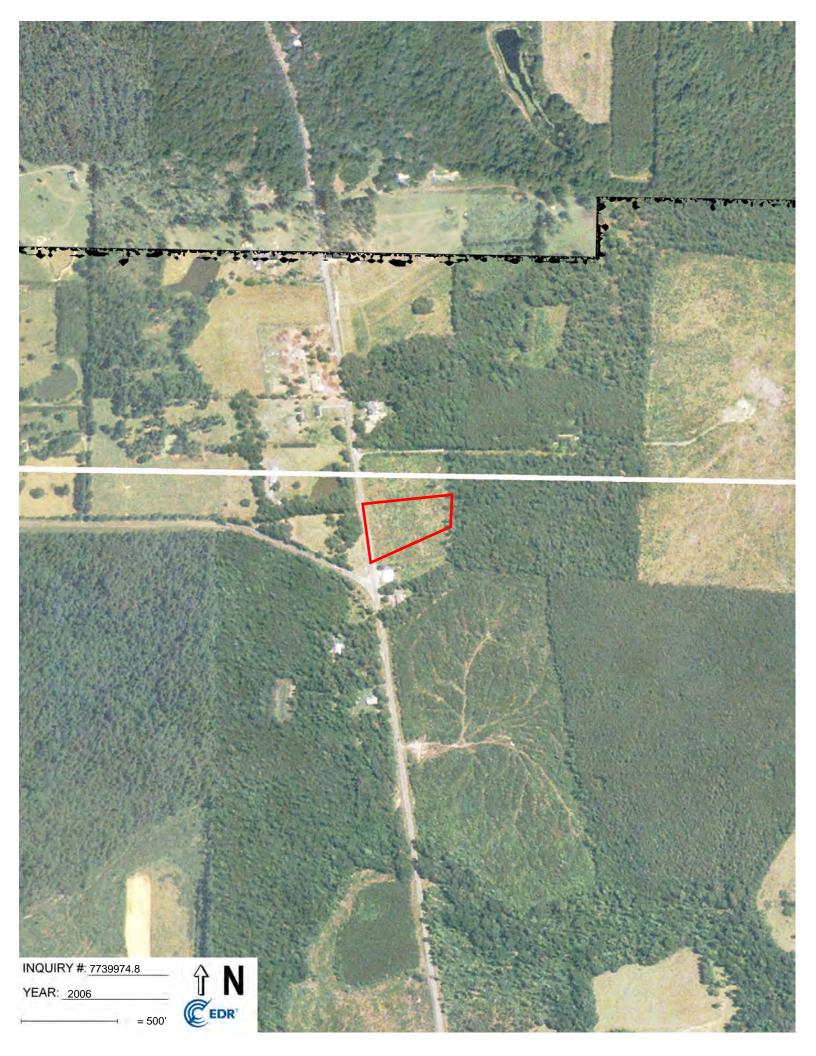
Year	Scale	Details	Source	
2020	1"=500'	Flight Year: 2020	USDA/NAIP	
2016	1"=500'	Flight Year: 2016	USDA/NAIP	
2012	1"=500'	Flight Year: 2012	USDA/NAIP	
2009	1"=500'	Flight Year: 2009	USDA/NAIP	
2006	1"=500'	Flight Year: 2006	USDA/NAIP	
1998	1"=500'	Acquisition Date: January 01, 1998	USGS/DOQQ	
1993	1"=500'	Acquisition Date: March 01, 1993	USGS/DOQQ	
1983	1"=500'	Flight Date: March 02, 1983	NHAP	
1973	1"=500'	Flight Date: March 23, 1973	USGS	
1964	1"=500'	Flight Date: March 12, 1964	USGS	
1961	1"=500'	Flight Date: September 07, 1961	USGS	
1950	1"=500'	Flight Date: November 18, 1950	USGS	
1939	1"=500'	Flight Date: February 16, 1939	USGS	

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice


This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property. Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of


Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.


EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

YEAR: 1939

APPENDIX E

SANBORN MAPS

Proposed DG Store Not Reported Pittsboro, NC 27312

Inquiry Number: 7739974.3 August 19, 2024

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name:

Proposed DG Store Not Reported Pittsboro, NC 27312 EDR Inquiry # 7739974.3 Client Name:

Proctor Environmental Services, Inc. 5113 Yachtsman Court Raleigh, NC 27615 Contact: Tom Proctor

08/19/24

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Proctor Environmental Services, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 24FF-4760-A126

PO # R528

Project Proposed DG Store

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results Certification #: 24FF-4760-A126

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Proctor Environmental Services, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF DATA), ARISING OUT OF OR INANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX F

TOPOGRAPHIC MAPS

Proposed DG Store Not Reported Pittsboro, NC 27312

Inquiry Number: 7739974.4 August 19, 2024

EDR Historical Topo Map Report with QuadMatch™

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Site Name:

1968

Client Name:

08/19/24

Proposed DG Store Not Reported Pittsboro, NC 27312 EDR Inquiry # 7739974.4 Proctor Environmental Services, Inc. 5113 Yachtsman Court Raleigh, NC 27615 Contact: Tom Proctor

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Proctor Environmental Services, Inc. were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Resu	ılts:	Coordinates:	
P.O.#	R528	Latitude:	35.804876 35° 48' 18" North
Project:	Proposed DG Store	Longitude:	-79.250162 -79° 15' 1" West
-		UTM Zone:	Zone 17 North
		UTM X Meters:	658104.15
		UTM Y Meters:	3963719.38
		Elevation:	561.57' above sea level
Maps Provid	ed:		
2022			
2019			
2016			
2013			
1974			

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2022 Source Sheets

Silk Hope 2022 7.5-minute, 24000

Bynum 2022 7.5-minute, 24000

2019 Source Sheets

Silk Hope 2019 7.5-minute, 24000

Bynum 2019 7.5-minute, 24000

2016 Source Sheets

Silk Hope 2016 7.5-minute, 24000

2016 7.5-minute, 24000

2013 Source Sheets

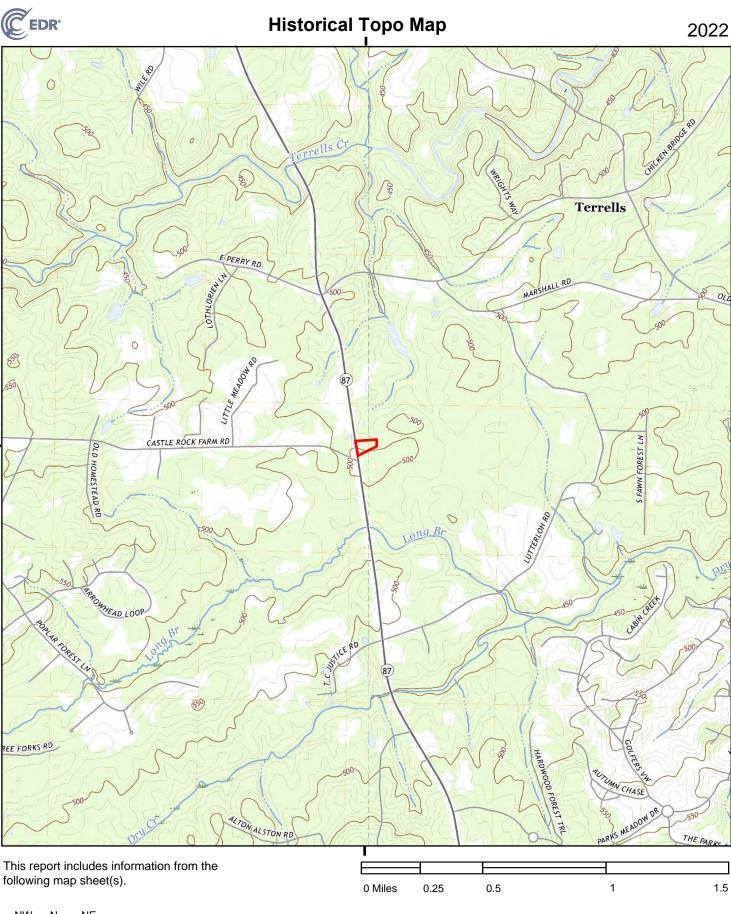
Silk Hope 2013 7.5-minute, 24000

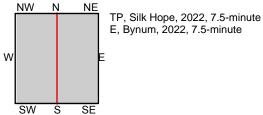
Bynum 2013 7.5-minute, 24000

Topo Sheet Key

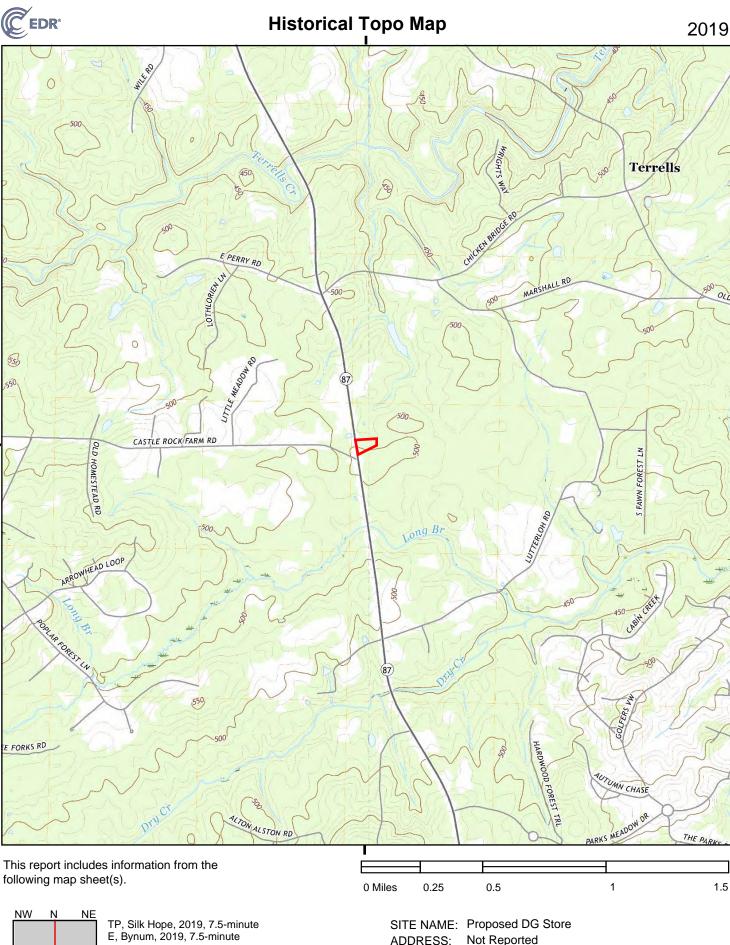
This EDR Topo Map Report is based upon the following USGS topographic map sheets.

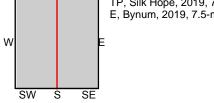
1974 Source Sheets



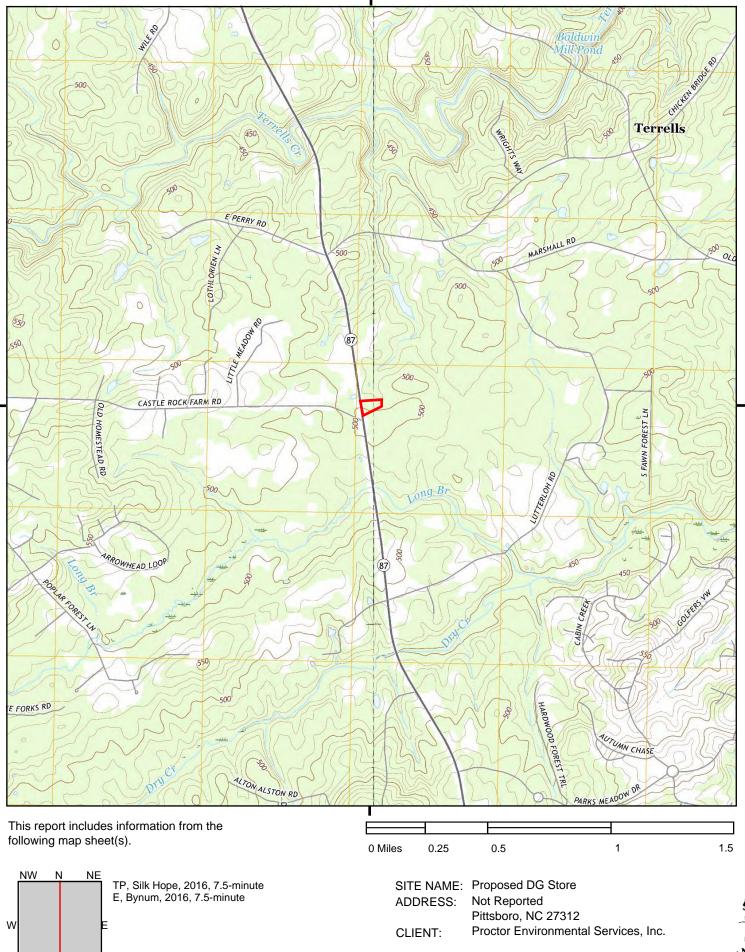

Silk Hope 1974 7.5-minute, 24000 Aerial Photo Revised 1973

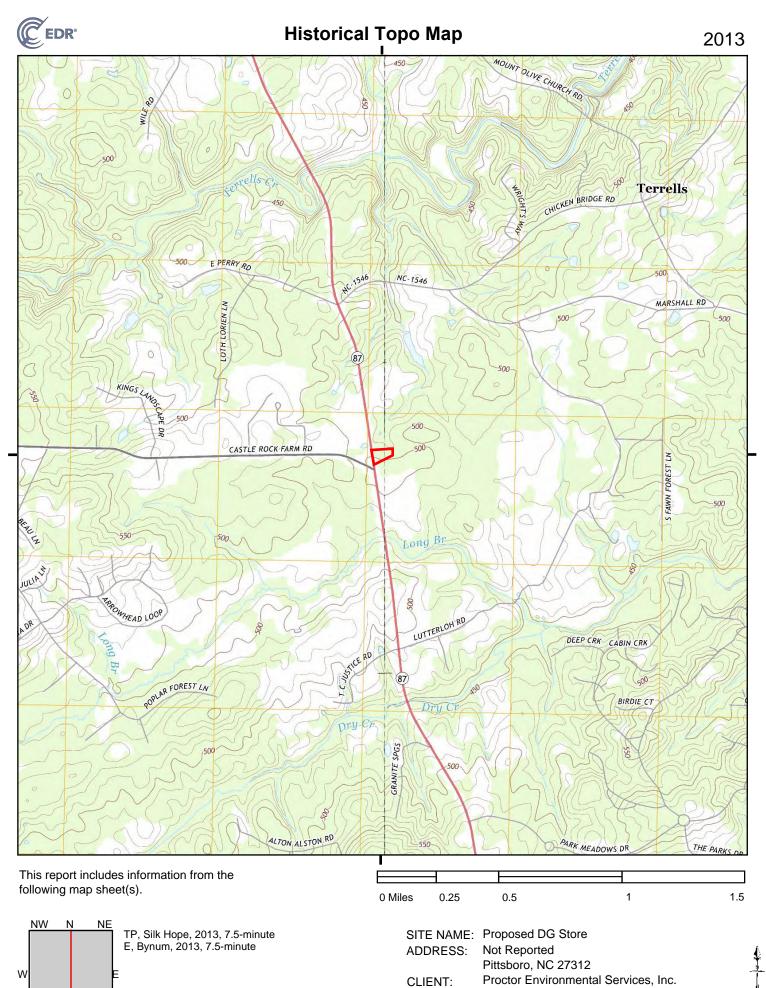
1968 Source Sheets




Bynum 1968 7.5-minute, 24000 Aerial Photo Revised 1964

SITE NAME:Proposed DG StoreADDRESS:Not Reported
Pittsboro, NC 27312CLIENT:Proctor Environmental Services, Inc.


SITE NAME:Proposed DG StoreADDRESS:Not Reported
Pittsboro, NC 27312CLIENT:Proctor Environmental Services, Inc.



Ś

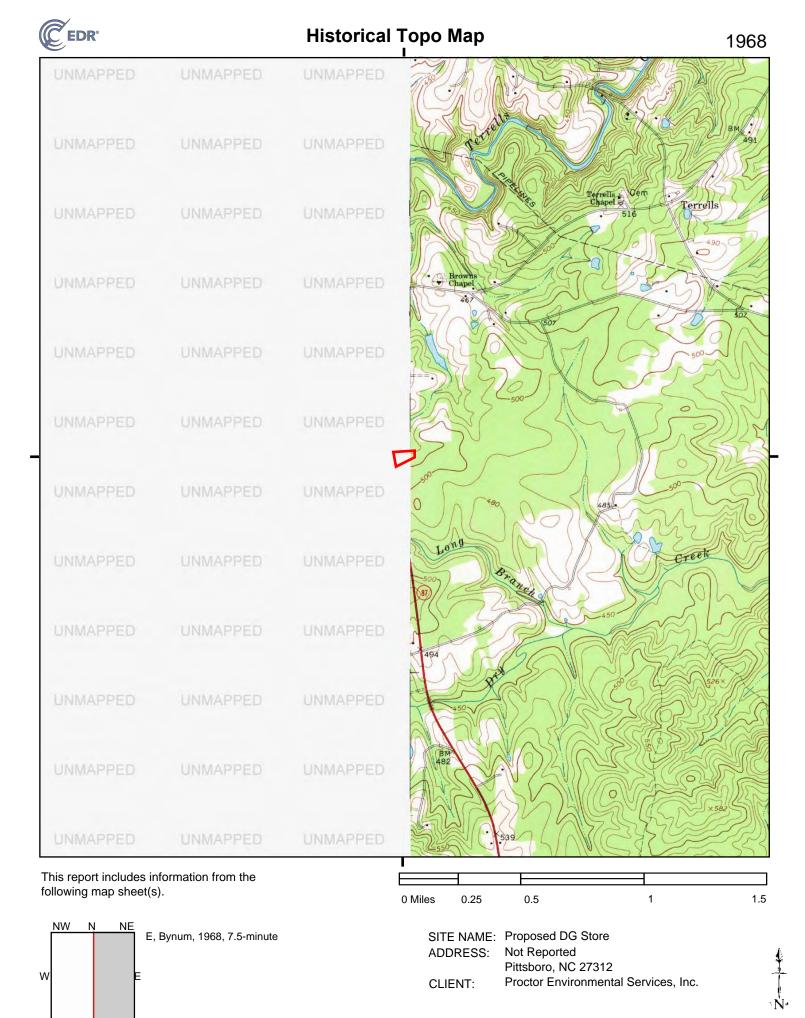
SE

Historical Topo Map

Ś

SE

Ś


SE

Historical Topo Map

1974

NW N NE TP, Silk Hope, 1974, 7.5-minute	SITE NAME: Prop).5 1 posed DG Store Reported	1
his report includes information from the ollowing map sheet(s).			
Eres Offer	UNMAPPED	UNMAPPED	UNMAPPED
	UNMAPPED	UNMAPPED	UNMAPPED
Long - Long - Contraction	UNMAPPED	UNMAPPED	UNMAPPED
Brownell Brownell	UNMAPPED	UNMAPPED	UNMAPPED
A BANK SA	UNMAPPED	UNMAPPED	UNMAPPED
	UNMAPPED	UNMAPPED	UNMAPPED
	UNMAPPED	UNMAPPED	UNMAPPED
	UNMAPPED	UNMAPPED	UNMAPPED
43 Contraction of the second s	UNMAPPED	UNMAPPED	UNMAPPED
Creek	UNMAPPED	UNMAPPED	UNMAPPED
	UNMAPPED	UNMAPPED	UNMAPPE
	2		

N

Ś

SE

7739974 - 4

page 10

APPENDIX G

PRIOR SITE INVESTIGATION REPORT(S)

NO PRIOR SITE INVESTIGATION REPORTS WERE MADE AVAILABLE FOR THIS SITE. THIS APPENDIX IS INTENTIONALLY EMPTY.

APPENDIX H

SUPPORTING DOCUMENTATION

PRE-SURVEY QUESTIONNAIRE

This form, in its entirety, is to be completed by the Property Owner or the Key Site Manager.

Project Name:	2.40-Acre Dollar General Site, Hwy 87, Pittsboro, NC	Project #:	P24-765
	ng Form: ROMPLE E. VADBHN	Date: 8/20/	24
Company Name		Phone No.: 919	-259-6182
	subject Property: DWNER		

- Briefly explain the current use of the Property and any past, known uses of the Property, if different: <u>VACANT</u>, MOBILE HOMES DISTING 20+ VEARS ABD
- 2) Briefly explain the ownership of the Property (with dates, if possible) as far back as you have knowledge:
- 3) Are any of the following documents available for the Property and, if so, can they be provided to Proctor Environmental Services within reasonable time and cost constraints?
- Previous site assessment reports;
- Environmental compliance audit reports;
- Environmental permits;
- UST or AST registration or permits;
- Material safety data sheets;
- Community right-to-know plans;
- Safety plans;
- Spill Prevention Control and Countermeasure Plans (SPCC);
- Hydrogeologic reports on Property or surrounding properties;

- Correspondence from governmental agencies regarding past or current violations or environmental laws with respect to the Property or relating to environmental liens;
- Hazardous waste generator notices or reports;
- Geotechnical reports;
- Risk assessments; or
- Recorded legal or physical restrictions or limitations on the use of or access to the Property

Comments: No/Yes (explain) X/D

4) Do you know of any 1) pending, threatened or past litigation relevant to hazardous substances or petroleum products in, on or from the Property; 2) pending, threatened or past administrative proceedings relevant to hazardous substances or petroleum products in, on or from the Property; or 3) notices from any governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products?

Comments: No/Yes (explain) XD

1			
1	,	٢	

Proj. Name: <u>2.40-Acre Dollar General Site, NC 87, Pittsboro, Chatham Co., NC</u> Project. No.: <u>P24R-765</u> Owner/Site Manager Initials and Date: <u>XeV B/20/24</u>

QUESTION		OWNER/SITE MGR. RESPONSE			COMMENTS
	QUEUNON	Yes	No	U/NR	
1A.	Is the Property used for an industrial purpose?		X		
IB.	Are any adjoining properties used for industrial purposes?		X		
2A.	To the best of your knowledge, has the Property previously been used for industrial purposes?		X		
2В.	To the best of your knowledge, has any adjoining property of the Property previously been used for industrial purposes?		X		
3A.	Is the Property currently used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo-developing laboratory, junkyard, landfill, a waste treatment, storage, disposal, processing, or recycling facility or similar use?		×		
3B.	Is any adjoining property currently used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo-developing laboratory, junkyard, landfill, a waste treatment, storage, disposal, processing, or recycling facility or similar use?		×		
4A.	Has the Property previously been used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo-developing laboratory, junkyard, landfill, a waste treatment, storage, disposal, processing, or recycling facility or similar use?		X		
4B.	Has any adjoining property previously been used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo-developing laboratory, junkyard, landfill, a waste treatment, storage, disposal, processing, or recycling facility or similar use?	X			GAS' STATION 40 YES, AGD
5A.	Are there currently any automotive or industrial batteries, pesticides, paints, or other chemicals in individual containers of greater than five (5) gallons in volume or fifty (50) gallons in aggregate, stored on or used at the Property?		×		
5B.	Have there historically been any automotive or industrial batteries, pesticides, paints, or other chemicals in		Х		

Proj. Name: <u>2.40-Acre Dollar General Site, NC 87, Pittsboro, Chatham Co., NC</u> Project. No.: <u>P24R-765</u> Owner/Site Manager Initials and Date: <u>RED B/20/C</u>

	QUESTION		NER/S		COMMENTS
		Yes	No	U/NR	
Γ.	individual containers of greater than five (5) gallons in volume of fifty (50) gallons in aggregate, stored on or used at the Property?		X		
6A.	Are there currently any industrial drums (typically 55-gallons in volume) or sacks of chemicals located on the Property?		×		
6B.	Have there historically been any industrial drums (typically 55-gallons in volume) or sacks of chemicals located on the Property?		X		
7A.	Are there currently any groundwater monitoring wells or other groundwater wells (i.e. potable drinking water wells) located on the Property?		X		
7B.	Have there historically been any groundwater monitoring wells or other groundwater wells (i.e. potable drinking water wells located on the Property?		×		
8A.	Has fill dirt been brought onto the Property which originated from a contaminated site?		×		
8B.	Has fill dirt been brought onto the Property from an unknown origin?		×		
9A.	Are there currently any pits, ponds, or lagoons located on the Property in connection with waste treatment or waste disposal?		×		
9B.	Have there historically been any pits, ponds, or lagoons located on the Property in connection with waste treatment or waste disposal?		×		
10A.	Is there currently any stained soil on the Property?		×		
10B.	Has there historically been any stained soil on the Property?		X		
11A.	Are there currently any registered or unregistered storage tanks (above or underground) located on the Property?		×		
11B.	Have there historically been any registered or unregistered storage tanks (above or underground) located on the Property?		×		
12A.	Are there currently any vent pipes, fill pipes or access ways indicating a potential fill pipe protruding from the ground on the Property or adjacent to any structure located on the Property?		×		

Proj. Name: <u>2.40-Acre Dollar General Site, NC 87, Pittsboro, Chatham Co., NC</u> Project. No.: <u>P24R-765</u> Owner/Site Manager Initials and Date: <u>REV 8/25/24</u>

	QUESTION		NER/S	SITE	comments
		Yes	No	U/NR	
12B.	Have there historically been any vent pipes, fill pipes or access ways indicating a fill pipe protruding from the ground on the Property or adjacent to any structure located on the Property?		X		
13A.	Are there currently any floors, drains, ceiling or walls located at the Property that are stained by substances other than water or areas emitting foul odors?		×		
13B.	Have there historically been any floors, drains, ceiling or walls located at the Property that are stained by substances other than water or areas emitting foul odors?		×		
14A.	If the Property is served by a private well or non-public water system, have contaminants been identified in the well or system that exceed guidelines applicable to the water system?		×		
14B.	If the Property is served by a private well or non-public water system, has the well been designated as contaminated by any government environmental/health agency?		X		
15.	Are there any Environmental Liens or governmental notification relating to past or current violations of environmental laws with respect to the Property or any facility located on the Property?		×		
16A.	Are you aware of any current or past existence of Hazardous Substances of Petroleum Products with respect to the Property or any facility located on the Property?		×		
16B.	Are you aware of any current or past environmental violations with respect to the Property or any facility located on the Property?		×		
17.	Have there been any Environmental Site Assessments of the Property that indicated the presence of Hazardous Substances or Petroleum Products on, or contamination of, the Property or recommended further assessment of the Property?		×		
18.	Are there any past, threatened, or pending lawsuits or administrative proceedings concerning a release or		×		

Proj. Name: <u>2.40-Acre Dollar General Site, NC 87, Pittsboro, Chatham Co., NC</u> Project. No.: <u>P24R-765</u> Owner/Site Manager Initials and Date: <u>REV 8/20/24</u>

TP'	QUESTION		OWNER/SITE MGR. RESPONSE		e last page to explain any "Yes" answers. COMMENTS
		Yes	No	U/NR	
	threatened release of any Hazardous Substance or Petroleum Products involving the Property?		X		
19.	Does the Property discharge wastewater on or adjacent to the Property (not to include permissible stormwater and sanitary sewer discharges.)?		×		
20.	Have any Hazardous Substances or Petroleum Products, unidentified waste materials, tires, automotive or industrial batteries or any other waste materials been dumped above grade, buried and/or burned on the Property?		X		
21.	Is there a transformer, capacitor or any hydraulic equipment for which there are any records indicating the presence of PCBs?		X		
22.	Is there now or has there ever been any asbestos-containing materials (ACMs), in any application, on the Property?		×		
23.	Has there ever been any ACM testing conducted on the Property?		×		
24.	Is there an Asbestos Operations and Maintenance (O&M) Program in place at the Property?		×		
25.	Is there now or has there ever been any lead-based paint (LBP) applications on the Property?		×		
26.	Has there ever been any LBP testing conducted on the Property?		X		
27.	Is there a LBP O&M Program in place at the Property?		×		
28.	Has the water at the Property ever been tested for lead or other contamination?		X		
29.	Has Radon testing ever been conducted at the Property?		X		
30.	Are there any other O&M Programs in place that you are aware of?		×		
31.	Is the Property or any portion thereof located or involved in any environmentally sensitive areas (i.e. wetlands, coastal barrier resource areas, coastal barrier improvement act areas, flood plains, endangered species, etc.)?		X		
32.	Do you know or suspect that mold was or is present in the building(s) or HVAC system? - If "YES", proceed to question #33. If "NO", proceed to question #34.		x		

Proj. Name: <u>2.40-Acre Dollar General Site, NC 87, Pittsboro, Chatham Co., NC</u> Project. No.: <u>P24R-765</u> Owner/Site Manager Initials and Date: <u>PEV 8/20/24</u>

QUESTION		OWNER/SITE MGR. RESPONSE		the second se	COMMENTS
		Yes	No	U/NR	
33.	Are there any reliable procedures that specify the actions (i.e. operations and maintenance) to be taken to prevent and/or respond to mold or mold producing problems?		×		
34.	Is there a Mold O&M Program in place at the Property?		X		
35.	Is the HVAC system inspected at least annually?	-	×		
36.	Have any identified HVAC problems been corrected in a timely manner?		×		
37.	Have any identified HVAC problems been corrected in a timely manner?		X		
38.	Is there now, or has there ever been any water damage in the building(s), whether from flooding, plumbing, roof leaks, or other sources? If so, when?		×		
39.	Has there ever been any sort of indoor Air Quality or Mold Testing conducted in the building(s)?		×		
40.	Summarize historical Project use (when was the Project developed with the current improvements, what modifications have taken place, what was the Project used for prior to its current use?		×		
Pleas	e use space below for additional comm	nents	:	- 20-	
		_			

Signature: Rough E. Vaufter	
Printed Name: ROMALD E. VAUGAN	
Date: <u>\$/20/24</u>	
Relationship to Site: DUNED	

USER QUESTIONNAIRE (Page 1 of 2)

Site Name Proposed DG Site, Pittsboro, Chatham Co., NC

Proposal # P24R-765

In order to qualify for one of the Landowner Liability Protections offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the Brownfields Amendments), the User (buyer) of the Phase I Environmental Site Assessment (PESA) must provide the following information (if available) to the environmental professional. Failure to provide this information could result in a determination that the PESA is not complete. Use this form and/or additional sheets as necessary to provide the requested information.

1. Are you aware of any environmental cleanup liens against the property that are filed or recorded under federal, tribal, state or local law?

Yes _____ No____ Comment_____

2. Are you aware of any activity or land use limitations, such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or have been filed or recorded in a registry under federal, tribal, state or local law?

Yes _____ No 🗸 Comment_____

3. As the user of this PESA do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or an adjoining property so that you would have specialized knowledge of the chemicals and/or processes used by current or former businesses at this site or nearby sites?

- Yes No V Comment
- Does the purchase price being paid for this property reasonably reflect the fair market value of the property? 4. If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the property?

Yes 🗸 No ___ Comment_____

- 5. Are you aware of commonly known or reasonably ascertainable information about the property that would help the environmental professional to identify conditions indicative of releases or threatened releases? For example, as user,
 - a. Do you know the past uses of the property?

Yes No V Comment

- b. Do you know of specific chemicals that are present or once were present at the property?

No____ Comment_____ Yes

c. Do you know of spills or other chemical releases that have taken place at the property?

Yes	No 🗸	Comment

d. Do you know of any environmental cleanups that have taken place at the property?

Yes No V Comment

USER QUESTIONNAIRE (Page 2 of 2)

Site Na	me Proposed [<u>DG Site, Pitts</u>	boro, Chatham Co	., NC	Proposal #	P24R-765
6.				and experience related to presence of contamination		
	Yes	No	Comment			
7.	Are any of the follow Environmental within			he property and if so ca straints?	an they be prov	ided to Proctor
	 Previous site ass Environmental co Environmental po UST or AST regi Underground injo Material safety d Community right Safety plans 	ompliance au ermits (solid v strations or p ection system lata sheets (M	dit reports waste, hazardous ermits registrations ISDS)	waste, wastewater, NPD	ES, undergroun	d injection)
	 Spill Prevention (Hydrogeologic re Correspondence laws with respec Hazardous waste Geotechnical rep Risk assessment 	eports on prop from governation to the prope e generator n ports ts	erty or relating to e otices or reports			
	Yes	No_	Comment			
8.	products in, on or fro hazardous substance	om the prope ces or petrol regarding an	rty; b) pending, th eum products in, y possible violatic	itigation relevant to haza reatened or past adminis on or from the prope on of environmental laws	strative proceed erty; and c) no	ings relevant to tices from any

	Yes	No	Comment
Additional Co	mments:		
User/Buyer's	Company Name:	Glandor	n Forest Equity

User/Buyer's Signature, Title, and Date: <u>Jagum Raffer 8/20/24</u>

User/Buyer's Printed Name and Title: Tiffani Bylow Business Manager

Environmental Screening Inspection (ESI) Form

(Print or type information and check all appropriate boxes) DO NOT LEAVE ANY CATEGORIES UNANSWERED

Project Name:	General Store	Site		
Address/Location:				
City: <u>Pittsboro</u> Co	nty: <u>Chatham</u>	State: <u>NC</u>	Site Contact:	NA
Date: <u>8/24/24</u> <u>AN</u>	<u>PM</u> Job #:	R528	Phone #:	NA
Inspected by: Thomas A. Proctor, PG, RSM				
Signature: 7A Proto				

Instructions:

This Environmental Screening Inspection Form defines the scope of work to be performed in a checklist format and is the document on which the Inspector shall record the observations during the inspection. This inspection Form shall be completed in the field by the Inspector performing the non-destructive physical inspection of the subject property to document his/her observations on-site and, to the extent possible, on the adjacent property. The inspector shall not disturb, dismantle or rearrange any materials, containers, or equipment in performance of the inspection. The Inspector should be equipped with binoculars, a camera, a compass and a site plan depicting the legal boundaries of the subject property to perform the inspection. The inspector is responsible for arranging access to the property and making all necessary preparations, including personal safety provisions, such as appropriate protective footwear and clothing.

The Inspector shall walk the entire perimeter boundary of the subject property, walk each side of all on-site wet and dry drainage arteries, walk around all on-site portions of water bodies, walk all roads, drives, and pathways, walk around and through all building improvements, and walk an appropriate grid pattern over the remaining area not covered above, including wooded/overgrown areas, to observe and record evidence of environmental concern. The Inspector shall take photographs depicting the general overall condition of the property/improvements and photograph each item of environmental concern observed to document its condition and delineate its location on a site plan drawing. Check-mark all boxes that indicate the conditions observed, appropriately fill in the blanks when applicable plus initial and date each sheet.

Property Description:	Property size: <u>2.40+</u>	_ acres	Undeveloped land
Paving & utility improve	ements		Building improvements
Occupied 🛛 U	noccupied Fer	nced	No. of buildings:
Utilities Serving the Subje	<u>ct Property:</u>		
Municipal sewer	Septic system	🗌 Flo	or drains
Municipal water	Well water	Un	known
	 Paving & utility improve Occupied U Utilities Serving the Subje Municipal sewer 	 Paving & utility improvements Occupied Unoccupied Fer Utilities Serving the Subject Property: Municipal sewer Septic system 	 Paving & utility improvements Occupied

III. Off-Site Adjacent Properties:

The Inspector shall observe to the extent possible conditions of concern on all adjacent properties from the subject property's perimeter boundary and from public streets, alleys, sidewalks, etc. An "<u>adjacent property</u>" means the property is 1) abutting, where it shares the same property line, or 2) separated from the subject property only by an easement such as a road, street, alley, highway, railroad, etc., which would otherwise be abutting. Check the appropriate boxes to define the observed relationship and characteristics of the adjacent sites.

Table 1: OFF-SITE ADJACENT PROPERTIES								
Observed Concerns	This adjacent property to the: This adjacent property to the: North North Northeast Is: Is: Upgradient Crossgradient X		This adjacent property to the: East Southeast		This adjacent property to the: South South		This adjacent property to the: West Northwest	
				Downgradient		Is: Upgradient Downgradient Crossgradient to the subject property.		Is: Upgradient Downgradient Crossgradient to the subject property.
Underground Storage Tanks								
Impoundment/holding ponds						1		
Monitoring wells	<u>_</u>			1		1		1
Chemical odors								
Air emissions]		
Industrial/manufacturing activity			Ľ				Ē	
Aboveground storage tanks								
Dumping								
Landfill/burial activity								
Stained/discolored soil								
Evidence of spills or releases								
Waste water discharges								
Current Use	Woo	oded	Woo	oded	Auto De	tailing	Woo	oded
OCCUPIED/UNOCCUPIED?	Unoce	cupied	Unocc	cupied	Occup	pied	Unoco	cupied

IV. On-Site Industrial/Manufacturing Activity:

When an industrial/manufacturing activity is now, or evidence indicates it has previously been in operations on the subject property that may be involved with the generation, storage, treatment, transportation, recycling, or disposal of hazardous, or toxic wastes, the Inspector shall appropriately check-mark below and photograph the environmentally sensitive activities or evidence observed.

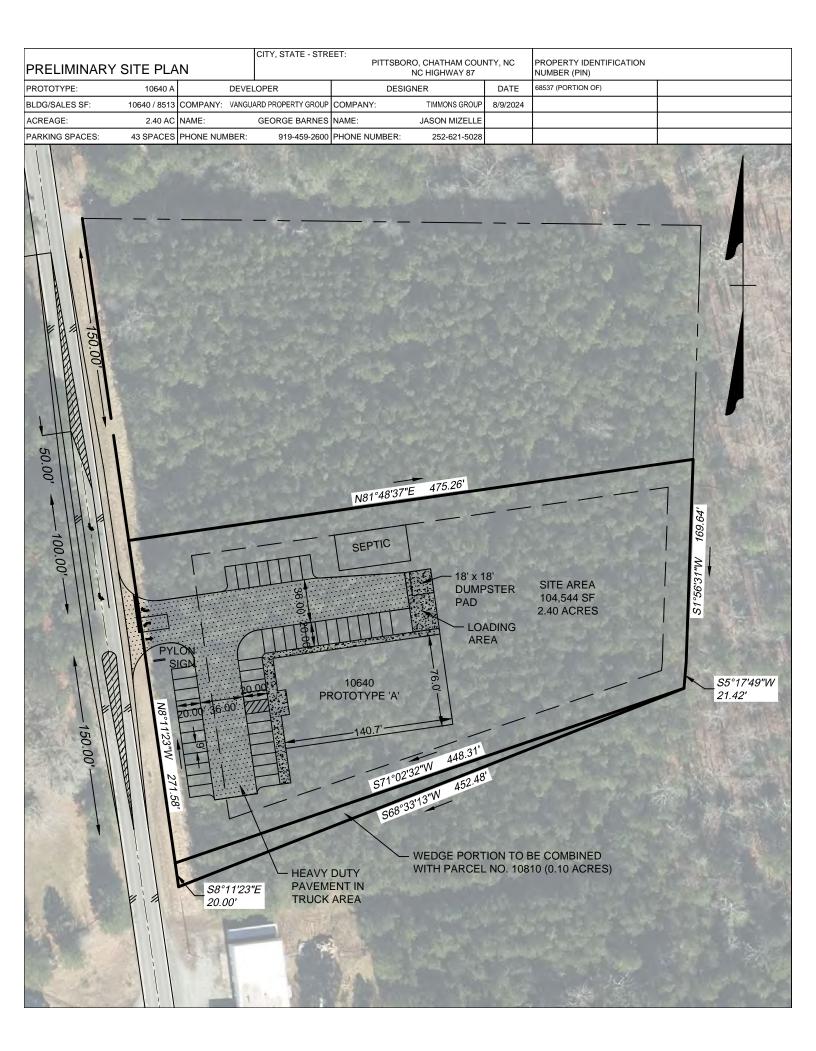
The following activity, or evidence thereof, was observed on-site:

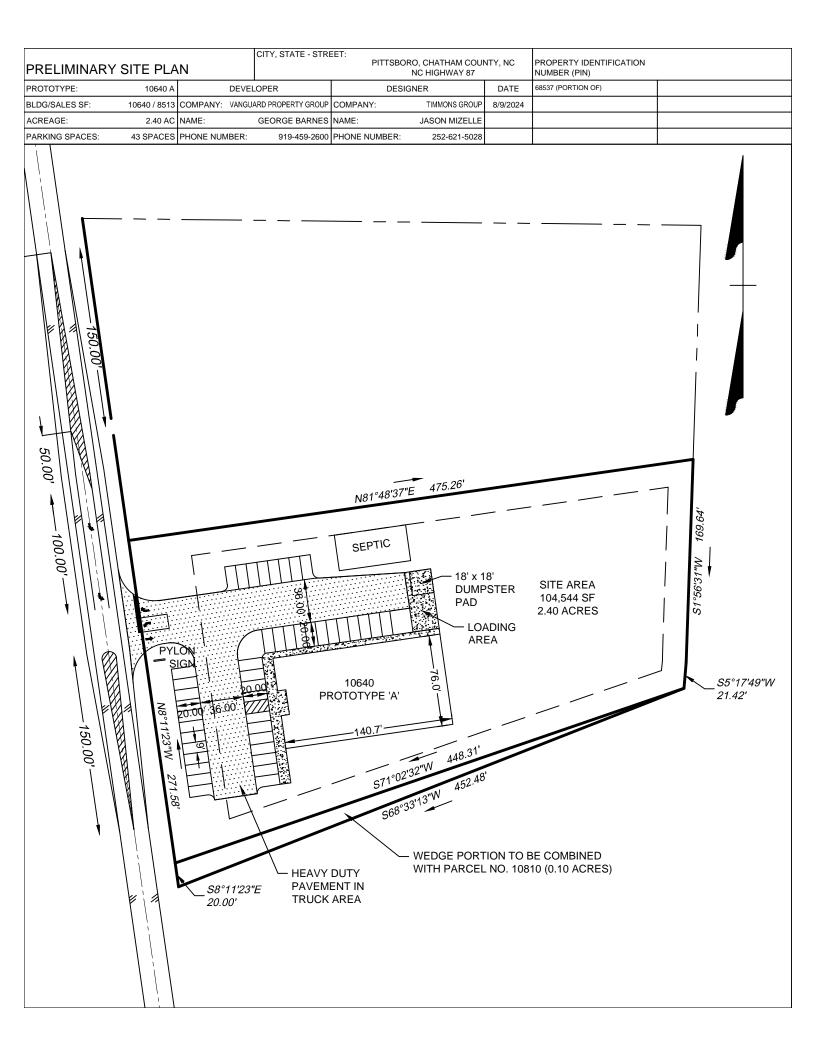
Dispensing of petroleum products into vehicles (i.e. gasoline, diesel/kerosene, oil, etc.)	No	Yes Yes
Motor Vehicle repairs/maintenance	No	Yes
Vehicle/equipment degreasing/washing	No	Yes
Hazardous waste transportation, storage and disposal	No	Yes
Freight terminal	No No	Yes
Machine shops	No No	Yes
Landfill	No	Yes
Wastewater treatment process	No	Yes
Incineration furnace/air emissions	No No	Yes
Recycling process	No No	Yes
Junk/scrap yard	No No	Yes Yes
Gasoline station/convenience store	No	Yes
Airport	No No	Yes
Railroad yard/spur	No No	Yes
Military base	No No	Yes
Power Plant	No No	Yes Yes
Asphalt or cement plant	No No	Yes
Oil & gas exploration/production/refining	No No	
Mining	No No	
Foundries/casting operations	No No	Yes
Herbicide/pesticide manufacturing/storage	No No	Yes
Chemical manufacturing/treatment	No No	Yes
Metal plating or finishing	No No	Yes
Metal fabrication or production	No No	Yes
Textile and leather manufacturing	No No	Yes
Wood preservation or finishing	No No	Yes Yes
Paper manufacturing	No	Yes
Printing industries	No No	Yes
Pharmaceutical production	No No	Yes
Plastic Fabrication and manufacturing	No No	Yes Yes
Livestock feed lots	No No	
Agricultural/horticultural production	No	Yes
Explosives manufacturing	No	Yes Yes
Dry cleaning facilities	No	Yes
Inks, dye and paint manufacturing or use	No	Yes
Photochemical laboratories	No	Yes
Analytical testing laboratories	No	Yes
Fertilizer manufacturing	No	Yes

V. SPECIFIC ON-SITE CONDITIONS OF CONCERNS

Photo #'s: Above storage tanks (AST) No Yes a. \times Photo #'s: Underground storage tanks (UST) \times No Yes b. Photo #'s: No Yes c. Pipelines Photo #'s: d. Damaged/leaking transformers No Yes \times e. Surface impoundment/holding ponds (other than storm water Yes No Photo #'s: retention) Photo $\overline{\#'s}$: f. Monitoring wells М No Yes Photo #'s: Remedial cleanup activity No Yes $[\times]$ g. Landfill/burial activity No Yes Photo #'s: \mathbb{N} h. Photo #'s: Chemical spills or releases \mathbb{N} No Yes i. Photo #'s: j. Gas/oily sheens on water (excluding parking lot ponding on well-paved lots) No No Yes Photo #'s: k. Chemical/petroleum odors $[\mathbf{N}]$ No Yes 1. Stained or discolored soil 🖂 No Photo #'s: Yes m. Distressed/discolored vegetation (chemically impacted) No Yes Photo #'s: Photo #'s: Dumping \square No Yes n. Photo #'s: Stored substances/drums/containers/vats No 0. $|\times|$ Yes Photo #'s: Spray rigs/tankers/mobile storage tanks \boxtimes No Yes p. Photo #'s: \square Yes Sprayed on structural fire proofing No q. Sprayed on acoustical/textured ceilings No Yes Photo #'s: \mathbb{N} r. Photo #'s: Friable/damaged thermal insulation Х Yes No s. Photo #'s: Marshes/low lying wetlands t. No Yes Photo #'s: Farm wastes/manure stockpiles No Yes u. Photo #'s: Vehicle wash areas No Yes v.

The following specific conditions or items of concern were observed on the subject property:


Note: Photograph each item checked "Yes" above to appropriately document its condition. More than one photo may be required on multiple conditions or locations.


- VI. Attachment: Site Plan Drawing(s)
- VII. Attachment: Color Photographs

No	Yes Yes
No	Xes Yes

Revised: March 31, 2021

0	Overview
•	Overview

Parcel Number Tax Year Class Physical Address	0068537 2024 - R - RESIDENTIAL NC 87 N NC 5 5270	FMV Exemption/Exclusion Deferred ASV Tax Rate	58,033 0 56,641 1,392 0.8530
Acreage	5.5270	Total Tax	\$11.87

• Tax Disbursements

Jurisdiction	Tax Rate	Tax Amount
CHATHAM COUNTY	0.7250	\$10.09
NORTH CHATHAM FIRE DIST	0.1280	\$1.78
TOTAL		\$11.87

No Photos or Sketches

• Billing	
	Total
Tax Billed	\$11.87
SA Billed	\$0.00
Interest Billed	\$0.00
Fees Billed	\$0.00
Total Billed	\$11.87
Amount Paid	\$0.00
Total Unpaid	\$11.87

• Tax Due Amounts

If paid in	Amount due is
August 2024	\$11.87
September 2024	\$11.87
October 2024	\$11.87
November 2024	\$11.87
December 2024	\$11.87

Pay Taxes

Tax Due amounts are for all unpaid years.

See Payment History section for year-by-year details.

Tax Yea	ar Total Due		Total Paid		Amount Unpaid		Dat	e Paid
2024	\$11.87		\$0.00			\$11.87		
2023	\$11.32		\$11.32		\$0.00 12		12/1	9/2023
2022	\$10.90		\$10.90		\$0.00 12		12/2	9/2022
2021	\$10.76		\$10.76		\$0.00		12/2	2/20/2021
2020	20 \$13.59		\$13.5	9	\$0.00		12/1	5/2020
			Show 5 Mo	re (22)				
Zoning								
Code			Classification					
R-1				RESID	ENTIAL D	ISTRICT 1		
• Legal	1							
Legal Description S		Subdivision Name Blo		Lot	Plat Book	Plat Pa	nge	
			LOT	2				
No Exclu	sions							
Owner OWNER Mailing J	Address 8847 NG	N, GLENET C HWY 87 N ORO, NC 27	TE MANN TRUSTEE B126221 OWNER Mailing Address			VAUGHN, RONALD EDWARD TRUSTEE 8847 NC HWY 87 N PITTSBORO, NC 273126221		
• Trans	sfer History							
Book & Page	Sale Type	Sale Date	Sold By		Sold To			Pric
2254 1004	WARRANTY DEED	10/15/2021	VAUGHN RONALD E VAUGHN GLENETTE M		VAUGHN GLENETTE MANN TRUSTEE VAUGHN RONALD EDWARD TRUSTEE			\$
	NON-WARRANTY DEED	8/15/2007	VAUGHN GLENETTE M		VAUGHN RONALD E VAUGHN GLENETTE M			\$
1354 1132	NON-WARRANTY	8/15/2007	MANN MURIEL A	VAU	VAUGHN GLENETTE M			S
	DEED				MANN MURIEL A			
1132 1354	DEED	9/18/1997	MANN MURIEL A	MAN	IN MURIE	LA		9

	Property Class		Valued Acres	Appraised Value
	Acre - Residual		5.5270	58,033
O CAMA				
Market Value				
Year	Market Land	Ν	Market Building	Market Total
2024	58,033		0	58,03
2023	58,033		0	58,03
Map				View Full Screen
		Contact Inf	formation	
	Chatham County Tax Assessor		Chatham County Tax C	ollector
	12 East Street		192 West Street	
	PO Box 908		PO Box 697	
	Pittsboro, NC 27312 Phone: 919-542-8211		Pittsboro, NC 27312 Phone: 919-542-8260	

BK 2254 PG 1004

CHATHAM (LUNDAY A.	ED COUNTY NC RIGGSBEE OF DEEDS
FILED	Oct 15, 2021
AT	11:46:08 am
BOOK	02254
START PAGE	E 1004
END PAGE	1006
INSTRUMEN	IT # 15939
EXCISE TAX	(None)

NORTH CAROLINA SPECIAL WARRANTY DEED

Excise Tax: \$0

Parcel Identifier No. 0088054 (Tract 1); 0010810 (Tract 2); 0010939 (Tract 3); 0010977 (Tract 4); 0066015 (Tract 5); 0068537 (Tract 6) Verified by ______ County on the ____ day of ______, 20_____

Mail/Box to: Kelly J. Mackay, Attorney, Walker Lambe, PLLC, P.O. Box 51549, Durham, NC 27717-1549

This instrument was prepared by: Kelly J. Mackay, Attorney, Walker Lambe, PLLC Post Office Box 51549, Durham, NC 27717-1549 (WITHOUT BENEFIT OF TITLE EXAMINATION)

Brief description for the Index: Six tracts

THIS DEED made this 12th day of October, 2021, by and between

GRANTOR

GLENETTE M. VAUGHN and husband, RONALD E. VAUGHN

8847 NC HWY 87 NORTH PITTSBORO, NC 27312 8847 NC HWY 87 NORTH PITTSBORO, NC 27312

thereto

GRANTEE

RONALD EDWARD VAUGHN and GLENETTE

MANN VAUGHN, Trustees, or their Successors in Trust, under THE VAUGHN LIVING TRUST, u/a/d September 16, 2021, and any amendments

Enter in appropriate block for each Grantor and Grantee: name, mailing address, and, if appropriate, character of entity, e.g. corporation or partnership.

The designation Grantor and Grantee as used herein shall include said parties, their heirs, successors, and assigns, and shall include singular, plural, masculine, feminine or neuter as required by context.

WITNESSETH, that the Grantor, for a valuable consideration paid by the Grantee, the receipt of which is hereby acknowledged, has and by these presents does grant, bargain, sell and convey unto the Grantee in fee simple. all that certain lot or parcel of land situated in Chatham County, North Carolina and more particularly described as follows:

SEE ATTACHED EXHIBIT "A" WHICH IS INCORPORATED BY REFERENCE.

NC Bar Association Form No. 6 © 1/1/2010 Printed by Agreement with the NC Bar Association

BK 2254 PG 1005

The property hereinabove described was acquired by Grantor by instrument recorded in Book _____, Page _____.

All or a portion of the property herein conveyed <u>X</u> includes or <u>does not include the primary residence of a Grantor.</u>

A map showing the above described property is recorded in Plat Book __. Page __.

TO HAVE AND TO HOLD the aforesaid lot or parcel of land and all privileges and appurtenances thereto belonging to the Grantee in fee simple.

And the Grantor covenants with the Grantee, that Grantor has done nothing to impair such title as Grantor received, and Grantor will warrant and defend the title against the lawful claims of all persons claiming by, under or through Grantor, other than the following exceptions:

- Ι. All recorded restrictions, easements, encumbrances and rights of way affecting the property.
- 2. Ad valorem taxes for the tax year 2021.
- 3. Ad valorem taxes for the tax year 2022 and subsequent years, which are not yet due and payable.

IN WITNESS WHEREOF, the Grantor has duly executed the foregoing as of the day and year first above written.

GLENETTE M. VAUGHN (SEAL) Ronald E. Vaughn (SEAL)

State of North Carolina County of Duhan

I, the undersigned Notary Public of the County of Duchan and State aforesaid, certify that GLENETTE M. VAUGHN and husband, RONALD E. VAUGHN, personally appeared before me this day and acknowledged the due execution of the foregoing instrument for the purposes therein expressed.

Witness my hand and Notarial stamp or seal this 12th day of Uetber , 2021.

My Commission Expires: august 22 2025

Notary Public <u>Ux</u> <u>R. Deko</u> Notary's Printed or Typed Name

Affix Seal ISA R. DEBO Notary Public, North Carolina Durham County My Commission Expires August 22, 2025

KJM/00566680 NC Bar Association Form No. 6 © 1/1/2010 Printed by Agreement with the NC Bar Association

BK 2254 PG 1006

EXHIBIT "A"

Tract 1 (PID #0088054)

Being all of Lots 2 and 3 shown on Plat Slide 2009-260, Chatham County Registry.

See Book 1497, Page 589 (Parcel 1), as back reference for Lot 3, and Book 1354, Page 1132 (Tract 3), as back reference for Lot 2.

Tract 2 (PID #0010810)

Being all of Lot 1 as shown on Plat Slide 2012-56. Chatham County Registry.

See Book 1354, Page 1132 (part of Tract 5 and all of Tract 6) for back reference.

Tract 3 (PID #0010939)

Being all of Lot 3 as shown on Plat Slide 30-41, Chatham County Registry.

This conveyance is subject to a thirty-foot easement as shown on plat.

See Book 1354, Page 1132 (Tract 2) for back reference.

Tract 4 (PID #0010977)

Being all of Tract 1 as shown on Plat Slide 2020-64 and all of Lot 1 as shown on Plat Slide 2009-260, Chatham County Registry.

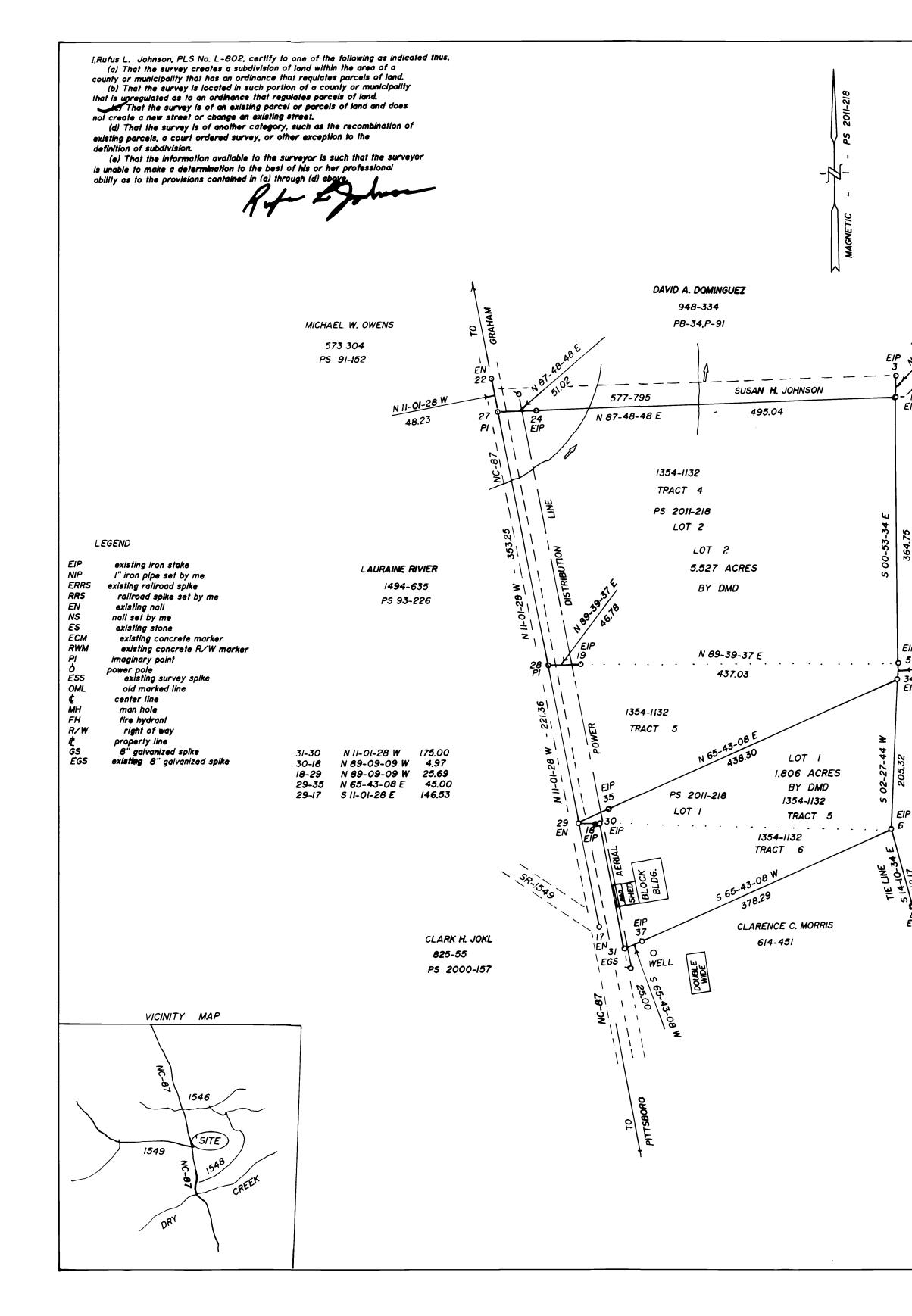
This conveyance is subject to a sixty-foot easement as shown on Plat Slide 2009-260.

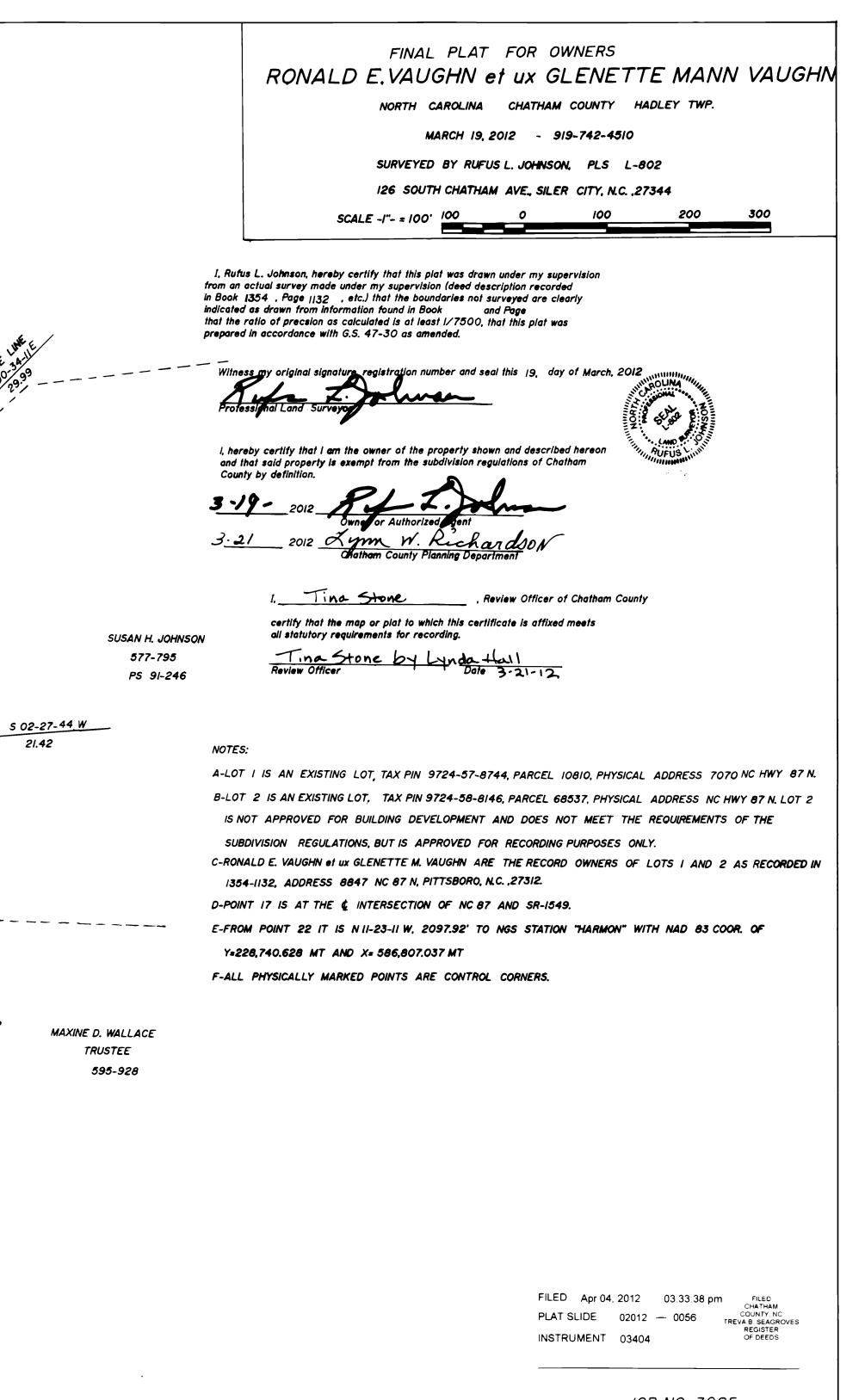
See Book 2099, Page 773, as back reference for Tract 1 above, and Book 1354, Page 1132 (Tract 3), as back reference for Lot 1 above.

Tract 5 (PID# 0066015)

Being all of Lot 4 as sown on Plat Slide 2009-260, Chatham County Registry, and being all of Lot 6 shown on Plat Slide 93-434 less and except Lot 9 as shown on Plat Slide 94-3, Chatham County Registry.

See Book 1497, Page 589 (Parcel 2), as back reference for Lot 4 above, and Book 1354, Page 1132 (Tract 1), as back reference for Lot 6 above.


Tract 6 (PID# 0068537)


Being all of Lot 2 as shown on Plat Slide 2012-56. Chatham County Registry.

See Book 1354, Page 1132 (part of Tract 5 and all of Tract 4) for back reference.

The subject real property is conveyed pursuant to and is to be held under N.C. Gen. Stat. § 41-65. As of the date of this conveyance, the requirements are met providing for the application of N.C. Gen. Stat. § 41-60(a)(1), protecting the real property from liability for the individual debts of either spouse.

KJM/00566680 NC Bar Association Form No. 6 © 1/1/2010 Printed by Agreement with the NC Bar Association

EIF

5

34

8 EIP

JOB NO. 3925 2012-56

ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL SCOTT Director

May 9, 2024

Ronald Vaughn 8847 NC Highway 87 N Pittsboro, NC 27312

Re: Water Supply Well Sample Results Mann Store, FTF Incident #6281 7070 NC Highway 87 N Pittsboro, NC 27312

Dear Mr. Vaughn,

On April 10, 2024, your water supply well was sampled by Catlin Personnel on behalf of the NC Department of Environmental Quality. Your water supply was sampled and tested due to its proximity to a known petroleum release from a formerly active underground storage tank system located at Mann Store.

The water samples were collected for analysis of volatile organic compounds by Standard Method 6200B including MTBE, EDB, and IPE. These compounds are among a wide range of parameters tested for, but not limited to, artificial compounds that are found in gasoline. An organic solvent was detected in the water sample, so the results were forwarded to an Environmental Toxicologist for a Health Risk Evaluation. The Evaluation Recommendation states: The benzene concentration in this well exceeds the applicable standard. Therefore, this water is not recommended for drinking or cooking at this time. No restrictions are recommended for using the water for other non-ingestive uses, such as showering, bathing, washing dishes, flushing toilets, and hand washing. Copies of the Health Risk Evaluation and the lab results are enclosed for your own review and documenting. Your water supply is identified as WSW-7070.

If you have any further questions, you can reach me at my email address <u>devin.valenza@deq.nc.gov</u> or by phone at (919) 707-8165.

Thank you,

Devin J. Valenza

Devin Valenza, Environmental Engineer Division of Waste Management, NCDEQ

Enclosed

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200 ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL SCOTT Director

May 9, 2024

TO: Devin Valenza NC UST Section

RE: Health Risk Evaluation Incident # 6281 Ronald Vaughn Well Sampling Results 7070 NC Hwy 87 N Pittsboro, NC

During this sampling event, ten contaminants were detected in the well water. The standards used to determine if the water is suitable for drinking and cooking are the United States Environmental Protection Agency's Maximum Contaminant Levels (MCLs) or, if no MCLs exist, North Carolina Groundwater Standards (2L).

If contaminant concentrations exceed the applicable standards for using the water for drinking and cooking, the contaminant concentrations are further analyzed to determine if the water is suitable for other non-ingestive uses, such as showering, bathing, washing dishes, flushing toilets, and hand washing. The chart below compares the detected contaminant concentrations with the applicable standards:

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200

Sample ID	Contaminant	Concentration (µg/L)	MCL (µg/L)	2L (µg/L)
24D1426-01	Benzene	19	5	
	1,2,4-Trimethylbenzene	1.3		400
	1,3,5-Trimethylbenzene	0.53		400
	Diisopropyl Ether	2.2		70
	Chloroform	0.32	80*	
	Total Xylenes	5.7	10,000	
	Ethylbenzene	2.8	700	
	n-Propylbenzene	0.24		70
	Naphthalene	0.25		6
	Toluene	1.3	1,000	

Shaded boxes indicate a standard has been exceeded.

 μ g/L – Stands for micrograms of contaminant per liter of water and is roughly equivalent to parts per billion.

* As total trihalomethanes.

<u>RECOMMENDATION</u>: The benzene concentration in this well exceeds the applicable standard. Therefore, this water is not recommended for drinking or cooking at this time. No restrictions are recommended for using the water for other non-ingestive uses, such as showering, bathing, washing dishes, flushing toilets, and hand washing.

Duto the

David Lilley, Environmental Toxicologist Division of Waste Management, NCDEQ

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200

Sample Description:

Project Location: Pittsboro Date Received: 4/11/2024 Field Sample #: WSW-7070

Sample ID: 24D1426-01

Sample Matrix: Ground Water

				-	mpounds by G					
Апајуте	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analy
Acetone	ND	50	2.0	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Benzene	19	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Bromobenzene	ND	0.50	0.19	μg/L	Ι		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Bromochloromethane	ND	0.50	0,32	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Bromodichloromethane	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Bromoform	ND	1.0	0.30	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Bromomethane	ND	2.0	1.5	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
2-Butanone (MEK)	ND	5.0	1.4	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
n-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
sec-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
tert-Butylbenzene	ND	0,50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Carbon Tetrachloride	ND	0,50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Chlorobenzene	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Ethanol	ND	50	20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Chlorodibromomethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Chloroethane	ND	0.50	0.46	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Chloroform	0.32	0.50	0.19	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:07	
Chloromethane	ND	0.60	0.50	μg/L	1	,	SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
2-Chlorotoluene	ND	0.50	0.21	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
-Chlorotoluene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
,2-Dibromoethane (EDB)	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24		EEH
,2-Dichlorobenzene	ND	0.50	0,17	μg/L	1		\$M21-23 6200B	4/12/24	4/12/24 16:07	EEH
,3-Dichlorobenzene	ND	0.50	0.15	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
,4-Dichlorobenzene	ND	0.50	0.17	μg/L	I		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	0.20	μg/L	1		SM21-23 6200B		4/12/24 16:07	EEH
,1-Dichloroethane	ND	0,50	0.15	μg/L	I		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
,2-Dichloroethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
,1-Dichloroethylene	ND	0,50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
is-1,2-Dichloroethylene	ND	0.50	0.20	μg/L	1			4/12/24	4/12/24 16:07	EEH
ans-1,2-Dichloroethylene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
2-Dichloropropane	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
3-Dichloropropane	ND	0.50	0.097	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
2-Dichloropropane	ND	0.50	0.33	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1-Dichloropropene	ND	0.50	0.17	μg/L μg/L	I		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
s-1,3-Dichloropropene	ND	0.50	0.13	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
ans-1,3-Dichloropropene	ND	0.50	0.13				SM21-23 6200B		4/12/24 16:07	EEH
iisopropyl Ether (DIPE)	2.2	0.50		µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
hylbenzene	2.2		0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Hexanone (MBK)	2.0 ND	0.50 5.0	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
ppropylbenzene (Cumene)	ND		1.3	μg/L	1		SM21-23 6200B		4/12/24 16:07	EEH
Isopropyltoluene (p-Cymene)		0.50	0.16	µg/L	1		SM21-23 6200B		4/12/24 16:07	EEH
ethyl tert-Butyl Ether (MTBE)	ND	0.50	0.16	μg/L	1		SM21-23 6200B		4/12/24 16:07	EEH
ethylene Chloride	ND	0.50	0.17	μg/L	1		SM21-23 6200B		4/12/24 16:07	EEH
Methyl-2-pentanone (MIBK)	ND	5.0	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
(WIDK)	ND	5.0	1.4	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH

Work Order: 24D1426

Page 6 of 24

Sampled: 4/10/2024 11:51

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Project Location: Pittsboro

Date Received: 4/11/2024 Field Sample #: WSW-7070

Sample ID: 24D1426-01

Sample Matrix: Ground Water

Volatile	Organic	Compounds	ha	COME
Volatie	organic	compounds	DУ	GC/MS

Sampled: 4/10/2024 11:51

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Naphthalene	0.25	0.50	0.25	5 μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
n-Propylbenzene	0.24	0.50	0.11	l μg/L	I	J	SM21-23 6200B	4/12/24	4/12/24 16:07	
Styrene	ND	0.50	0.13	μg/L	1	-	SM21-23 6200B	4/12/24		EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.10		1		SM21-23 6200B		4/12/24 16:07	EEH
Tetrachloroethylene	ND	0.50	0.17		1			4/12/24	4/12/24 16:07	EEH
Toluene	1.3	0.50	0.11	<i></i>	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,3-Trichlorobenzene	ND	1.0	0.22	1.9	[^]		SM21-23 6200B	4/12/24	4/12/24 16:07	ÉEH
1,2,4-Trichlorobenzene	ND	0.50	0.12	r- <i>φ</i>	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,1,1-Trichloroethane	ND	0.50		1.9	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,1,2-Trichloroethane			0.14	P0 -	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Trichloroethylene	ND	0.50	0.18	1.0 -	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
3	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,3-Trichloropropane	ND	1.0	0.27	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,4-Trimethylbenzene	1.3	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,3,5-Trimethylbenzene	0.53	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	
Vinyl Acetate	ND	20	1.7	μg/Ľ	1		SM21-23 6200B			EEH
Vinyl Chloride	ND	0.50	0.19	μg/L	1			4/12/24	4/12/24 16:07	EEH
n+p Xylene	4.6	1.0	0.25	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
o-Xylene	1.1	0.50	0.16		-		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Surrogates	1.1			μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2-Dichloroethane-d4		% Recov	rery	Recovery Limits		Flag/Qual				
Coluene-d8		88.9		70-130					4/12/24 16:07	
-Bromofluorobenzene		99.9 98.8		70-130					4/12/24 16:07	
		70,0		70-130					4/12/24 16:07	

Work Order: 24D1426

www.CatlinUSA.com

May 3, 2024

North Carolina Department of Environmental Quality Division of Waste Management UST Section Attn: Mr. Devin Valenza 1646 Mail Service Center Raleigh, NC 27699-1646

Re: Letter Report Mann Store 7070 NC 87 N, Pittsboro, NC 27312 Incident Number: 6281 Risk Classification: H395D Facility ID #: None CATLIN Project No. 221042.03

Dear Mr. Valenza,

CATLIN Engineers and Scientists (CATLIN) is pleased to provide you with this letter report documenting field activities performed in general accordance with CATLIN proposal number 221042.03, prepared March 15, 2024. Services were authorized by the North Carolina Environmental Quality (NCDEQ) Task Authorization (TA) #03, accepted April 4, 2024, and Contract Number N70522-A. The approved scope of services for this Task Authorization included:

- Collect samples from two (2) water supply wells (WSW-8 and WSW-7070);
- Submit the two water supply well samples and one field blank for laboratory analysis of volatile organic compounds (VOCs) per SM 6200B (including ethylene dibromide (EDB), methyl tert-butyl ether (MTBE), and diisopropyl ether (DIPE);
- Evaluate the WSW-8 property for an alternative location for the on-site water supply well; and
- Prepare a letter report documenting the findings.

The Mann Store site is located at 7070 NC 87 N, Pittsboro, NC (See Figure 1 and Figure 2 in Attachment A). Four underground storage tanks (USTs) were previously operated at the site. One 2,000-gallon gasoline, one 550-gallon kerosene, and two 1,000-gallon gasoline USTs were removed from the site in 1990. A petroleum release was discovered during tank closure activities.

CATLIN personnel conducted groundwater sampling and evaluation activities at the site on April 10, 2024; water supply well samples were collected from wells WSW-8 and WSW-7070 and the WSW-8 property was evaluated to determine if it might be feasible to relocate the water supply well to a location further removed from the impacted groundwater plume. The public and private water supply well information is presented in Table 1.

ENVIRONMENTAL | CIVIL | GEOTECHNICAL

<u>Methods</u>

CATLIN personnel conducted site activities in general accordance with the approved TA and general industry-accepted Health and Safety practices. Upon arrival at the site, potential hazards were evaluated before beginning field work and are documented on the Daily Activities Log, which is included in Attachment B. Photographs from the site visit are included in Attachment C.

The water supply wells were sampled in general accordance with NCDEQ Guidelines and U.S. EPA Region 4 Operating Procedures. Prior to obtaining representative groundwater samples, the water supply wells were allowed to run for 15 minutes. Copies of the field sampling sheets are available in Attachment B.

After the water supply wells were purged, samples were collected from a spigot located at the water supply well (WSW-8) or a spigot located at the rear of the detail shop and prior to any filters (WSW-7070) directly into appropriate, laboratory-provided, pre-preserved glassware, labeled, and placed on ice in an insulated cooler.

A field blank sample was collected by pouring distilled water directly from a new, unopened container into laboratory-provided, pre-preserved glassware, labeled, and placed on ice in an insulated cooler.

The groundwater samples and field blank sample were submitted to Con-Test Analytical Laboratory (Certification NC 652 and NC-DW 25703) in East Longmeadow, Massachusetts, under proper chain of custody (COC) protocol and analyzed per SM 6200B (including EDB, MTBE, and DIPE). The laboratory analytical data and COCs are included in Attachment D.

Groundwater Sample Results

The groundwater sample results are summarized on Table 2, which is provided in Attachment E. Multiple petroleum constituents were detected in both the WSW-8 and WSW-7070 samples at concentrations above their corresponding Method Detection Limits (MDLs) and benzene was detected at concentrations which were greater than the levels established in Title 15A of the North Carolina Administrative Code, Subchapter 2L (2L GWQS) but below their Gross Contaminant Levels (GCL). Additionally, the benzene concentration noted in WSW-7070 exceeded its established Maximum Contaminant Level (MCL) for drinking water standards (while the benzene concentration in WSW-8 was less than the MCL). The historical water supply well sample results are summarized in Table 3, provided in Attachment E; the benzene concentration in WSW-7070 increased significantly since the previous sampling event in December 2023, while the detected concentration in WSW-8 decreased.

Field Blank Sample Results

Acetone was detected in the field blank sample as an estimated ("J" value) concentration and is presumed to be a laboratory relic. Bromoform and toluene were also detected at concentrations greater than their MDLs but below their respective 2L GWQS. No other target analytes were detected. These sample results are summarized in Table 2, which is provided in Attachment E.

May 2, 2024 Page 3 of 3

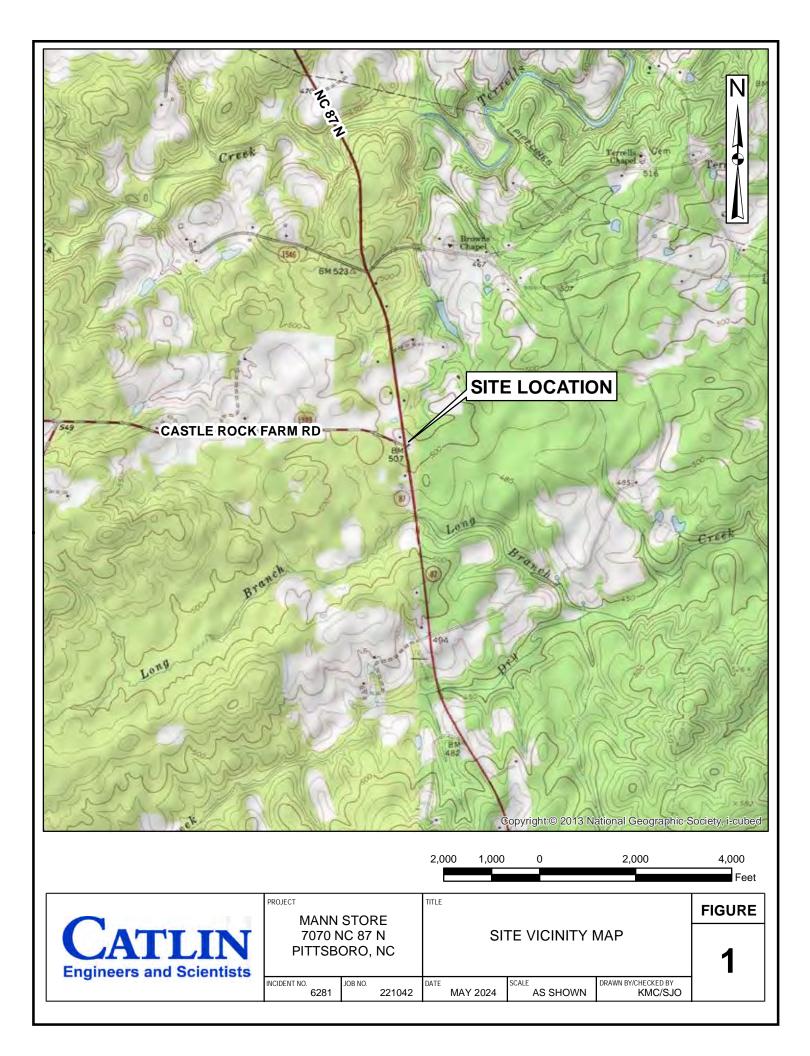
Site Evaluation

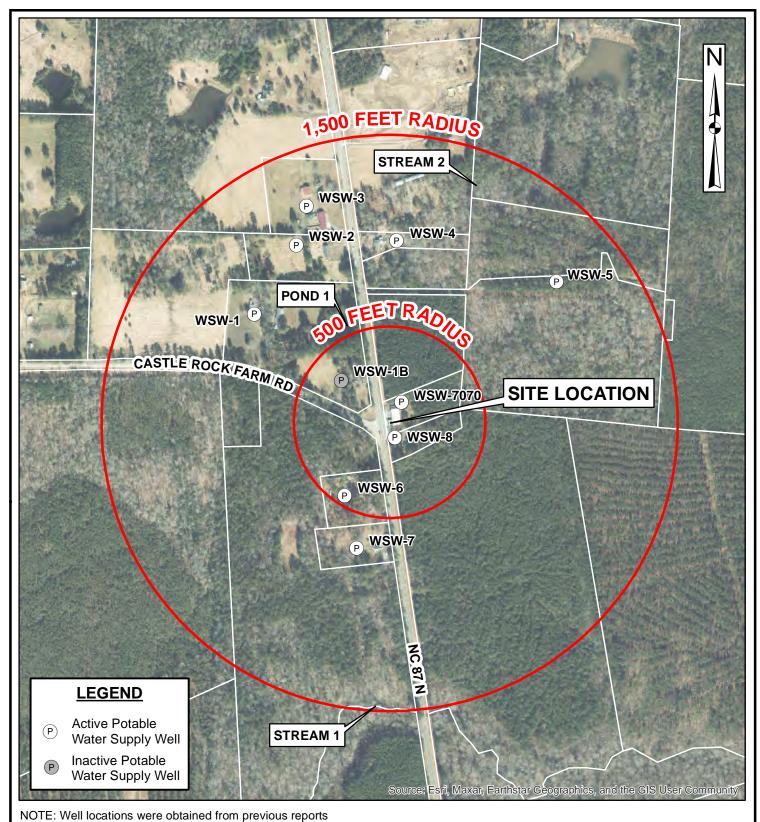
CATLIN personnel walked the cleared portions of the WSW-8 site located to the east of the on-site residence. Pending approval from the property owner, it would appear that there are areas where WSW-8 could potentially be relocated such that it would be further from the impacted groundwater plume. A field map is available in Attachment B and photographs of the WSW-8 property are presented in Attachment C.

Recommendations

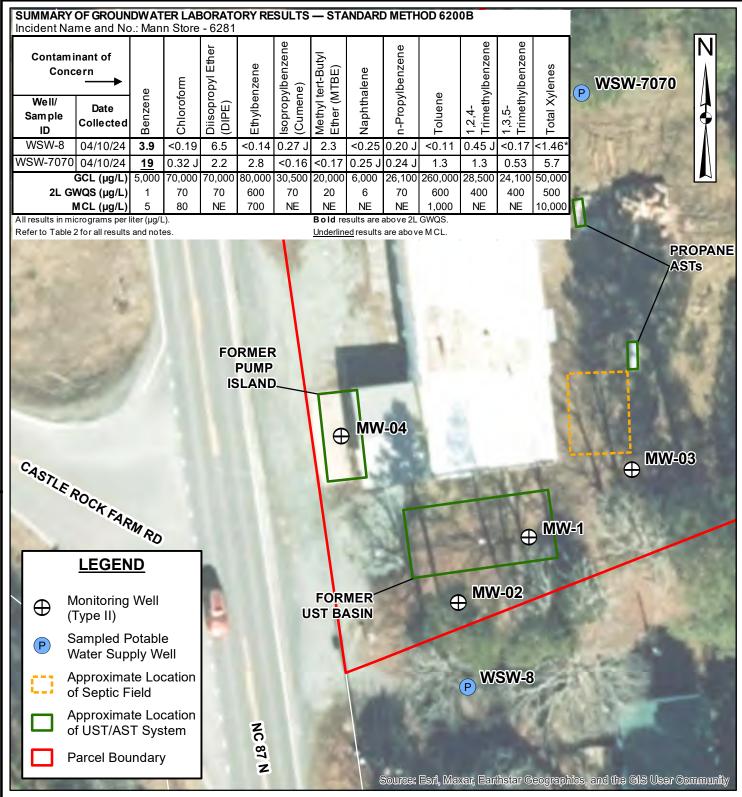
CATLIN recommends evaluating the potential for relocating WSW-8 and determining the need to relocate WSW-7070. In addition, CATLIN recommends conducting a sampling event in July 2024.

CATLIN Engineers and Scientists will proceed upon notification of your approval. Should you have any questions or require additional information, please contact us at (919) 838-2875.


Sincerely,


Sean J. O'Neil, PE Project Manager

Attachments: A Figures B Daily Activities Log, Field Map, and Field Data Sheets C Site Photographs D Laboratory Analytical Data and Chain of Custody Documentation E Tables


ATTACHMENT A

FIGURES

epared by other consultants and are approximate.				250	0	500	1,000 Feet
~		STORE	TITLE				FIGURE
CATLIN Engineers and Scientists	7070 N PITTSB		POTEN	TIAL RECEP	TOR MAP	2	
			DATE	MAY 2024	SCALE AS SHOWN	DRAWN BY/CHECKED BY KMC/SJO	

NOTE: Well and tank locations were obtained from previous reports prepared by other consultants and are approximate.

reports prepared by other consultants and	30 15	0	30	60 Feet		
CATLIN Engineers and Scientists	7070 N	STORE NC 87 N ORO, NC	UTLE WA GRC ANA	FIGURE		
	INCIDENT NO. 6281	JOB NO. 221042	DATE MAY 2024	SCALE AS SHOWN	DRAWN BY/CHECKED BY KMC/SJO	

~ ~

~ ~

ATTACHMENT B

DAILY ACTIVITIES LOG, FIELD MAP, AND FIELD DATA SHEETS

DAILY ACTI	/ITIES	LOG
------------	--------	-----

CATLIN PROJECT:			Mann Store		DAY: Wednesday DATE: 4-10-24				
			004040			reast, du	izzle, mid 60		
CATLIN PROJECT	*#:		221042			Miller			
CLIENT'S NAME:			NCDEQ - SLP		CATLIN <u>3</u> CREW:	Miller			
SUBCONTRACTO	RS:								
TIME				START	ACTIVITY				
START S	TOP	VEHICLE # :		ODOMETER:		END ODOMETER:	· · · · · · · · · · · · · · · · · · ·		
0930 10	30	m	ab + Travel	to si					
		Say	lety brieting	: 624	es, ants, sp	15W-8 V	vil house		
		V	1 /	SKalk	es ants sp	iders			
		\$i	cs of site						
				1.11					
		WS	W-8 Tu	ined a	n 1040	(Stron	g HCO)		
				0	6 10.55		7 /		
			Sampl	ed at	1056				
		pies	of 10540-8	2 rea	c property				
			3 paces (x	3' ea		lge of 1	rlearing		
			back of ho	uses	, 0	1	F		
		WSW	-7070	Tur	ned on a	+ 1110			
					off a	+ 1130	>		
				San	upled a	t [13]			
					,				
		DIC	s of well.	+ sam	pling point				
		FR	5 @ 1140						
							and the second		
1145 14	115	Pop	arted site	ice	for sampl	es ga	yor		
		va	n, got PD;	hiller	10 out coe	0	V		
			1 cropp	60 5	anolos at	'lab a	ind		
			proce	eded	to office				
			- dem	06	. 00				
		VEHICLE # :		START ODOMETER:		END ODOMETER:			
EQUIPMEN	Г	USED	EQUIPMENT	USED	EQUIPMENT	USED	OTHER EQUIP. USED		
D.O. Meter			YSI		GPS Unit				
Generator			Redi-Flo Pump		Bailers				
Slug Test Equip	ment		Geopump		Sampling Supplies				
pH/Temp. Me	er		Conductivity Pen		Tubing	,			
PID/FID Mete	er		Water Level Indicator		PPE Level 🍿 r D	X			
	Appr	oval of data for	final report can only be made b This is a field cop		neers and Scientists and canr to review and revision.	ot be conveyed on th	his form.		

CATLIN WATER SUPPLY WELL SAMPLING FORM

	Er	entists								
	CATLIN PROJECT:	Mann St	ore			SAMPLED BY:	S. 1	<i>A</i> iller		
CA	ATLIN PROJECT # :	221042.	03	-	D	ATE SAMPLED:	4/10	/2024		
	CLIENT'S NAME:	NCDEQ-SLP; De	vin Valenza	-						
		V	Vater Supply	Well Purc	ing Inform	ation				
Г		ter Supply Well ID	WSW-7070	、			~240 feet			
-	VVa	Purge Start Time	11:10			Well Diameter	~240 1001			
-		Purge Stop Time	11:30		9	Screen Interval				
-	Was	Well Purged Dry?	No			Date Installed				
-		Sample Time	11:31			Well Material				
		·	-	Commen	te					
I	Sampled from spigot at rear of building (behind detail shop near NW corner of building). Initial few seconds of purge were light yellow-tan in color with very mild HCO. By end of purge, clear with no discernable odor. Geochemical Parameters									
			Geoch	emical Pa	rameters					
		Equ								
_	Time	pH (Standard Units)	ORP (mV)	Specific Cond. (μS/cm)	Dissolved Oxygen (mg/L)	Temperature (C°)		d Additional ng Notes		
-										
_										
-										
_										
_										
F										
		·	Laborator	y Analysis	Informatio	on				
	Laboratory:	Con-Test			Analysis:	6200)B			

(A)	LIN	WATER SUPPLY WELL SAMPLING FORM					
Engineers a	nd Scientists						
CATLIN PROJECT:	Mann Store	_		SAMPLED BY:	S. Miller	_	
CATLIN PROJECT # :	221042.03	_	D	ATE SAMPLED:	4/10/2024		
CLIENT'S NAME: NCDEQ	-SLP; Devin Valenza	_					
	Water Suppl	y Well Purg	ging Inform	ation			
Water Supply	Well ID WSW-8	7		Well Depth			
Purge Star	rt Time 10:35			Well Diameter			
Purge Sto	-			Screen Interval			
Was Well Purge	-	_		Date Installed			
Sampl	le Time 10:56			Well Material			
		Commen	ts				
Sampled from spigot on well Strong HCO throughout purg							
	Geoc	hemical Pa	rameters				
	Equipment Used	:]			
pH Time (Standard		Specific Cond. (µS/cm)	Dissolved Oxygen (mg/L)	Temperature (C°)	Turbidity and Additiona Sampling Notes		
	Laborato	ry Analysis	s Informatio	on			

6200B Con-Test Laboratory: Analysis:

ATTACHMENT C

SITE PHOTOGRAPHS

View of site, facing northeast.

View of WSW-8 well house, facing northwest toward NC 87.

ATTACHMENT B SITE PHOTOGRAPHS – APRIL 10, 2024

View of WSW-8 sample point. (Spigot is where green hose is connected in the photo.)

View of WSW-7070, located north northeast of site building, facing south-southwest.

ATTACHMENT B SITE PHOTOGRAPHS – APRIL 10, 2024

View of the spigot for WSW-7070 at the rear of the detail shop, facing southwest.

View of the filter that precedes the wash sink in the detail shop.

View of the rear of the WSW-8 residence, facing west.

View of the rear of the WSW-8 residence, facing southwest.

View facing east from the rear of the residence.

View facing east from the rear of the property.

View facing southeast from the rear of the property.

View facing west from the rear of the property.

ATTACHMENT D

LABORATORY ANALYTICAL DATA AND CHAIN OF CUSTODY DOCUMENTATION

April 15, 2024

Sean O'Neil CATLIN Engineers & Scientists 1044 Washington Street Raleigh, NC 27605

Project Location: Pittsboro Client Job Number: Project Number: 221042.03 Laboratory Work Order Number: 24D1426

Enclosed are results of analyses for samples as received by the laboratory on April 11, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

martes ...

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
24D1426-01	6
24D1426-02	8
24D1426-03	10
Sample Preparation Information	12
QC Data	13
Volatile Organic Compounds by GC/MS	13
B371300	13
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	20

CATLIN Engineers & Scientists 1044 Washington Street Raleigh, NC 27605 ATTN: Sean O'Neil

REPORT DATE: 4/15/2024

PURCHASE ORDER NUMBER: 240410-2

PROJECT NUMBER: 221042.03

ANALYTICAL SUMMARY

24D1426 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Pittsboro

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
WSW-7070	24D1426-01	Ground Water		SM21-23 6200B	
WSW-8	24D1426-02	Ground Water		SM21-23 6200B	
FB	24D1426-03	Field Blank		SM21-23 6200B	

EXECUTIVE SUMMARY

Client ID: WSW-7070		Lab ID:	24D1426-01			
Analyte	Results/Qua	1	DL	RL	Units	Method
1,2,4-Trimethylbenzene	1.3		0.16	0.50	μg/L	SM21-23 6200B
1,3,5-Trimethylbenzene	0.53		0.17	0.50	μg/L	SM21-23 6200B
Benzene	19		0.14	0.50	μg/L	SM21-23 6200B
Chloroform	0.32	J	0.19	0.50	μg/L	SM21-23 6200B
Diisopropyl Ether (DIPE)	2.2		0.17	0.50	μg/L	SM21-23 6200B
Ethylbenzene	2.8		0.14	0.50	μg/L	SM21-23 6200B
m+p Xylene	4.6		0.25	1.0	μg/L	SM21-23 6200B
Naphthalene	0.25	J	0.25	0.50	μg/L	SM21-23 6200B
n-Propylbenzene	0.24	J	0.11	0.50	μg/L	SM21-23 6200B
o-Xylene	1.1		0.16	0.50	μg/L	SM21-23 6200B
Toluene	1.3		0.11	0.50	$\mu g/L$	SM21-23 6200B

Client ID: WSW-8

Lab ID: 24D1426-02

Analyte	Results/Qual		DL	RL	Units	Method
1,2,4-Trimethylbenzene	0.45	J	0.16	0.50	μg/L	SM21-23 6200B
Benzene	3.9		0.14	0.50	μg/L	SM21-23 6200B
Diisopropyl Ether (DIPE)	6.5		0.17	0.50	μg/L	SM21-23 6200B
Isopropylbenzene (Cumene)	0.27	J	0.16	0.50	μg/L	SM21-23 6200B
m+p Xylene	1.3		0.25	1.0	μg/L	SM21-23 6200B
Methyl tert-Butyl Ether (MTBE)	2.3		0.17	0.50	μg/L	SM21-23 6200B
n-Propylbenzene	0.20	J	0.11	0.50	$\mu g/L$	SM21-23 6200B
Client ID: FB]	Lab ID: 24	ID1426-03			

Analyte	Results/Qual	DL	RL	Units	Method
Acetone	2.9 J	2.0	50	μg/L	SM21-23 6200B
Bromoform	0.87 J	0.30	1.0	μg/L	SM21-23 6200B
Toluene	0.15 J	0.11	0.50	μg/L	SM21-23 6200B

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Volatile Organic Compounds by GC/MS

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: WSW-7070

Sample ID: 24D1426-01

Sample Matrix: Ground Water

Date Date/Time Units Dilution Flag/Qual Analyte Results RL DL Method Prepared Analyzed Analyst Acetone ND SM21-23 6200B 4/12/24 50 2.0 μg/L 1 4/12/24 16:07 EEH Benzene 19 0.50 0.14 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Bromobenzene ND 0.50 0.19 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH μg/L Bromochloromethane ND 0.50 $\mu g/L$ SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 0.32 1 Bromodichloromethane ND 0.50 0.19 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH $\mu g/L$ 1 Bromoform ND 4/12/24 1.0 0.30 SM21-23 6200B 4/12/24 16:07 EEH μg/L 1 Bromomethane ND 2.0 1.5 $\mu g/L$ 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 2-Butanone (MEK) ND 5.0 1.4 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH n-Butylbenzene ND 0.50 0.16 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH $\mu g/L$ sec-Butylbenzene ND 0.50 SM21-23 6200B 4/12/24 4/12/24 16:07 0.16 μg/L 1 EEH tert-Butylbenzene ND 0.50 0.17 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Carbon Tetrachloride ND SM21-23 6200B 4/12/24 4/12/24 16:07 0.50 0.19 μg/L 1 EEH Chlorobenzene 4/12/24 ND 0.50 0.18 μg/L 1 SM21-23 6200B 4/12/24 16:07 EEH Ethanol ND 50 20 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Chlorodibromomethane ND 0.50 4/12/24 EEH 0.13 $\mu g/L$ SM21-23 6200B 4/12/24 16:07 1 Chloroethane ND 0.50 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 0.46 1 μg/L Chloroform J EEH 0.32 0.50 0.19 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 Chloromethane ND 0.60 0.50 SM21-23 6200B 4/12/24 EEH $\mu g/L$ 1 4/12/24 16:07 2-Chlorotoluene ND 0.50 0.21 $\mu g/L$ 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 4/12/24 16:07 4-Chlorotoluene ND 0.50 0.16 $\mu g/L$ 1 SM21-23 6200B 4/12/24 EEH 1,2-Dibromoethane (EDB) ND 0.50 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 0.13 μg/L 1 1,2-Dichlorobenzene ND 4/12/24 0.50 0.17 μg/L 1 SM21-23 6200B 4/12/24 16:07 EEH 1,3-Dichlorobenzene ND 0.50 0.15 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH μg/L 1,4-Dichlorobenzene ND 0.50 0.17 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Dichlorodifluoromethane (Freon 12) ND 4/12/24 0.50 0.20 SM21-23 6200B 4/12/24 16:07 EEH $\mu g/L$ 1 1,1-Dichloroethane ND 0.50 0.15 $\mu g/L$ SM21-23 6200B 4/12/24 1 4/12/24 16:07 EEH 1,2-Dichloroethane ND 0.50 0.13 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 1 μg/L 1,1-Dichloroethylene ND 4/12/24 EEH 0.50 0.18 SM21-23 6200B 4/12/24 16:07 $\mu g/L$ 1 cis-1.2-Dichloroethylene ND 0.50 0.20 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH trans-1.2-Dichloroethylene ND 0.50 0.16 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 1,2-Dichloropropane ND 0.50 0.17 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH μg/L 1 1,3-Dichloropropane ND 0.097 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 0.50 μg/L 1 2,2-Dichloropropane ND 4/12/24 0.50 0.33 μg/L 1 SM21-23 6200B 4/12/24 16:07 EEH 1,1-Dichloropropene ND 0.50 0.17 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH μg/L cis-1,3-Dichloropropene ND 0.50 0.13 $\mu g/L$ SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 1 trans-1,3-Dichloropropene ND 0.50 0.14 $\mu g/L$ 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Diisopropyl Ether (DIPE) 2.2 4/12/24 0.50 0.17 SM21-23 6200B 4/12/24 16:07 EEH μg/L 1 Ethylbenzene 2.8 0.50 0.14 SM21-23 6200B 4/12/24 EEH $\mu g/L$ 1 4/12/24 16:07 2-Hexanone (MBK) 4/12/24 ND 5.0 1.3 $\mu g/L$ 1 SM21-23 6200B 4/12/24 16:07 EEH $\mu g/L$ Isopropylbenzene (Cumene) ND 0.50 0.16 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH p-Isopropyltoluene (p-Cymene) ND 0.50 0.16 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH Methyl tert-Butyl Ether (MTBE) ND 0.50 0.17 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH μg/L Methylene Chloride ND 5.0 0.19 μg/L 1 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 4-Methyl-2-pentanone (MIBK) ND 5.0 SM21-23 6200B 4/12/24 4/12/24 16:07 EEH 1.4 μg/L 1

Work Order: 24D1426

Page 6 of 24

Sampled: 4/10/2024 11:51

Table of Contents

Work Order: 24D1426

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: WSW-7070

Sample ID: 24D1426-01

Sample Matrix: Ground Water

Sampled: 4/10/2024 11:51

Sample Marrix: Ground water			Vola	tile Organic Comp	ounds by C	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Naphthalene	0.25	0.50	0.25	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
n-Propylbenzene	0.24	0.50	0.11	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Styrene	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Tetrachloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Toluene	1.3	0.50	0.11	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,3-Trichlorobenzene	ND	1.0	0.22	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,4-Trichlorobenzene	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,1,1-Trichloroethane	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,1,2-Trichloroethane	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Trichloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,3-Trichloropropane	ND	1.0	0.27	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,2,4-Trimethylbenzene	1.3	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
1,3,5-Trimethylbenzene	0.53	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Vinyl Acetate	ND	20	1.7	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Vinyl Chloride	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
m+p Xylene	4.6	1.0	0.25	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
o-Xylene	1.1	0.50	0.16	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:07	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		88.9		70-130					4/12/24 16:07	
Toluene-d8		99.9		70-130					4/12/24 16:07	
4-Bromofluorobenzene		98.8		70-130					4/12/24 16:07	

Volatile Organic Compounds by GC/MS

Sampled: 4/10/2024 10:56

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: WSW-8

Sample ID: 24D1426-02

Sample Matrix: Ground Water

			volatile	Organic Col	inpounds by O			_		
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	2.0	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Benzene	3.9	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Bromobenzene	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Bromochloromethane	ND	0.50	0.32	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Bromodichloromethane	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Bromoform	ND	1.0	0.30	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Bromomethane	ND	2.0	1.5	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
2-Butanone (MEK)	ND	5.0	1.4	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
n-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
sec-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
tert-Butylbenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Carbon Tetrachloride	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Chlorobenzene	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Ethanol	ND	50	20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Chlorodibromomethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Chloroethane	ND	0.50	0.46	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Chloroform	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Chloromethane	ND	0.60	0.50	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
2-Chlorotoluene	ND	0.50	0.21	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
4-Chlorotoluene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,3-Dichlorobenzene	ND	0.50	0.15	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,4-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	0.20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1-Dichloroethane	ND	0.50	0.15	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2-Dichloroethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1-Dichloroethylene	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
cis-1,2-Dichloroethylene	ND	0.50	0.20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
trans-1,2-Dichloroethylene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2-Dichloropropane	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,3-Dichloropropane	ND	0.50	0.097	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
2,2-Dichloropropane	ND	0.50	0.33	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1-Dichloropropene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
cis-1,3-Dichloropropene	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
trans-1,3-Dichloropropene	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Diisopropyl Ether (DIPE)	6.5	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Ethylbenzene	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
2-Hexanone (MBK)	ND	5.0	1.3	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Isopropylbenzene (Cumene)	0.27	0.50	0.16	μg/L μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
p-Isopropyltoluene (p-Cymene)	ND	0.50	0.16	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Methyl tert-Butyl Ether (MTBE)	2.3	0.50	0.10	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Methylene Chloride	ND	5.0	0.17	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4		1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
menyi-2-pentanone (mibic)	ND	5.0	1.4	μg/L	1		SIV121-25 0200B	+/12/24	4/12/24 10:33	

Work Order: 24D1426

Page 8 of 24

Work Order: 24D1426

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: WSW-8

Sample ID: 24D1426-02

Sample Matrix: Ground Water

Sampled: 4/10/2024 10:56

			Vola	tile Organic Comj	pounds by G	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Naphthalene	ND	0.50	0.25	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
n-Propylbenzene	0.20	0.50	0.11	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Styrene	ND	0.50	0.13	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Tetrachloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Toluene	ND	0.50	0.11	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2,3-Trichlorobenzene	ND	1.0	0.22	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2,4-Trichlorobenzene	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1,1-Trichloroethane	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,1,2-Trichloroethane	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Trichloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2,3-Trichloropropane	ND	1.0	0.27	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,2,4-Trimethylbenzene	0.45	0.50	0.16	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
1,3,5-Trimethylbenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Vinyl Acetate	ND	20	1.7	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Vinyl Chloride	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
m+p Xylene	1.3	1.0	0.25	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
o-Xylene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 16:33	EEH
Surrogates		% Reco	very	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		90.9		70-130					4/12/24 16:33	
Toluene-d8		99.5		70-130					4/12/24 16:33	
4-Bromofluorobenzene		99.0		70-130					4/12/24 16:33	

Volatile Organic Compounds by GC/MS

Sampled: 4/10/2024 11:40

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: FB

Sample ID: 24D1426-03

Sample Matrix: Field Blank

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	2.9	50	2.0	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Benzene	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Bromobenzene	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Bromochloromethane	ND	0.50	0.32	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Bromodichloromethane	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Bromoform	0.87	1.0	0.30	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Bromomethane	ND	2.0	1.5	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
2-Butanone (MEK)	ND	5.0	1.4	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
n-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
sec-Butylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
tert-Butylbenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Carbon Tetrachloride	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Chlorobenzene	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Ethanol	ND	50	20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Chlorodibromomethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Chloroethane	ND	0.50	0.46	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Chloroform	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Chloromethane	ND	0.60	0.50	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
2-Chlorotoluene	ND	0.50	0.21	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
4-Chlorotoluene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,3-Dichlorobenzene	ND	0.50	0.15	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,4-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	0.20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1-Dichloroethane	ND	0.50	0.15	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2-Dichloroethane	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1-Dichloroethylene	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
cis-1,2-Dichloroethylene	ND	0.50	0.20	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
trans-1,2-Dichloroethylene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2-Dichloropropane	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,3-Dichloropropane	ND	0.50	0.097	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
2,2-Dichloropropane	ND	0.50	0.33	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1-Dichloropropene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
cis-1,3-Dichloropropene	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
trans-1,3-Dichloropropene	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Diisopropyl Ether (DIPE)	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Ethylbenzene	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
2-Hexanone (MBK)	ND	5.0	1.3	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Isopropylbenzene (Cumene)	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
p-Isopropyltoluene (p-Cymene)	ND	0.50	0.16	μg/L μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Methyl tert-Butyl Ether (MTBE)	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Methylene Chloride	ND	5.0	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
	112	2.0	1.7	<u>м8/12</u>	1		511121 25 02000	1, 1 <i>2</i> , 27		

Table of Contents

Work Order: 24D1426

Page 10 of 24

Table of Contents

Work Order: 24D1426

Project Location: Pittsboro Date Received: 4/11/2024

Field Sample #: FB

Sample ID: 24D1426-03

Sample Matrix: Field Blank

Sampled: 4/10/2024 11:40

			Vola	tile Organic Com	pounds by G	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Naphthalene	ND	0.50	0.25	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
n-Propylbenzene	ND	0.50	0.11	µg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Styrene	ND	0.50	0.13	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Tetrachloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Toluene	0.15	0.50	0.11	μg/L	1	J	SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2,3-Trichlorobenzene	ND	1.0	0.22	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2,4-Trichlorobenzene	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1,1-Trichloroethane	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,1,2-Trichloroethane	ND	0.50	0.18	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Trichloroethylene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.14	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2,3-Trichloropropane	ND	1.0	0.27	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,2,4-Trimethylbenzene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
1,3,5-Trimethylbenzene	ND	0.50	0.17	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Vinyl Acetate	ND	20	1.7	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Vinyl Chloride	ND	0.50	0.19	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
m+p Xylene	ND	1.0	0.25	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
o-Xylene	ND	0.50	0.16	μg/L	1		SM21-23 6200B	4/12/24	4/12/24 13:04	EEH
Surrogates		% Reco	overy	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		86.0		70-130					4/12/24 13:04	
Toluene-d8		100		70-130					4/12/24 13:04	
4-Bromofluorobenzene		102		70-130					4/12/24 13:04	

Sample Extraction Data

Prep Method: SW-846 5030B-SM21-23 6200B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
24D1426-01 [WSW-7070]	B371300	5	5.00	04/12/24
24D1426-02 [WSW-8]	B371300	5	5.00	04/12/24
24D1426-03 [FB]	B371300	5	5.00	04/12/24

QUALITY CONTROL

		Reporting	.	Spike	Source	o · =	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B371300 - SW-846 5030B										
Blank (B371300-BLK1)				Prepared &	Analyzed: 04	/12/24				
Acetone	ND	50	μg/L							
Benzene	ND	0.50	μg/L							
Bromobenzene	ND	0.50	μg/L							
Bromochloromethane	ND	0.50	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	0.50	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	5.0	μg/L							
n-Butylbenzene	ND	0.50	μg/L							
sec-Butylbenzene	ND	0.50	μg/L							
tert-Butylbenzene	ND	0.50	μg/L							
Carbon Tetrachloride	ND	0.50	μg/L							
Chlorobenzene	ND	0.50	μg/L							
Ethanol	ND	50	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	0.50	μg/L							
Chloroform	ND	0.50	μg/L							
Chloromethane	ND	0.60	μg/L							
2-Chlorotoluene	ND	0.50	μg/L							
4-Chlorotoluene	ND	0.50	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
1,2-Dichlorobenzene	ND	0.50	μg/L							
1,3-Dichlorobenzene	ND	0.50	μg/L							
1,4-Dichlorobenzene	ND	0.50	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	0.50	μg/L							
1,1-Dichloroethane	ND	0.50	μg/L							
1,2-Dichloroethane	ND	0.50	μg/L							
1,1-Dichloroethylene	ND	0.50	μg/L							
cis-1,2-Dichloroethylene	ND	0.50	μg/L							
trans-1,2-Dichloroethylene	ND	0.50	μg/L							
1,2-Dichloropropane	ND	0.50	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	0.50	μg/L							
1,1-Dichloropropene	ND ND	0.50	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene		0.50	μg/L μg/L							
Diisopropyl Ether (DIPE)	ND ND	0.50	μg/L μg/L							
Ethylbenzene	ND ND	0.50	μg/L μg/L							
2-Hexanone (MBK)		5.0	μg/L μg/L							
Isopropylbenzene (Cumene)	ND	0.50	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND	0.50	μg/L μg/L							
	ND									
Methyl tert-Butyl Ether (MTBE) Methylene Chloride	ND	0.50	μg/L μα/Ι							
-	ND	5.0	μg/L μg/Ι							
4-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L μg/Ι							
Naphthalene	ND	0.50	μg/L u α/I							
n-Propylbenzene	ND	0.50	μg/L							
Styrene	ND	0.50	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	0.50	μg/L							
Toluene	ND	0.50	μg/L							
,2,3-Trichlorobenzene	ND	1.0	μg/L							
1,2,4-Trichlorobenzene	ND	0.50	μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B371300 - SW-846 5030B										
Blank (B371300-BLK1)				Prepared & A	Analyzed: 04	/12/24				
1,1,1-Trichloroethane	ND	0.50	μg/L							
1,1,2-Trichloroethane	ND	0.50	μg/L							
Trichloroethylene	ND	0.50	μg/L							
Trichlorofluoromethane (Freon 11)	ND	0.50	μg/L							
1,2,3-Trichloropropane	ND	0.50	μg/L							
1,2,4-Trimethylbenzene	ND	0.50	μg/L							
1,3,5-Trimethylbenzene	ND	0.50	μg/L							
Vinyl Acetate	ND	20	μg/L							
Vinyl Chloride	ND	0.50	μg/L							
n+p Xylene	ND	1.0	μg/L							
-Xylene	ND	0.50	μg/L							
Surrogate: 1,2-Dichloroethane-d4	21.7		μg/L	25.0		86.9	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.1		μg/L	25.0		100	70-130			
LCS (B371300-BS1)				Prepared & A	Analyzed: 04	/12/24				
Acetone	89.0	50	μg/L	100		89.0	70-130			
Benzene	9.99	0.50	μg/L	10.0		99.9	70-130			
Bromobenzene	10.2	0.50	μg/L	10.0		102	70-130			
romochloromethane	10.2	0.50	μg/L	10.0		102	70-130			
romodichloromethane	11.2	0.50	μg/L	10.0		112	70-130			
Bromoform	10.4	0.50	μg/L	10.0		104	70-130			
romomethane	9.53	2.0	μg/L	10.0		95.3	60-140			
-Butanone (MEK)	9.55	5.0	μg/L	100		90.0	70-130			
-Butylbenzene	9.40	0.50	μg/L	10.0		94.0	70-130			
ec-Butylbenzene	9.40	0.50	μg/L	10.0		91.6	70-130			
ert-Butylbenzene	9.16	0.50	μg/L	10.0		94.5	70-130			
Carbon Tetrachloride	9.45	0.50	μg/L	10.0		98.5	70-130			
Chlorobenzene	9.85	0.50	μg/L	10.0		106	70-130			
Ethanol		50	μg/L	10.0		80.0	70-130			
Chlorodibromomethane	80.0	0.50	μg/L μg/L	100		116	70-130			
Chloroethane	11.6	0.50	μg/L μg/L	10.0		96.1	60-140			
Chloroform	9.61									
hloroform Chloromethane	10.1	0.50 0.60	μg/L μg/I	10.0		101	70-130			
-Chlorotoluene	8.91	0.60	μg/L μg/I	10.0		89.1	60-140 70,120			
-Chlorotoluene	9.73		μg/L μg/I	10.0		97.3	70-130			
	10.1	0.50	μg/L μg/I	10.0		101	70-130			
,2-Dibromoethane (EDB)	12.3	0.50	μg/L α/I	10.0		123	70-130			
,2-Dichlorobenzene	9.70	0.50	μg/L	10.0		97.0	70-130			
,3-Dichlorobenzene	9.80	0.50	μg/L	10.0		98.0	70-130			
,4-Dichlorobenzene	9.67	0.50	μg/L	10.0		96.7	70-130			
Dichlorodifluoromethane (Freon 12)	9.11	0.50	μg/L uα/L	10.0		91.1	60-140			
,1-Dichloroethane	9.40	0.50	μg/L	10.0		94.0	70-130			
,2-Dichloroethane	11.5	0.50	μg/L	10.0		115	70-130			
,1-Dichloroethylene	9.19	0.50	μg/L	10.0		91.9	70-130			
is-1,2-Dichloroethylene	9.53	0.50	μg/L	10.0		95.3	70-130			
rans-1,2-Dichloroethylene	9.16	0.50	μg/L	10.0		91.6	70-130			
,2-Dichloropropane	11.1	0.50	μg/L	10.0		111	70-130			
,3-Dichloropropane	11.1	0.50	μg/L	10.0		111	70-130			
,2-Dichloropropane	9.51	0.50	μg/L	10.0		95.1	70-130			
,1-Dichloropropene	9.69	0.50	μg/L	10.0		96.9	70-130			
is-1,3-Dichloropropene	11.2	0.50	μg/L	10.0		112	70-130			
rans-1,3-Dichloropropene	10.6	0.50	μg/L	10.0		106	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B371300 - SW-846 5030B										
LCS (B371300-BS1)				Prepared &	Analyzed: 04/	/12/24				
Diisopropyl Ether (DIPE)	9.34	0.50	μg/L	10.0		93.4	70-130			
Ethylbenzene	10.3	0.50	μg/L	10.0		103	70-130			
2-Hexanone (MBK)	107	5.0	μg/L	100		107	70-130			
Isopropylbenzene (Cumene)	10.3	0.50	μg/L	10.0		103	70-130			
p-Isopropyltoluene (p-Cymene)	9.47	0.50	μg/L	10.0		94.7	70-130			
Methyl tert-Butyl Ether (MTBE)	9.46	0.50	μg/L	10.0		94.6	70-130			
Methylene Chloride	9.43	5.0	μg/L	10.0		94.3	70-130			
4-Methyl-2-pentanone (MIBK)	105	5.0	μg/L	100		105	70-130			
Naphthalene	8.32	0.50	μg/L	10.0		83.2	70-130			
n-Propylbenzene	10.4	0.50	μg/L	10.0		104	70-130			
Styrene	10.8	0.50	μg/L	10.0		108	70-130			
1,1,2,2-Tetrachloroethane	11.3	0.50	μg/L	10.0		113	70-130			
Tetrachloroethylene	12.2	0.50	μg/L	10.0		122	70-130			
Toluene	10.9	0.50	μg/L	10.0		109	70-130			
1,2,3-Trichlorobenzene	9.25	1.0	μg/L	10.0		92.5	70-130			
1,2,4-Trichlorobenzene	9.85	0.50	μg/L	10.0		98.5	70-130			
1,1,1-Trichloroethane	9.90	0.50	μg/L	10.0		99.0	70-130			
1,1,2-Trichloroethane	10.9	0.50	μg/L	10.0		109	70-130			
Trichloroethylene	11.1	0.50	μg/L	10.0		111	70-130			
Trichlorofluoromethane (Freon 11)	10.6	0.50	μg/L	10.0		106	70-130			
1,2,3-Trichloropropane	11.3	0.50	μg/L	10.0		113	70-130			
1,2,4-Trimethylbenzene	9.72	0.50	μg/L	10.0		97.2	70-130			
1,3,5-Trimethylbenzene	10.8	0.50	μg/L	10.0		108	70-130			
Vinyl Acetate	94.8	20	μg/L	10.0		94.8	70-130			
Vinyl Chloride		0.50	μg/L μg/L	100		94.8 92.8	60-140			
m+p Xylene	9.28	1.0		20.0			70-130			
o-Xylene	20.0	0.50	μg/L μg/L			100				
•	10.0	0.50		10.0		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	20.8		μg/L α	25.0		83.3	70-130			
Surrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		μg/L	25.0		103	70-130			
LCS Dup (B371300-BSD1)				-	Analyzed: 04/					
Acetone	92.3	50	μg/L	100		92.3	70-130	3.54	25	
Benzene	9.89	0.50	μg/L	10.0		98.9	70-130	1.01	25	
Bromobenzene	10.0	0.50	μg/L	10.0		100	70-130	1.59	25	
Bromochloromethane	10.6	0.50	μg/L	10.0		106	70-130	1.31	25	
Bromodichloromethane	10.8	0.50	μg/L	10.0		108	70-130	3.71	25	
Bromoform	10.1	0.50	μg/L	10.0		101	70-130	2.83	25	
Bromomethane	9.07	2.0	μg/L	10.0		90.7	60-140	4.95	25	
2-Butanone (MEK)	92.6	5.0	$\mu g/L$	100		92.6	70-130	2.84	25	
n-Butylbenzene	9.77	0.50	$\mu g/L$	10.0		97.7	70-130	3.86	25	
sec-Butylbenzene	9.23	0.50	$\mu g/L$	10.0		92.3	70-130	0.761	25	
tert-Butylbenzene	9.42	0.50	μg/L	10.0		94.2	70-130	0.318	25	
Carbon Tetrachloride	9.80	0.50	μg/L	10.0		98.0	70-130	0.509	25	
Chlorobenzene	10.6	0.50	μg/L	10.0		106	70-130	0.00	25	
Ethanol	90.3	50	μg/L	100		90.3	70-130	12.1	25	
Chlorodibromomethane	11.0	0.50	μg/L	10.0		110	70-130	4.52	25	
Chloroethane	9.09	0.50	μg/L	10.0		90.9	60-140	5.56	25	
Chloroform	9.91	0.50	μg/L	10.0		99.1	70-130	2.29	25	
Chloromethane	8.76	0.60	μg/L	10.0		87.6	60-140	1.70	25	
2-Chlorotoluene	9.99	0.50	μg/L	10.0		99.9	70-130	2.64	25	
4-Chlorotoluene	10.2	0.50	μg/L	10.0		102	70-130	0.890	25	

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B371300 - SW-846 5030B										
LCS Dup (B371300-BSD1)				Prepared &	Analyzed: 04	/12/24				
1,2-Dibromoethane (EDB)	11.8	0.50	μg/L	10.0		118	70-130	3.65	25	
1,2-Dichlorobenzene	9.63	0.50	μg/L	10.0		96.3	70-130	0.724	25	
1,3-Dichlorobenzene	9.66	0.50	μg/L	10.0		96.6	70-130	1.44	25	
1,4-Dichlorobenzene	9.67	0.50	μg/L	10.0		96.7	70-130	0.00	25	
Dichlorodifluoromethane (Freon 12)	9.39	0.50	μg/L	10.0		93.9	60-140	3.03	25	
1,1-Dichloroethane	9.48	0.50	μg/L	10.0		94.8	70-130	0.847	25	
1,2-Dichloroethane	10.4	0.50	μg/L	10.0		104	70-130	9.89	25	
1,1-Dichloroethylene	9.71	0.50	μg/L	10.0		97.1	70-130	5.50	25	
cis-1,2-Dichloroethylene	9.56	0.50	μg/L	10.0		95.6	70-130	0.314	25	
trans-1,2-Dichloroethylene	9.51	0.50	μg/L	10.0		95.1	70-130	3.75	25	
1,2-Dichloropropane	11.1	0.50	μg/L	10.0		111	70-130	0.270	25	
1,3-Dichloropropane	10.6	0.50	μg/L	10.0		106	70-130	4.52	25	
2,2-Dichloropropane	9.58	0.50	μg/L	10.0		95.8	70-130	0.733	25	
1,1-Dichloropropene	9.33	0.50	μg/L	10.0		93.3	70-130	3.79	25	
cis-1,3-Dichloropropene	10.4	0.50	μg/L	10.0		104	70-130	7.61	25	
trans-1,3-Dichloropropene	10.3	0.50	μg/L	10.0		103	70-130	3.07	25	
Diisopropyl Ether (DIPE)	9.18	0.50	μg/L	10.0		91.8	70-130	1.73	25	
Ethylbenzene	10.5	0.50	μg/L	10.0		105	70-130	2.22	25	
2-Hexanone (MBK)	110	5.0	μg/L	100		110	70-130	2.55	25	
Isopropylbenzene (Cumene)	10.4	0.50	μg/L	10.0		104	70-130	0.771	25	
p-Isopropyltoluene (p-Cymene)	9.57	0.50	μg/L	10.0		95.7	70-130	1.05	25	
Methyl tert-Butyl Ether (MTBE)	9.24	0.50	μg/L	10.0		92.4	70-130	2.35	25	
Methylene Chloride	9.24	5.0	μg/L	10.0		92.8	70-130	1.60	25	
4-Methyl-2-pentanone (MIBK)	103	5.0	μg/L	100		103	70-130	1.53	25	
Naphthalene	8.77	0.50	μg/L	10.0		87.7	70-130	5.27	25	
n-Propylbenzene	10.7	0.50	μg/L	10.0		107	70-130	2.57	25	
Styrene	10.7	0.50	μg/L	10.0		107	70-130	0.370	25	
1,1,2,2-Tetrachloroethane	10.8	0.50	μg/L	10.0		103	70-130	1.16	25	
Tetrachloroethylene	11.1	0.50	μg/L	10.0		125	70-130	2.76	25	
Toluene	12.5	0.50	μg/L	10.0		125	70-130	2.13	25	
1,2,3-Trichlorobenzene	9.59	1.0	μg/L	10.0		95.9	70-130	3.61	25	
1,2,4-Trichlorobenzene		0.50	μg/L	10.0		98.0	70-130	0.509	25	
1,1,1-Trichloroethane	9.80 9.99	0.50	μg/L	10.0		99.9	70-130	0.905	25	
1,1.2-Trichloroethane		0.50	μg/L μg/L	10.0		108	70-130	0.505	25	
Trichloroethylene	10.8	0.50	μg/L μg/L	10.0		108	70-130	4.66	25	
Trichlorofluoromethane (Freon 11)	11.6	0.50	μg/L μg/L	10.0		103	70-130	3.25	23 25	
1,2,3-Trichloropropane	10.3	0.50	μg/L μg/L	10.0					25	
1,2,4-Trimethylbenzene	11.3	0.50	μg/L μg/L			113	70-130	0.177		
1,3,5-Trimethylbenzene	9.69	0.30	μg/L μg/L	10.0		96.9 109	70-130	0.309	25 25	
•	10.9	0.30 20		10.0		109	70-130	1.11	25	
Vinyl Acetate	92.0		μg/L ug/I	100		92.0	70-130	3.00	25	
Vinyl Chloride	9.13	0.50	μg/L uα/I	10.0		91.3	60-140	1.63	25	
m+p Xylene	20.5	1.0	μg/L uα/I	20.0		102	70-130	2.27	25	
o-Xylene	10.0	0.50	μg/L	10.0		100	70-130	0.300	25	
Surrogate: 1,2-Dichloroethane-d4	20.8		μg/L	25.0		83.0	70-130			
Surrogate: Toluene-d8	24.8		$\mu g/L$	25.0		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	25.9		μg/L	25.0		104	70-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SM21-23 6200B in Water		
Acetone	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Ethanol	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromoethane (EDB)	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
	NC	
1,3-Dichloropropane 2,2-Dichloropropane	NC	
2,2-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
	NC	
trans-1,3-Dichloropropene Diisopropyl Ether (DIPE)	NC	
Ethylbenzene	NC	
2-Hexanone (MBK)	NC	
Isopropylbenzene (Cumene)	NC	
p-Isopropyltoluene (p-Cymene)	NC	
Methyl tert-Butyl Ether (MTBE)	NC	
Methylene Chloride	NC	
4-Methyl-2-pentanone (MIBK)	NC	
Naphthalene	NC	
n-Propylbenzene	NC	
Styrene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SM21-23 6200B in Water		
1,1,2,2-Tetrachloroethane	NC	
Tetrachloroethylene	NC	
Toluene	NC	
1,2,3-Trichlorobenzene	NC	
1,2,4-Trichlorobenzene	NC	
1,1,1-Trichloroethane	NC	
1,1,2-Trichloroethane	NC	
Trichloroethylene	NC	
Trichlorofluoromethane (Freon 11)	NC	
1,2,3-Trichloropropane	NC	
1,2,4-Trimethylbenzene	NC	
1,3,5-Trimethylbenzene	NC	
Vinyl Acetate	NC	
Vinyl Chloride	NC	
m+p Xylene	NC	
o-Xylene	NC	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations :

Code	Description	Number	Expires
NC	North Carolina Div. of Water Quality	652	12/31/2024

Page of	# of Containers ² Dreconvation Code	³ Container Code	Dissolved Metals Samples	Field Filtered		Orthophosphate Samples	Field Filtered		¹ Matrix Codes: GW = Ground Water	WW = Waste Water DW = Drinking Water	A = Air S = Soil	SL = Sludge SOL = Solid	O = Other (please define)	² Preservation Codes: I = lced	H = HCL M = Methanol	N = Nitric Acid S = Sulfuric Acid	B = Sodium Bisulfate X = Sodium Hydroxide	T = Sodium Thiosulfate	O = Other (please define)	³ Container Codes: A = Amber Glass	G = Glass	r = rtastic ST = Sterile	V = Vial S = Summa Canister	0 = Other (please define)	1		Non Soxhlet
Doc # 379 Rev 2_01122021 39 Spruce Street 5 East Longmeadow, MA 01028			ANALYSIS REQUESTED																Please use the following codes to indicate possible sample concentration	within the Lond Lode countin above: H - High; M - Medium; L - Low; C - Clean; U - Unknown	gram Informa	DSCA UST/Trust Fund cws i andfill BFC	IHSB Orphaned Landfill	State Lead Other:	NELAC and AIHA-LAP, LLC Accredited	Other Chromatogram	AIHA-LAP,LLC
2401476 https://www.pacelabs.com/ Doc # 37 CHAIN OF CUSTODY RECORD (North Carolina)	7-Day 0 10-Day 🕅	Due Date: Ruth-Annroval Required	3-Day	2-Day 4-Day	Data Defivery	Hts Daly AGO		Fax To #: USA . Com	Composite Grab ¹ Matrix Conc	X GM	X 6W	×							Please use the followin	withi H - High; M - M	North Carolina Detection Limit Requirements	2L Statements	GWPC SWSL	IHSB MSCC		tity Government Dunicipality	Federal Brownfield City School
Phone: 413-525-2332 2401 Fax: 413-525-6405	Contact: https://www.pacelabs.com/contact-us/contact-environmental-sciences/	attinEnginers () cientration	IN IT KENNING NU	Mann Store	6	12	-	its, payable @ cattinuse, com	Client Sample ID / Description	-1501 B2-9FA (LLU - MSII)	. 8	FR							HTBE	shipping		4-10-24 00	ate/Time:		Date/Time: Other:	Date/Time: Project Entity	Date/Time:
Pace Analytical*	Contact: https://www.pacelabs.com/c	Company Name:	Phone: 984-222-1214		Pitsb	Project Manager:	uote Name/N	Invoice Recipient: a country of Sampled By:	Pace Analytical	work Urder#	- 2	6							Comments: DIPE, EDB + MTBE	Addid By La Supping	Relinquished by: (signature)	Sendra Midur	Received by: (signature)	duikhed by: (signature)	b ived by: (signature)	to quished by: (signature)	+ ived by: (signature)

FedEx * Tracking

SHOPRUNNER by Federa.

Search products from your favorite brands all in one place.

Re

DELIVERED

Thursday

4/11/24 at 9:48 AM

Signed for by: A.MULINARE

👃 Obtain proof of delivery

DELIVERY STATUS

Delivered 🥑

 $\hat{=}$ Report missing package

TRACKING ID

775899741791 🖉 🏠

FROM RALEIGH, NC US

Label Created 4/10/24 12:43 PM

WE HAVE YOUR PACKAGE RALEIGH, NC

4/10/24 4:28 PM

ON THE WAY

WINDSOR LOCKS, CT 4/11/24 7:54 AM

OUT FOR DELIVERY

WINDSOR LOCKS, CT 4/11/24 8:04 AM

DELIVERED

EAST LONGMEADOW, MA US

Delivered 4/11/24 at 9:48 AM

 \downarrow View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

SUBMIT

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

Log In Back-Sheet

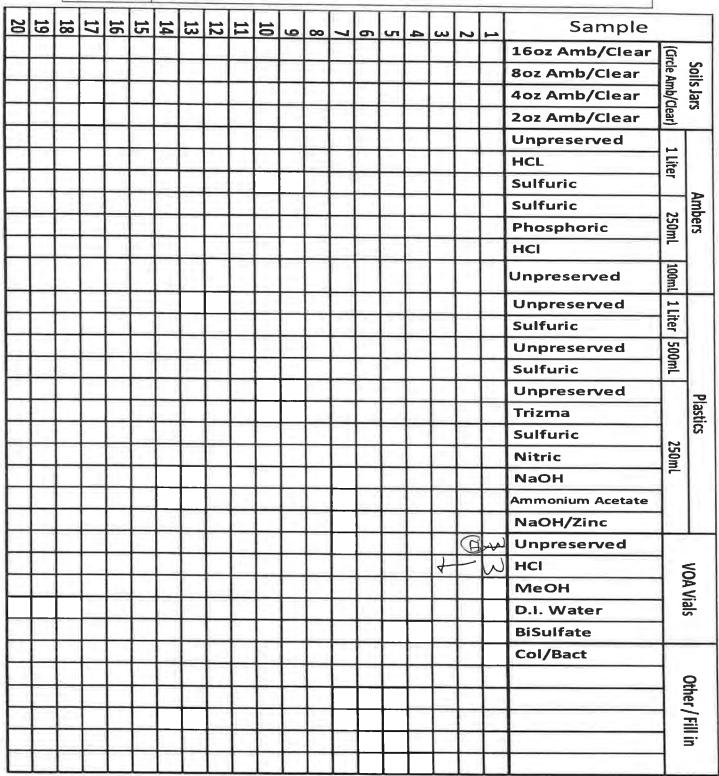
Client Cuttin Englies and scint.	7365
Project Munn Sture	
MCP/RCP Required MA	
Deliverable Package Requirement_MO	Recei
Location PAts borg	Recei
PWSID# (When Applicable) MA	Custo
Arrival Method:	COCI
Courier Fed Ex Walk In Other	coc/
Received By / Date / Time CML 411124 948	All Sa
Back-Sheet By / Date / Time 1A 4/11/2 13 39	Samp
Temperature Method 912 # 6	Is the
Temp $(/ < 6^{\circ} C \text{ Actual Temperature} 2 / T)$	Prope
Rush Samples: Yes / Notify	
Short Hold: Yes / 🕅 Notify	Splitt
	MS/N

Notes regarding Samples/COC outside of SOP:

+	
£	

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

	True	False
Received on Ice	цУ.	
Received in Cooler	Ċ	
Custody Seal: DATE TIME		Þ
COC Relinquished	ф	Ò
COC/Samples Labels Agree		
All Samples in Good Condition	\square	
Samples Received within Holding Time	\Box	
Is there enough Volume		
Proper Media/Container Used		P
Splitting Samples Required		Ø,
MS/MSD		
Trip Blanks		D)
Lab to Filters	\Box ,	\square
COC Legible		
COC Included: (Check all included)		
Client Analysis Analysis Sar	npler Name	\Box
Project 4 IDs 6 Col	lection Date/Time	
All Samples Proper pH: N/A		
Additional Contain	er Notes	
Note: West Virginia requires all san	nples to have their	r
temperature taken. Note any outlie		


Qualtrax ID: 120836

Page 1 of 2

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

Page 2 of 2

1	Phone: 413-525-2332		<u>h</u>	ittps://www.j	pacela	<u>bs.com/</u>		Doc #	379 Rev 3	2_0112	22021						
Pace Analytical®	Fax: 413-525-6405		CHAIN OF C	USTODY RE	CORD	(North C	arolina))					oruce S				Page of
			Re	quested Tu	Irnarou	und Time	2	13	SH			East	Longm	eadov	v, MA C	1028	
Contact: https://www.pacelabs.co	m/contact-us/contact-environmental-	-sciences/	7-Day		10-Da	y D	1	Ž									# of Containers
Company Name:	Cattin Engineers Sci	entists	Due Date:					H									² Preservation Code
Address: 1044 Washin	gton St Rabeigh,	NG		Rush-Appro	oval Re	quired		く			1.44		Sec. A.				³ Container Code
		制作的外	1-Day		3-Day	and the second sec				ANAI	LYSIS	REQ	UESTI	ED	南海		Dissolved Metals Samples
Project Name:	Mann Store		2-Day		10 A A A A A A A A A A A A A A A A A A A		a service and a service of the servi							The second			Field Filtered
			Section of		and the second second												Lab to Filter
		A. Carter											Sec. 1				and the second
Company Name: Catting nurs Scients/s Due Date: H 2 Preservation Code Address: 044 Washing for St Rafleigh Alc Rush-Approval Required V 3 Container Code Phone: 984 - 222 - 214 1-Day 3-Day Dissolved Meto Project Name: Mann Store 2-Day 4-Day Dissolved Meto Project Location: Pitts boro Data Delivery Field Filtered Dissolved Meto Project Manager: Scan D'Nail Other: Dist Data Pkg Required Offer: Dist Data Pkg Required Offer: Pace Analytical Quote Name/Number: 2404/10 - Z CLP Like Data Pkg Required Dist Pkg Required Dist Pkg Required Field Filtered	Orthophosphate Samples																
and the second se								B									· 프랑그는 것 같은 정도가 가 많이.
Sampled By: 5. Hiller	payable @ catinusc	1. com	Email To: Fax To #:					N				1					Lab to Filter
Pace Analytical		Realmedance		1	usa	i . com	and the owner of the owner of the	9									
Work Order#	Client Sample ID / Description	Beginning Date/Time	Date/Time	Composite	Grab	¹ Matrix Code	Conc Code										¹ <u>Matrix Codes</u> : GW = Ground Water
	111511 2070	4-10-24	100	1141	V		1.0	X						-	-		WW = Waste Water
	WSW-7070	7-10-29		1131	N	GW	И	+ +						-	_	-	DW = Drinking Water A = Air
and the second	WSW-8		1131	1056	X	GW	U	X						1			S = Soil
	FB		1140	-	X	W	C	X	s							1	SL = Sludge SOL = Solid
				(STY)					1					-			O = Other (please
				6	-		14 14 14 14 14 14 14 14 14 14 14 14 14 1		19. July 19.	-				-	-	-	define)
A STATE																1.1	
		A. C.			1.00		and the second										² <u>Preservation Codes</u> : 1 = Iced
		1 Belth				1.200			48.7. F					+		-	H = HCL
						An and the				-	a Bra	-		+	-		M = Methanol
	and the second			1. 1. 1. 1.	1	and the second					1.1		1				N = Nitric Acid S = Sulfuric Acid
and the second second second				Star III					1.5		1.44				1		B = Sodium Bisulfate
		1			1									1.			X = Sodium Hydroxide T = Sodium
Comments:					Star M		and the second							-	_		Thiosulfate
Add' \$46 for	4 MIDE					Please	e use the	e follow	ving code	s to in	dicate	possi	ble sar	nple c	oncenti	ration	O = Other (please define)
A MI HILL C	, chipping					all and		wit	thin the C	Conc C	ode co	olumn	above	:			
Hadi DTO TO	SMPFILIT						H - Hi	gh; M -	Medium	; L - L(ow; C	- Cle	an; U	- Unkı	nown		³ Container Codes:
Relinguished by: (signature)	Date/Time:		North Carol	ina Detecti	on l im	nit Requi	rements		-	Der	odra	no le	nforr		00		A = Amber Glass
Relinquished by: (signature) .	4.10-24	(XQ	2L				CARDIN	AL Q		DSCA		EFE DE	HOIF		ST/Trus	t Fund	G = Glass P = Plastic
Received by: (signature)	Date/Time:		GWPC				P.		F		Landfi	n ^a n an					ST = Sterile
My IL/PACE	4-10-241/1300		SWSL					A NA	F				andfill				V = Vial S = Summa Canister
Relinquished by: (signature)	Date/Time:		IHSB				Sel.		X		Lead						T = Tedlar Bag
Description description of the second			MSCC	and the second		l	NORTH CARO			Other:	en gener				1. A. 1. 1.	E al Co	O = Other (please define)
Received by: (signature)	Date/Time:	Other:				and the second							and a			1.1	
Relinquished by: (signature)	Date/Time:	Project Fre	ita e			_				NELA			and the second	LLC A	ccredit	ed	A server and the server and the
including of the state of the s	Date/ Time.	Project Ent	Governmer	nt 🗌	Munic	ipality						Other		h.r	Č.		PCB ONLY
Received by: (signature)	Date/Time:		Federal	· 🗆	Brown								-		atogram AP,LLC		Soxhlet
and the second second			City		Schoo									11 /A-L	~,		Page 24 of 24

Table of Contents

ATTACHMENT E

TABLES

TABLE 1 PUBLIC AND PRIVATE WATER SUPPLY WELLS AND OTHER RECEPTOR INFORMATION

Incident Name and No.: Mann Store - 6281

Well #	Well Owner / User	Type of Well	Well Casing Depth	Distance (ft.) / Direction from Source	Gradient from Source
WSW-1	Lauraine Rivier	Unknown	Unknown	900 / NW	Lower
WSW-1B	Lauraine Rivier	Unknown	Unknown	350 / NW	Lower
WSW-2	Michael & Sharon Owens	Unknown	Unknown	1,000 / NW	Lower
WSW-3	Jean and Donald Stubbs	Unknown	Unknown	1,250 / NNW	Lower
WSW-4	Piedmont Farm Animal Refuge	Unknown	Unknown	975 / N	Lower
WSW-5	Susan Johnson	Unknown	Unknown	1,000 / NE	Lower
WSW-6	Sandra Fogleman	Unknown	Unknown	475 / SW	Higher
WSW-7	Sandra Fogleman	Unknown	Unknown	650 / SSW	Higher
WSW-8	Rhonda Lemons (Morris's daughter)	Unknown	Unknown	50 / S	Higher
WSW-7070	Ronald Vaughn	Unknown	Unknown	190 / NNE	Higher

Receptor ID	Description	Usage	Distance (ft) / Direction from Source	Gradient from Source
Pond 1	Farm Pond	Farm Pond	525 / NW	Lower
Stream 1	Long Branch Stream	Surface Water Body	1,450 / S	Higher
Stream 2	Intermittened Stream	Surface Water Body	1,000 / NE	Lower

Information obtained from S&ME (2019).

ft. = feet

TABLE 2SUMMARY OF GROUNDWATER LABORATORY RESULTS — STANDARD METHOD 6200B

Incident Name and No.: Mann Store - 6281

Contamina Conce						Ether	ene	enzene	·Butyl 8E)	e	nzene		enzene	enzene	Ies	SM 6200B
Well/ Sample ID	Date Collected (mm/dd/yy)	Acetone	Benzene	Bromoform	Chloroform	Diisopropyl (DIPE)	Ethylbenze	lsopropylbe (Cumene)	Methyl tert-Bu Ether (MTBE)	Naphthalene	n-Propylben	Toluene	1,2,4- Trimethylbe	1,3,5- Trimethylbe	Total Xylenes	All Other S Analytes
WSW-8	04/10/24	<2.0	3.9	<0.30	<0.19	6.5	<0.14	0.27 J	2.3	<0.25	0.20 J	<0.11	0.45 J	<0.17	<1.46*	BMDL
WSW-7070	04/10/24	<2.0	<u>19</u>	<0.30	0.32 J	2.2	2.8	<0.16	<0.17	0.25 J	0.24 J	1.3	1.3	0.53	5.7	BMDL
Field Blank / FB	04/10/24	2.9 J	<0.14	0.87 J	<0.19	<0.17	<0.14	<0.16	<0.17	<0.25	<0.11	0.15 J	<0.16	<0.17	<0.41	BMDL
2L (GCL (µg/L) GWQS (µg/L) MCL (µg/L)	6,000	5,000 1 5	4,000 4 80	70,000 70 80	70,000 70 NE	80,000 600 700	30,500 70 NE	20,000 20 NE	6,000 6 NE	26,100 70 NE	260,000 600 1,000	28,500 400 NE	24,100 400 NE	50,000 500 10,000	Varies Varies Varies

All results in micrograms per liter (μ g/L).

BMDL = Below Method Detection Limit (refer to analytical report for a complete list of analytes and detection limits)

GCL = Gross Contaminant Level

2L GWQS = NCAC T15A:02L Groundwater Quality Standards

MCL = Maximum Contaminant Level

NE = Not Established

Bold results indicate concentrations above 2L GWQS.

Underlined results indicate concentrations above MCL.

< = Less than Method Detection Limit.

* = The value represents the sum of the reported practical quantitation limit of one analyte and the detected concentration of the other analyte.

J = Detected but below the Reporting Limit (lowest calibration standard); result is an estimated concentration (CLP J-Flag).

TABLE 3 SUMMARY OF HISTORICAL GROUNDWATER LABORATORY RESULTS — STANDARD METHOD 6200B

Incident Name and No.: Mann Store - 6281

	Contaminan Concern			zene		Ether	()	enzene	utyl Ether		ene		zene	zene	6	6200B
Well Type	Well/ Sample ID	Date Collected (mm/dd/yy)	Benzene	sec-Butylben	Chloroform	Diisopropyl E (DIPE)	Ethylbenzene	lsopropylben (Cumene)	Methyl tert-B (MTBE)	Naphthalene	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	All Other SM Analytes
		05/24/22	<0.20	<0.11	BMDL	4.3	<0.21	<0.11	4.6	<0.24	<0.086	<0.22	<0.20	<0.11	<0.69	BMDL
≥		09/28/22	<0.20	<0.11	BMDL	5.4	<0.21	<0.11	6.4	<0.24	<0.086	<0.22	<0.20	<0.11	<0.69	BMDL
Supply	WSW-8	02/28/23	<u>13</u>	0.16 J	BMDL	9.0	<0.22	0.66	2.1	0.39 J	0.74	0.38 J	1.1	0.38 J	<3.04*	BMDL
r S		12/12/23	<u>10</u>	0.15 J	<0.14	10	<0.22	0.39 J	3.1	<0.38	0.39 J	<0.22	0.63	0.18 J	<2.14*	BMDL
Water		04/10/24	3.9	<0.16	<0.19	6.5	<0.14	0.27 J	2.3	<0.25	0.20 J	<0.11	0.45 J	<0.17	<1.46*	BMDL
≥	WSW-7070	12/20/23	5.0	<0.13	0.52	1.1	0.55	<0.15	<0.17	<0.38	<0.12	1.4	<0.20	<0.15	1.29 J	BMDL
	VV3VV-7070	04/10/24	<u>19</u>	<0.16	0.32 J	2.2	2.8	<0.16	<0.17	0.25 J	0.24 J	1.3	1.3	0.53	5.7	BMDL
		GCL (µg/L)	5,000	8,800	70,000	70,000	80,000	30,500	20,000	6,000	26,100	260,000	28,500	24,100	50,000	Varies
	2L (GWQS (µg/L)	1	70	70	70	600	70	20	6	70	600	400	400	500	Varies
		MCL (µg/L)	5	NE	80	NE	700	NE	NE	NE	NE	1,000	NE	NE	10,000	Varies

06 FED 22 Mill: 15

2025-E Eastgate Drive Greenville, North Carolina 27858 Telephone: (252) 758-3310 Facsimile: (252) 758-8835 www.gma-nc.com

Groundwater Management Associates, Inc.

February 16, 2006

Ms. Linda Blalock UST Section Division of Waste Management NC Department of Environment and Natural Resources 1637 Mail Service Center Raleigh, North Carolina 27699-1637

ORIGINAL. FILE COPY

Re: Analytical Results of a Water-Supply Well Sampling Event Mann Store, Pittsboro, Chatham County (TF-6281)

Dear Linda:

On January 3, 2006, Groundwater Management Associates, Inc. (GMA) sampled four water-supply wells (WSW-1, WSW-4, WSW-7 and WSW-8) located near the Mann Store, Pittsboro, Chatham County (Figures 1 and 2). These wells provide potable water to predominantly residential properties located along Castle Rock Farm Road and Highway 87 (Figure 2). Property owners and well identification numbers shown in Figure 2 are identified in Table 1. Water-supply well WSW-7 on Lot 7 also supplies water to the home on the lot to the north (Lot 6). GMA was not able to sample the well serving the Johnson property (WSW-5, Table 1) because the only outside spigot was dry. The Old Trailer Park well could not be sampled because the spigot produced no water after approximately one minute. It appeared that the electricity to the pump may have been off. All water-supply well samples were submitted to a NC Certified Laboratory, Prism Laboratories Inc. (Prism), for analysis of dissolved volatile petroleum hydrocarbons and lead, and this report summarizes sampling procedures and the analytical results.

GMA was also tasked with photographing the adjacent property to the north and inquiring about its future use. GMA spoke with Mr. Ronnie Vaughn, whose mother-in-law (Mrs. Muriel A Mann) owns both the site and the adjacent property to the north. He said that he and his wife (Glenette Vaughn) are managing the property for her mother. He stated that the mobile homes on the property to the north were moved because the land was marshy, and that they do not intend to build any structures on the lot in the future. Photographs of the lot are provided in Appendix I.

Sampling Procedures and Analytical Methods

All samples were collected on January 3, 2006, from outside taps at or as close as possible to each

Water-Supply Well Sampling Report Mann Store (TF-6281) February 16, 2006 Page 2

wellhead. All wells were purged for 15 minutes prior to sample collection. Disposable latex gloves were worn during sample collection in order to prevent cross contamination of samples. Volatile organic carbon samples were collected in triplicate in zero headspace, pre-preserved, 40 milliliter glass vials, and lead samples were collected in 500 milliliter plastic containers. Field notes are provided in Appendix II. Samples were placed immediately in an ice-filled cooler and delivered by courier under chain-of-custody protocol to Prism for analysis. All samples were analyzed by EPA Method 6210D plus methyl tert-butyl ether (MTBE), isopropyl ether (IPE), and ethylene dibromide (EDB), and by EPA preparation Method 3030C for lead.

Results

Analytical results are summarized in Table 2, and the full laboratory report is provided in Appendix III. GMA mailed copies of the individual well sample laboratory reports to the owners of wells WSW-4 and WSW-7 on February 16, 2006, and letters containing analytical results were to be sent to the owners of wells WSW-1 and WSW-8 by your office. A detectable concentration of at least one targeted compound was present in water samples collected from wells WSW-1 and WSW-8 (Table 2). The sample from well WSW-1 (McGinty) contained 18 micrograms per liter (μ g/L) lead, which exceeds the 15A NCAC 2L groundwater standard for lead of 15 μ g/L. The sample from well WSW-8 (Morris) contained 4.4 μ g/L benzene, 13 μ g/L IPE, and 4.6 μ g/L MTBE. The 15A NCAC 2L groundwater standard for lead of 15 μ g/L MTBE. The 15A NCAC 2L groundwater standard for lead MTBE detected in the well did not exceed the respective 15A NCAC 2L groundwater standards. The U.S. EPA's maximum contaminant level (MCL) for benzene in drinking water is 5 μ g/L, above the concentration detected in the sample from well WSW-8.

Conclusions and Recommendations

On January 3, 2006, GMA sampled 4 potable water-supply wells (WSW-1, WSW-4, WSW-7, and WSW-8) located near the Mann Store (TF-6281) using standard methods. GMA was not able to sample the well serving the Johnson property (WSW-5) because the only outside spigot was dry. The Old Trailer Park well could not be sampled because the spigot produced no water after approximately one minute. Water-supply well WSW-7 on Lot 7 also supplies water to the home on Lot 6 to the north. The water samples were analyzed by Prism for lead and for volatile organic hydrocarbons typical of gasoline.

The sample collected from well WSW-1 (McGinty) contained 18 μ g/L lead, and the sample from well WSW-8 (Morris) contained 4.4 μ g/L benzene, 13 μ g/L IPE, and 4.6 μ g/L MTBE. The 15A NCAC 2L groundwater standard for lead was exceeded in the sample from well WSW-1 and the 15A NCAC 2L groundwater standard for benzene was exceeded in the sample from well WSW-8. The volatile organic compound concentrations detected in well WSW-8 are similar to the concentrations measured in the sample collected on December 15, 2004 from the well (Table 2), and are indicative of petroleum

Water-Supply Well Sampling Report Mann Store (TF-6281) February 16, 2006 Page 3

contamination. Benzene has been detected in the Morris water-supply well (WSW-8) in 1991 (17 μ g/L), 1994 (11 μ g/L), 1998 (34.5 μ g/L), and 2000 (4.5 μ g/L) by previous consultants, indicating a consistent pattern of contamination.

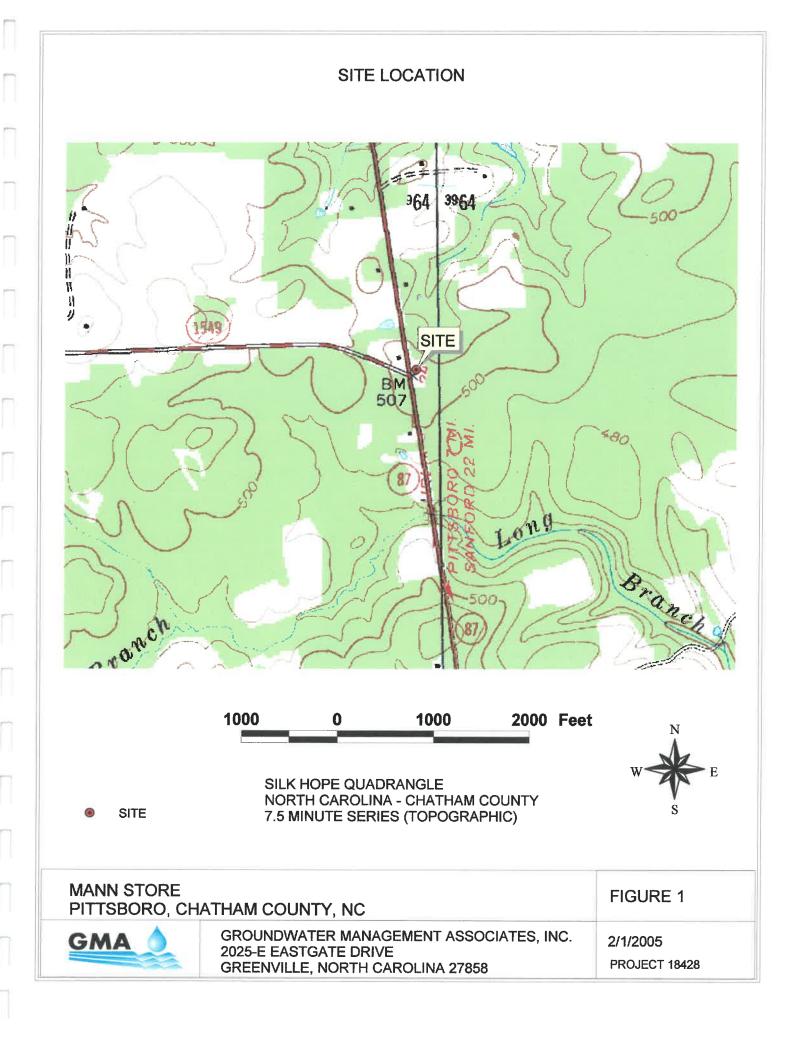
The lead concentration detected in the sample from well WSW-1 on January 3, 2006 was greater than the concentration measured in the sample collected on December 15, 2004 (1.3 J μ g/L), however, because no volatile organic carbon compounds were detected in either sample from WSW-1, it is not thought that the lead concentration detected was associated with a petroleum release.

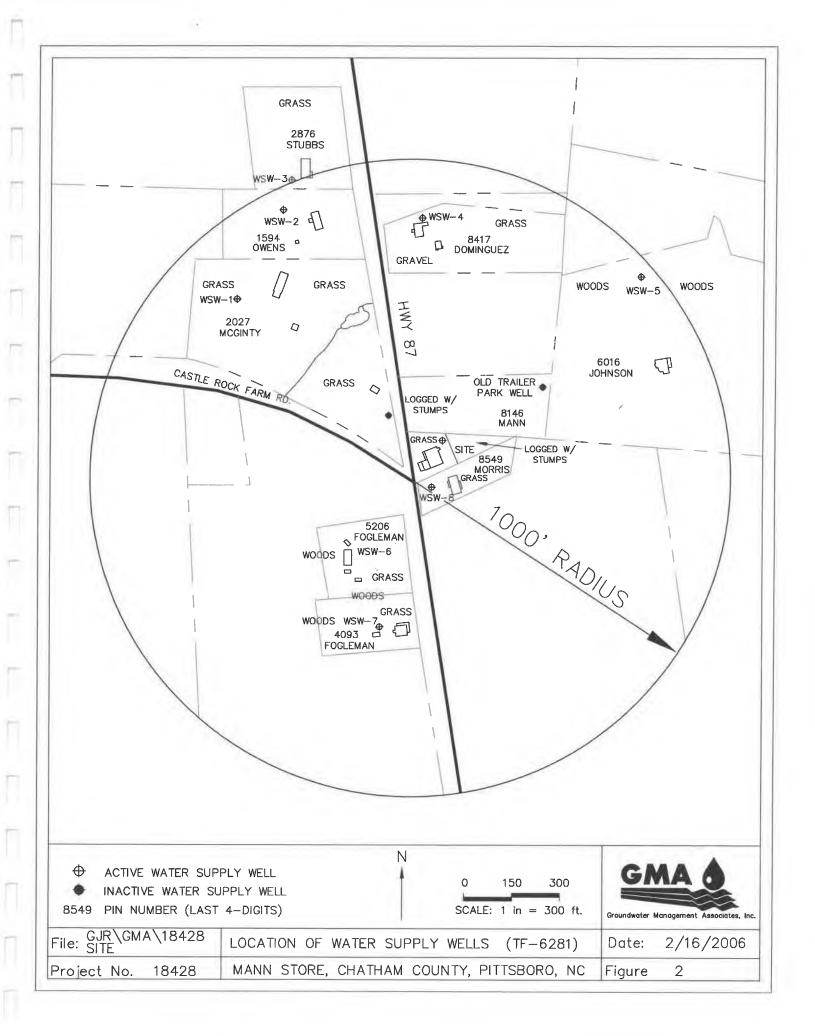
Based on the detectable concentrations of lead (WSW-1) and volatile organic compounds (WSW-8) in water-supply wells surrounding the Mann Store site, GMA makes the following recommendations:

- The State Toxicologist should evaluate the analytical data for samples collected on January 3, 2006, from wells WSW-1 and WSW-8 to determine appropriate well use.
- All at-risk water-supply wells in the area should be monitored on a regular basis.
- The nature and concentrations of source-area contaminants at the Mann Store site should be investigated to determine if remediation is feasible.

Please contact Jay Holley or me at (252) 758-3310 or by email if you have any questions or comments.

Sincerely, Groundwater Management Associates, Inc.


> Appendix I Appendix II Appendix III


Caroline M. Loop, PhD, PG Hydrogeologist Attachments: Figures Tables

JKH/GMA/18428/WSWreport-0206.doc

FIGURES

TABLES

D I		ittsboro, Chatham Con		
Parcel #	PIN Number	Physical Site Address	Property Owner Mailing Address	WSW Designation
1	9724-58-2027	180 Castle Rock Farm Rd Pittsboro NC 27312	Herbert and Kimberly McGinty 180 Castle Rock Farm Rd Pittsboro NC 27312	WSW-1 Sampled 1/3/06
2	9724-58-1594	7239 NC 87 N Pittsboro NC 27312	Michael and Sharon Owens 4716 Greenhill Rd Snow Camp NC 27349	WSW-2
3	9724-58-2876	7267 NC 87 N Pittsboro NC 27312	Donald and Jean Stubbs 7267 NC 87 N Pittsboro NC 27312	WSW-3
4	9724-58-8417	NC 87 N Pittsboro NC 27312	David and Kelly Dominguez PO Box 201 Pittsboro NC 27312	WSW-4 Sampled 1/3/06
5	9724-68-6016	7192 NC 87 N Pittsboro NC 27312	Susan Johnson 7192 NC 87 N Pittsboro NC 27312	WSW-5
6	9724-57-5206	6989 NC 87 N Pittsboro NC 27312	Sandra Fogleman 6941 NC 87 N Pittsboro NC 27312	WSW-6
7	9724-57-4093	6941 NC 87 N Pittsboro NC 27312	Sandra Fogleman 6941 NC 87 N Pittsboro NC 27312	WSW-7 Sampled 1/3/06
8	9724-57-8549	7042 NC 87 N Pittsboro NC 27312	Clarence and Irene Morris 713 Pittsboro Goldston Rd Pittsboro NC 27312	WSW-8 Sampled 1/3/06

 Table 1. Water-Supply Well Information for Properties within 1,000 Feet of the Site Mann Store, Pittsboro, Chatham County (TF-6281)

	Concent	ntrations in	microgran	Concentrations in micrograms per liter (ug/L) or parts per billion (ppb)	L) or parts	per billion (1	(qdd		A LAND
	NCAC		A, Subchap	Title 15A, Subchapter 2L, Groundwater Quality Standards	Iwater Qual	lity Standary	ds		
		The Collins	appear i	appear in (), where applicable	dicable				
Location	Date	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	EDB	IPE	Lead
		(1) ¹ ,	(1000)	^w (29)	(230).	(200)	(0.0004)	(10)	(15)
McGinty (parcel #1)	12/15/2004	<0.50	<0.50	<0.50	<1.50	<0.50	<0.02	<0.50	1.3J
(formerly Burch)	1/3/2006	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	18
Dominguez (parcel #4) 12/15/2004	12/15/2004	<0.50	<0.50	<0.50	<1.50	<0.50	<0.02	<0.50	1.3J
	1/3/2006	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<5.0
Johnson (parcel #5)	12/15/2004	<0.50	<0.50	<0.50	<1.50	<0.50	<0.02	<0.50	15
Fogelman (parcel #7)	12/15/2004	<0.50	<0.50	<0.50	<1.50	<0.50	<0.02	<0.50	3.0J
	1/3/2006	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<5.0
Morris (parcel #8)	12/15/2004	5.9	<0.50	<0.50	<1.50	6.2	<0.02	13	2.0J
	1/3/2006	4.4	<0.50	<0.50	<1.5	4.6	<0.50	13	<5.0
Old Trailer Well	12/15/2004	<0.50	<0.50	<0.50	<1.50	<0.50	<0.02	<0.50	140
MTBE = methyl tert-butyl ether	I ether	J = the analy	te was posit	the analyte was positively identified but the value is estimated below the reporting limit.	but the value	is estimated	I below the re	eporting lim	it.

Mann Store, Pittsboro, Chatham County (TF-6281) Table 2. Analytical Results of Water Supply Well Samples

Π

Π

Π

7

1

1

1

7

" , D ١,

IPE = isopropyl etherEDB = 1,2-dibromoethane

APPENDIX I

n

Π

PHOTOGRAPHS OF THE ADJACENT PROPERTY NORTH OF THE MANN STORE

North side of Mann Store and edge of the undeveloped property to the north.

Undeveloped property to the north of the Mann Store, facing east.

Undeveloped property to the north of the Mann Store, looking north along Highway 87.

APPENDIX II

f

COPY OF FIELD NOTES FROM 1/3/06

Cand? Sa molel Mann he Can ala /N 37 20 fit-18428 シーナロ 5 25--919-1542-3375 0 7 246 my. STORE MMM Jessica 2 PL MANN 0 PHOPEN-M-Riv 3 /eushm ATA/ 6 CUPALT -1-3-06 mare Ò Lomme Pres manage Owne a and 2 A toto 700 'IN mile of they 87 on durk nod. (partily of) ÷., around eiden 17:30 180 Castle Carle Roman 21 hard retried and truel Tourne get woler Planuar bullo Not Sampledo 0.2 Thiller Park Well - Well NSW-5 7192 NC Hum 87N NFB with 2405 28: 31 F- W2W 18428 MANN STORE 17:10 7236 Hund 87N SUNUS SON'S Electric con a H. Frights get well hower tailed. unelle to gourte Renter games a deer campo Stopped oumers are wei contact them woter -3-06 WSW-8 t-msm 7-1181 1-msm Otto and Loog L 30

APPENDIX III

COPY OF LABORATORY REPORT AND CHAIN-OF-CUSTODY FORM

1

Case Narrative

Date: 01/16/06

Company: DENR Division of Waste Management Contact: c/o GMA/James Holley Address: 2025-E Eastgate Drive Greenville, NC 27858 Client Project ID: 18428 Client Project Name or No: FTF #6281 Prism COC Group No: G0106073 Collection Date(s): 01/03/06 Lab Submittal Date: 01/04/06

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 20 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A Key Reference for the data qualifiers appears at the bottom of this page. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

P

Please call if you have any questions relating to this analytical report.

Data Reviewed by: Robbi A. Jones Signature: 11º Review Date: 01/16/06

oject manager:	Angela D. Overc	ash \land
Signature:		
Approval Date:	01/16/06	1
Approval Date:	01/16/06	1

Data Qualifier Key Reference:

- #: Result outside of QC Limits
- B: Compound also detected in the method blank
- DO: Compound diluted out.
 - E: Estimated concentration, calibration range exceeded
- J: The analyte was positively identified but the value is estimated below the reporting limit
- JH: Estimated concentration with a high bias
- JL: Estimated concentration with a low bias
- M: A matrix effect is present
- T: Tentatively identified compound. The concentration is estimated.

Notes: This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

> 449 Springbrook Road, P. O. Box 240543, Charlotte, NC 28224-0403 Phone: 704/529-6364 Toll Free: 800/529-6364 Fax: 704/525-0409

F:\common\casenarrative Revised 8/25/05

01/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858

Project ID:	18428
Project No.:	FTF# 6281
Sample Matrix:	Water

Client Sample ID:	WSW-1	
Prism Sample ID:	138610	
COC Group:	G0106073	
Time Collected:	01/03/06	17:30
Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Volatile Organic Compounds by	GC/MS								
1,1,1,2-Tetrachloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1,1-Trichloroethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1,2,2-Tetrachloroethane	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1,2-Trichloroethane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1-Dichloroethane	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1-Dichloroethene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,1-Dichloropropene	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,2,3-Trichlorobenzene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,2,3-Trichloropropane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,2,4-Trichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,2,4-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
1,2-Dibromo-3-chloropropane	BRL	µg/L	5.0	0.71	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
I,2-Dibromoethane (EDB)	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
I,2-Dichlorobenzene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
,2-Dichloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	
,2-Dichloropropane	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
,3,5-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 21:39	kcampigotto	
,3-Dichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	
,3-Dichloropropane	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 21:39	kcampigotto	
,4-Dichlorobenzene	BRL	µg/L	0.50	0.11	1	SM6210 D		kcampigotto	
,2-Dichloropropane	BRL	µg/L	0.50	0.20	1	SM6210 D		kcampigotto	
-Chlorotoluene	BRL	µg/L	0.50	0.10	1	SM6210 D		kcampigotto	
-Chlorotoluene	BRL	µg/L	0.50	0.13	1	SM6210 D		kcampigotto	
enzene	BRL	µg/L	0.50	0.13	1	SM6210 D		kcampigotto	
romobenzene	BRL	µg/L	0.50	0.12	1	SM6210 D		kcampigotto	
romochloromethane	BRL	µg/L	0.50	0.24	1	SM6210 D		kcampigotto	
romodichloromethane	BRL	µg/L	0.50	0.15		SM6210 D		kcampigotto	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858

Project ID: 18428 Project No.: FTF# 6281 Sample Matrix: Water

Client Sample ID:	WSW-1	
Prism Sample ID:	138610	
COC Group:	G0106073	
Time Collected:	01/03/06	17:30
Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bromoform	BRL	µg/L	0.50	0.22	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Bromomethane	BRL	µg/L	0.50	0.39	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Carbon tetrachloride	BRL	μg/L	0.50	0.16	1	SM6210 D	01/12/06 21:39	kcampigotto	Q1174
Chlorobenzene	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Chlorodibromomethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Chloroethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Chloroform	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Chloromethane	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
cis-1,2-Dichloroethene	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Dibromomethane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Dichlorodifluoromethane	BRL	µg/L	5.0	0.24	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
thylbenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
texachlorobutadiene	BRL	µg/L	0.50	0.28	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
sopropyl ether (IPE)	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
sopropylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
n,p-Xylenes	BRL	µg/L	1.0	0.19	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
fethyl t-butyl ether (MTBE)	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
lethylene chloride	BRL	µg/L	5.0	0.13	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
-Butylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
-Propylbenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
aphthalene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Xylene	BRL	µg/L	0.50	0.080	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Isopropyltoluene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	
ec-Butylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D		kcampigotto	
tyrene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
rt-Butylbenzene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	
etrachloroethene	BRL	µg/L	0.50	0.21	1	SM6210 D		kcampigotto	
bluene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858	Project ID: Project No.: Sample Matrix:	18428 FTF# 6281 Water	Client Sample ID: Prism Sample ID: COC Group: Time Collected: Time Submitted:	138610 G0106073 01/03/06	3 17:30 15:10	
				0 110 1100	10.10	

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
trans-1,2-Dichloroethene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Trichloroethene	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Trichlorofluoromethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749
Vinyl chloride	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 21:39	kcampigotto	Q11749

					Surrogat	te	% Reco	overy	Con	trol Limits
					Toluene-	d8	1(05	(60 - 140
					Dibromof	luoromethane	10	02	(60 - 140
					Bromoflue	orobenzene	1()5	(60 - 140
Metals by ICP										
Lead		0.018	mg/L	0.0050 0.0011	1	6010B	01/06/06 19	9:36 m	campbell	Q11616
	Sample Preparation:			50 mL /	50 mL	SM3030 C	01/05/06 1	1:55 cm	guyen	P14334

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

01/16/06

17:10

15:10

DENR Division of Waste Management	Project ID:	18428	Client Sample ID:	WSW-4
Attn: James Holley	Project No.:	FTF# 6281	Prism Sample ID:	
c/o GMA	Sample Matrix:	Water	COC Group:	G0106073
2025-E Eastgate Dr.				01/03/06
Greenville, NC 27858			Time Submitted:	01/04/06

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Volatile Organic Compounds by G	C/MS								
1,1,1,2-Tetrachloroethane	BRL	μg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1,1-Trichloroethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1,2,2-Tetrachloroethane	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1,2-Trichloroethane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1-Dichloroethane	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1-Dichloroethene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,1-Dichloropropene	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2,3-Trichlorobenzene	BRL	μg/L	0.50	0.090	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2,3-Trichloropropane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2,4-Trichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2,4-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2-Dibromo-3-chloropropane	BRL	µg/L	5.0	0.71	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2-Dibromoethane (EDB)	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2-Dichlorobenzene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2-Dichloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
1,2-Dichloropropane	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
,3,5-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
,3-Dichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
,3-Dichloropropane	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
,4-Dichlorobenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
,2-Dichloropropane	BRL	µg/Ľ	0.50	0.20	1	SM6210 D		kcampigotto	
-Chlorotoluene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
-Chlorotoluene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:04		
enzene	BRL	µg/L	0.50	0.13	1	SM6210 D		kcampigotto	
romobenzene	BRL	µg/L	0.50	0.12	1	SM6210 D		kcampigotto	
romochloromethane	BRL	µg/L	0.50	0.24	1	SM6210 D		kcampigotto	
romodichloromethane	BRL	μg/L	0.50	0.15	1	SM6210 D	01/12/06 22:04		

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory	Report
	01/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858

Project ID:18428Project No.:FTF# 6281Sample Matrix:Water

Client Sample ID:	WSW-4	
Prism Sample ID:	138611	
COC Group:	G0106073	
Time Collected:	01/03/06	17:10
Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bromoform	BRL	µg/L	0.50	0.22	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Bromomethane	BRL	µg/L	0.50	0.39	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Carbon tetrachloride	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Chlorobenzene	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Chlorodibromomethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Chloroethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Chloroform	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Chloromethane	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
sis-1,2-Dichloroethene	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Dibromomethane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Dichlorodifluoromethane	BRL	µg/L	5.0	0.24	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Ethylbenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
lexachlorobutadiene	BRL	µg/L	0.50	0.28	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
sopropyl ether (IPE)	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
sopropylbenzene	BRL	. µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
n,p-Xylenes	BRL	µg/L	1.0	0.19	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
lethyl t-butyl ether (MTBE)	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
lethylene chloride	BRL	µg/L	5.0	0.13	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Butylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Propylbenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
aphthalene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Xylene	BRL	µg/L	0.50	0.080	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Isopropyltoluene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
ec-Butylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
yrene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
rt-Butylbenzene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	
etrachloroethene	BRL	µg/L	0.50	0.21	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
bluene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management	Project ID:	18428	Client Sample ID:	WSW-4	
Attn: James Holley	Project No .:	FTF# 6281	Prism Sample ID:	138611	
c/o GMA	Sample Matrix:	Water	COC Group:	G0106073	
2025-E Eastgate Dr.			Time Collected:	01/03/06	17:10
Greenville, NC 27858			Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
trans-1,2-Dichloroethene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Trichloroethene	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Trichlorofluoromethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749
Vinyl chloride	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:04	kcampigotto	Q11749

					Surrogat	e	% Re	covery	Cor	trol Limits
					Toluene-o	d8		104		60 - 140
					Dibromof	luoromethane		101		60 - 140
					Bromoflu	orobenzene		103		60 - 140
<u>Metals by ICP</u> Lead		BRL	mg/L	0.0050 0.0011	1	6010B	01/06/06	19:57	mcampbell	Q11616
	Sample Preparation:			50 mL /	50 mL	SM3030 C	01/05/06	11:55	cnguyen	P14334

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

01/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858		Project ID: Project No.: Sample Matrix:		18428 FTF# 6281 Water		Pris CO Tim	ent Sample ID: sm Sample ID: C Group: ne Collected: ne Submitted:	138612 G0106073 01/03/06	16:55 15:10	
Parameter	(Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	t Batch ID

							Batorrinto	ID.
Volatile Organic Compounds by	GC/MS							
1,1,1,2-Tetrachloroethane	BRL	μg/L	0.50	0,10	1	SM6210 D	01/12/06 22:29 kcampigotto	Q1174
1,1,1-Trichloroethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:29 kcampigotto	Q1174
1,1,2,2-Tetrachloroethane	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:29 kcampigotto	Q1174
1,1,2-Trichloroethane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,1-Dichloroethane	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,1-Dichloroethene	BRL	μg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,1-Dichloropropene	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,2,3-Trichlorobenzene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,2,3-Trichloropropane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,2,4-Trichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
1,2,4-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dibromo-3-chloropropane	BRL	µg/L	5.0	0.71	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dibromoethane (EDB)	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dichlorobenzene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dichloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dichloropropane	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,3,5-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,3-Dichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,3-Dichloropropane	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,4-Dichlorobenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:29 kcampigotto	Q11749
,2-Dichloropropane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 22:29 kcampigotto (Q11749
-Chlorotoluene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29 kcampigotto (Q11749
Chlorotoluene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29 kcampigotto (Q11749
enzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29 kcampigotto (211749
romobenzene	BRL	µg/L	0.50	0.12	1	SM6210 D		211749
romochloromethane	BRL	µg/L	0.50	0.24	1	SM6210 D	01/12/06 22:29 kcampigotto (211749
romodichloromethane	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:29 kcampigotto (

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858 Project ID: 18428 Project No.: FTF# 6281 Sample Matrix: Water

Client Sample ID:	WSW-7	
Prism Sample ID:	138612	
COC Group:	G0106073	
Time Collected:	01/03/06	16:55
Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bromoform	BRL	µg/L	0.50	0.22	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Bromomethane	BRL	µg/L	0.50	0.39	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Carbon tetrachloride	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Chlorobenzene	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Chlorodibromomethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Chloroethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Chloroform	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Chloromethane	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
cis-1,2-Dichloroethene	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Dibromomethane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Dichlorodifluoromethane	BRL	µg/L	5.0	0.24	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Ethylbenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Hexachlorobutadiene	BRL	µg/L	0.50	0.28	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
sopropyl ether (IPE)	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
sopropylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
n,p-Xylenes	BRL	µg/L	1.0	0.19	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Methyl t-butyl ether (MTBE)	BRL	μg/L	0.50	0.18	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Methylene chloride	BRL	µg/L	5.0	0.13	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
n-Butylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
-Propylbenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
laphthalene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
-Xylene	BRL	µg/L	0.50	0.080	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
-Isopropyitoluene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
ec-Butylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
tyrene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
ert-Butylbenzene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
etrachloroethene	BRL	µg/L	0.50	0.21	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
oluene .	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management Project ID: 18428 Client Sample ID: WSW-7 Attn: James Holley FTF# 6281 Project No .: Prism Sample ID: 138612 c/o GMA Sample Matrix: Water COC Group: G0106073 2025-E Eastgate Dr. Time Collected: 01/03/06 16:55 Greenville, NC 27858 Time Submitted: 01/04/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
trans-1,2-Dichloroethene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Trichloroethene	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Trichlorofluoromethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749
Vinyl chloride	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:29	kcampigotto	Q11749

					Surrogat	e	% Re	covery	Cor	ntrol Limits
					Toluene-	18		94		60 - 140
					Dibromof	luoromethane		92		60 - 140
					Bromoflu	probenzene		93		60 - 140
<u>Metals by ICP</u> Lead		BRL	mg/L	0.0050 0.0011	1	6010B	01/06/06	20:04	mcampbell	Q11616
	Sample Preparation:			50 mL /	50 mL	SM3030 C	01/05/06			P14334

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

01/16/06

DENR Division of Waste Management	Project ID:	18428	Client Sample ID:	WSW-8	
Attn: James Holley	Project No .:	FTF# 6281	Prism Sample ID:		
c/o GMA	Sample Matrix:	Water	COC Group:	G0106073	
2025-E Eastgate Dr.			Time Collected:	01/03/06	15:45
Greenville, NC 27858			Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Volatile Organic Compounds by G	C/MS								
1,1,1,2-Tetrachloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1,1-Trichloroethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1,2,2-Tetrachloroethane	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1,2-Trichloroethane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1-Dichloroethane	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1-Dichloroethene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,1-Dichloropropene	BRL	µg/L	0.50	0.23	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2,3-Trichlorobenzene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2,3-Trichloropropane	BRL	µg/L	0.50	0.25	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2,4-Trichlorobenzene	BRL	µg/Ľ	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2,4-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2-Dibromo-3-chloropropane	BRL	µg/L	5.0	0.71	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2-Dibromoethane (EDB)	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2-Dichlorobenzene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2-Dichloroethane	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,2-Dichloropropane	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,3,5-Trimethylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,3-Dichlorobenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
1,3-Dichloropropane	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
I,4-Dichlorobenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
2,2-Dichloropropane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
2-Chlorotoluene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
-Chlorotoluene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Benzene	4.4	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Bromobenzene	BRL	µg/L	0.50	0.12	1	SM6210 D		kcampigotto	
romochloromethane	BRL	µg/L	0.50	0.24	1	SM6210 D		kcampigotto	
romodichloromethane	BRL	μg/L	0.50	0.15	1	SM6210 D		kcampigotto	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858

Project ID: 18428 Project No.: FTF# 6281 Sample Matrix: Water

Client Sample ID:	WSW-8	
Prism Sample ID:	138613	
COC Group:	G0106073	
Time Collected:	01/03/06	15:45
Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bromoform	BRL	µg/L	0.50	0.22	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Bromomethane	BRL	µg/L	0.50	0.39	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Carbon tetrachloride	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Chlorobenzene	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Chlorodibromomethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Chloroethane	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Chloroform	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Chloromethane	BRL	µg/L	0.50	0.060	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
cis-1,2-Dichloroethene	BRL	µg/L	0.50	0.15	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Dibromomethane	BRL	µg/L	0.50	0.20	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Dichlorodifluoromethane	BRL	µg/L	5.0	0.24	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Ethylbenzene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Hexachlorobutadiene	BRL	µg/L	0.50	0.28	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Isopropyl ether (IPE)	13	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Isopropylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
m,p-Xylenes	BRL	µg/L	1.0	0.19	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Methyl t-butyl ether (MTBE)	4.6	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Methylene chloride	BRL	µg/L	5.0	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
n-Butylbenzene	BRL	µg/L	0.50	0.12	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
n-Propylbenzene	BRL	µg/L	0.50	0.11	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Naphthalene	BRL	µg/L	0.50	0.10	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
o-Xylene	BRL	µg/L	0.50	0.080	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
o-Isopropyltoluene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
ec-Butylbenzene	BRL	µg/L	0.50	0.13	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Styrene	BRL	µg/L	0.50	0.12	1	SM6210 D		kcampigotto	
ert-Butylbenzene	BRL	µg/L	0.50	0.090	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
etrachloroethene	BRL	µg/L	0.50	0.21	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
oluene	BRL	µg/L	0.50	0.090	1	SM6210 D		kcampigotto	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

DENR Division of Waste Management	Project ID:	18428	Client Sample ID:	WSW-8	
Attn: James Holley	Project No.:	FTF# 6281	Prism Sample ID:	138613	
c/o GMA	Sample Matrix:	Water	COC Group:	G0106073	
2025-E Eastgate Dr.			Time Collected:	01/03/06	15:45
Greenville, NC 27858			Time Submitted:	01/04/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
trans-1,2-Dichloroethene	BRL	µg/L	0.50	0.17	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Trichloroethene	BRL	µg/L	0.50	0.16	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Trichlorofluoromethane	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749
Vinyl chloride	BRL	µg/L	0.50	0.18	1	SM6210 D	01/12/06 22:54	kcampigotto	Q11749

				Surrogat	e	% Re	covery	Con	trol Limits
				Toluene-o	18		97		60 - 140
				Dibromofi	luoromethane		96		60 - 140
				Bromofluc	orobenzene		98		60 - 140
<u>Metals by ICP</u> Lead	BRL	mg/L	0.0050 0.0011	1	6010B	01/06/06	20:11	mcampbell	Q11616

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858		roject ID: roject No.:		428 F# 6281			Group Ni Time Sut		G010607 1/4/06	73 15:10
Metals by ICP, method 6010B										
Method Blank	Result	RL	Control Limit	Units				QC Bat	ch	
Lead	0.0034 #	0.005	<0.0025	5 mg/L				Q116	516	
Laboratory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Bate	h	
Lead	0.261	0.25	mg/L	104	80 - 120			Q116	16	
Matrix Spike Sample ID:	Result ,	Spike Amount	Units	Recovery %	Recovery Range %			QC Batc	h	
138610 Lead	0.250	0.25	mg/L	93	75 - 125			Q116	16	
Matrix Spike Duplicate Sample ID:	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch	'n	
138610 Lead	0.261	0.25	mg/L	97	75 - 125	4	0 - 20	Q116	16	

Greenville, NC 27858

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert. No. 37735

Level II QC Report

COC Group Number: G0106073 Date/Time Submitted: 1/4/06 1/16/06

15:10

DENR Division of Waste Management	Project ID:	18428
Attn: James Holley	Project No.:	FTF# 6281
c/o GMA	-	
2025-E Eastgate Dr.		

Volatile Organic Compounds by GC/MS, method SM6210 D

wethod	d Blank	Result	RL	Control Limit	Units	QC Batch ID
	1,1,1,2-Tetrachloroethane	ND	0.5	<0.25	µg/L	Q11749
	1,1,1-Trichloroethane	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,1,2,2-Tetrachloroethane	ND	0.5	<0.25	μg/L	Q11749 Q11749
	1,1,2-Trichloroethane	ND	0.5	<0.25	µg/L:	Q11749 Q11749
	1,1-Dichloroethane	ND	0.5	<0.25	µg/L	Q11749
	1,1-Dichloroethene	ND	0.5	<0.25	μg/L	Q11749 Q11749
	1,1-Dichloropropene	ND	0.5	<0.25	µg/L	
	1,2,3-Trichlorobenzene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2,3-Trichloropropane	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2,4-Trichloroberizene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2,4-Trimethylbenzene	ND	0.5	<0.25	μg/L	Q11749 Q11749
	1,2-Dibromo-3-chloropropane	ND	5	<2.5	µg/L	Q11749 Q11749
	1,2-Dibromoethane (EDB)	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2-Dichlorobenzene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2-Dichloroethane	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,2-Dichloropropane	ND	0.5	<0.25	μg/L	Q11749 Q11749
	1,3,5-Trimethylbenzene	ND	0.5	<0.25	μg/L	Q11749 Q11749
	1,3-Dichlorobenzene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,3-Dichloropropane	ND	0.5	<0.25	µg/L	Q11749 Q11749
	1,4-Dichlorobenzene	ND	0.5	<0.25	μg/ί.	Q11749
	2,2-Dichloropropane	ND	0.5	<0.25	μg/L	Q11749
	2-Chlorotoluene	ND	0.5	<0.25	µg/L	Q11749
	4-Chlorotoluene	ND	0.5	<0.25		Q11749
	Benzene	ND	0.5	<0.25	µg/L	Q11749
	Bromobenzene	ND	0.5	<0.25	µg/L	Q11749
	Bromochloromethane	ND	0.5	<0.25	µg/L	Q11749
	Bromodichloromethane	ND	0.5	<0.25	µg/L	Q11749
	Bromoform	ND	0.5	<0.25	µg/L	Q11749
	Bromomethane	ND	0.5	<0.25	µg/L	Q11749
	Carbon tetrachloride	ND	0.5	<0.25	µg/L	Q11749
	Chlorobenzene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	Chlorodibromomethane	ND	0.5	<0.25	µg/L	Q11749
	Chloroethane	ND	0.5	<0.25	µg/L	Q11749
	Chloroform	ND	0.5	<0.25	µg/L	Q11749
	Chloromethane	ND	0.5	<0.25	µg/L	Q11749 Q11749
	cis-1,2-Dichloroethene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	Dibromomethane	ND	0.5	<0.25	µg/L	Q11749
	Dichlorodifluoromethane	ND	5	<2.5	µg/L	Q11749
	Ethylbenzene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	Hexachlorobutadiene	ND	0.5	<0.25	µg/L	Q11749 Q11749
	Isopropyl ether (IPE)	ND	0.5	<0.25	µg/L	Q11749
	Isopropylbenzene	ND	0.5	<0.25	μg/L	Q11749 Q11749

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA	Project ID: Project No.:	18428 FTF# 6281	COC Group Number: Date/Time Submitted:	3 15:10
2025-E Eastgate Dr.				
Greenville, NC 27858				

Method Blank

Result	RL	Control Limit	Units	QC Batch ID
ND	1	<0.5	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	5	<2.5	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	μg/L	Q11749
ND	0.5	<0.25	μg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
ND	0.5	<0.25	µg/L	Q11749
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1 ND 0.5 ND 5 ND 0.5 ND 0.5	Result RL Limit ND 1 <0.5	Result RL Limit Units ND 1 <0.5

Laboratory Control Sample

Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch
1,1,1,2-Tetrachloroethane	15.8	20	µg/L	79	60 - 140	Q11749
1,1,1-Trichloroethane	15.9	20	µg/L	80	60 - 140	Q11749
1,1,2,2-Tetrachloroethane	17.1	20	µg/L	85	60 - 140	Q11749
1,1,2-Trichloroethane	19.2	20	µg/L	96	60 - 140	Q11749
1,1-Dichloroethane	18.6	20	µg/L	93	60 - 140	Q11749
1,1-Dichloroethene	18.5	20	µg/L	92	60 - 140	Q11749
1,1-Dichloropropene	17.9	20	µg/L	90	60 - 140	Q11749
1,2,3-Trichlorobenzene	17.5	20	µg/L	87	60 - 140	Q11749
1,2,3-Trichloropropane	20.8	20	µg/L	104	60 - 140	Q11749
1,2,4-Trichlorobenzene	19.0	20	µg/L	95	60 - 140	Q11749
1,2,4-Trimethylbenzene	20.3	20	µg/L	101	60 - 140	Q11749
1,2-Dibromo-3-chloropropane	17.7	20	µg/L	88	60 - 140	Q11749
1,2-Dibromoethane (EDB)	16.8	20	µg/L	84	60 - 140	Q11749
1,2-Dichlorobenzene	19.1	20	µg/L	96	60 - 140	Q11749
1,2-Dichloroethane	18.8	20	µg/L	94	60 - 140	Q11749
1,2-Dichloropropane	19.5	20	µg/L	97	60 - 140	Q11749
1,3,5-Trimethylbenzene	20.6	20	µg/L	103	60 - 140	Q11749
1,3-Dichlorobenzene	19.4	20	µg/L	97	60 - 140	Q11749
1,3-Dichloropropane	18.2	20	µg/L	91	60 - 140	Q11749
1,4-Dichlorobenzene	19.5	20	µg/L	98	60 - 140	Q11749
2,2-Dichloropropane	17.5	20	µg/L	87	60 - 140	Q11749
2-Chlorotoluene	20.4	20	µg/L	102	60 - 140	Q11749
4-Chlorotoluene	20.3	20	µg/L	102	60 - 140	Q11749

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA	Project ID: Project No.:	18428 FTF# 6281	COC Group Number: G0106073 Date/Time Submitted: 1/4/06 15:10
2025-E Eastgate Dr.			
Greenville, NC 27858			

Laboratory Control Sample

Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch
Benzene	18.3	20	µg/L	91	60 - 140	Q11749
Bromobenzene	20.3	20	µg/L	102	60 - 140	Q11749
Bromochloromethane	18.0	20	µg/L	90	60 - 140	Q11749
Bromodichloromethane	17.6	20	µg/L	88	60 - 140	Q11749
Bromoform	15.5	20	µg/L	78	60 - 140	Q11749
Bromomethane	19.9	20	µg/L	100	60 - 140	Q11749
Carbon tetrachloride	18.1	20	µg/L	90	60 - 140	Q11749
Chlorobenzene	17.9	20	µg/L	90	60 - 140	Q11749
Chlorodibromomethane	16.9	20	µg/L	85	60 - 140	Q11749
Chloroethane	18.9	20	µg/L	95	60 - 140	Q11749
Chloroform	19.1	20	µg/L	95	60 - 140	Q11749
Chloromethane	16.8	20	µg/L	84	60 - 140	Q11749
cis-1,2-Dichloroethene	19.1	20	µg/L	95	60 - 140	Q11749
Dibromomethane	19.1	20	µg/L	95	60 - 140	Q11749
Dichlorodifluoromethane	13.2	20	µg/L	66	60 - 140	Q11749
Ethylbenzene	18.0	20	µg/L	90	60 - 140	Q11749
-lexachlorobutadiene	18.1	20	µg/L	90	60 - 140	Q11749
sopropyl ether (IPE)	19.7	20	µg/L	98	60 - 140	Q11749
sopropylbenzene	21.3	20	µg/L	107	60 - 140	Q11749
n,p-Xylenes	41.2	40	µg/L	103	60 - 140	Q11749
Methyl t-butyl ether (MTBE)	17.2	20	µg/L	86	60 - 140	Q11749
vlethylene chloride	18.2	20	µg/L	91	60 - 140	Q11749
n-Butylbenzene	21.6	20	µg/L	108	60 - 140	Q11749
n-Propylbenzene	21.2	20	µg/L	106	60 - 140	Q11749
laphthalene	17.7	20	µg/L	89	60 - 140	Q11749
o-Xylene	18.3	20	µg/L	92	60 - 140	Q11749
-lsopropyltoluene	20.9	20	µg/L	105	60 - 140	Q11749
ec-Butylbenzene	20.3	20	µg/L	101	60 - 140	Q11749
Styrene	17.6	20	µg/L	88	60 - 140	Q11749
ert-Butylbenzene	20.2	20	µg/L	101	60 - 140	Q11749
etrachloroethene	16.3	20	µg/L	82	60 - 140	Q11749
oluene	18.4	20	µg/L	92	60 - 140	Q11749
ans-1,2-Dichloroethene	17.9	20	µg/L	89	60 - 140	Q11749
richloroethene	17.3	20	µg/L	86	60 - 140	Q11749
richlorofluoromethane	19.3	20	µg/L	97	60 - 140	Q11749
'inyl chloride	17.4	20	µg/L	87	60 - 140	Q11749

atrix Spil	ke					Recovery	
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %	QC Batch ID
138896	1,1,1,2-Tetrachloroethane	70.400	80	µg/L	88	60 - 140	Q11749
	1,1,1-Trichloroethane	71.480	80	µg/L	89	60 - 140	Q11749
	1,1,2,2-Tetrachloroethane	82.160	80	µg/L	103	60 - 140	Q11749
	1,1,2-Trichloroethane	80.720	80	µg/L	101	60 - 140	Q11749
	1,1-Dichloroethane	81.080	80	µg/L	101	60 - 140	Q11749

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA	Project ID: Project No.:	18428 FTF# 6281	COC Group Number: Date/Time Submitted:	3 15:10
2025-E Eastgate Dr. Greenville, NC 27858				

Matrix Spik	e		Spike		Dessurer	Recovery Range	QC Batch
Sample ID:		Result	Amount	Units	Recovery %	%	ID
	1,1-Dichloroethene	81.000	80	µg/L	101	60 - 140	Q11749
	1,1-Dichloropropene	79.400	80	µg/L	99	60 - 140	Q11749
	1,2,3-Trichlorobenzene	77.080	80	µg/L	96	60 - 140	Q11749
	1,2,3-Trichloropropane	91.080	80	µg/L	114	60 - 140	Q11749
	1,2,4-Trichlorobenzene	84.720	80	µg/L	106	60 - 140	Q11749
	1,2,4-Trimethylbenzene	87.720	80	µg/L	110	60 - 140	Q11749
	1,2-Dibromo-3-chloropropane	81.720	80	µg/L	102	60 - 140	Q11749
	1,2-Dibromoethane (EDB)	72.520	80	µg/L	91	60 - 140	Q11749
	1,2-Dichlorobenzene	82.720	80	µg/L	103	60 - 140	Q11749
	1,2-Dichloroethane	77.920	80	µg/L	97	60 - 140	Q11749
	1,2-Dichloropropane	83.400	80	µg/L	104	60 - 140	Q11749
	1,3,5-Trimethylbenzene	92.760	80	µg/L	116	60 - 140	Q11749
	1,3-Dichlorobenzene	84.640	80	µg/L	106	60 - 140	Q11749
	1,3-Dichloropropane	76.040	80	µg/L	95	60 - 140	Q11749
	1,4-Dichlorobenzene	84.040	80	µg/L	105	60 - 140	Q11749
	2,2-Dichloropropane	87.280	80	µg/L	109	60 - 140	Q11749
	2-Chlorotoluene	91.840	80	µg/L	115	60 - 140	Q11749
	4-Chlorotoluene	87.280	80	µg/L	109	60 - 140	Q11749
	Benzene	78.640	80	µg/L	98	60 - 140	Q11749
	Bromobenzene	85.360	80	µg/L	107	60 - 140	Q11749
	Bromochloromethane	77.040	80	µg/L	96	60 - 140	Q11749
	Bromodichloromethane	78.560	80	µg/L	98	60 - 140	Q11749
	Bromoform	68.400	80	µg/L	86	60 - 140	Q11749
	Bromomethane	83.320	80	µg/L	104	60 - 140	Q11749
	Carbon tetrachloride	85.840	80	µg/L	107	60 - 140	Q11749
	Chlorobenzene	75.640	80	µg/L	95	60 - 140	Q11749
	Chlorodibromomethane	73.400	80	µg/L	92	60 - 140	Q11749
	Chloroethane	81.960	80	µg/L	102	60 - 140	Q11749
	Chloroform	80.720	80	µg/L	101	60 - 140	Q11749
	Chloromethane	73.360	80	µg/L	92	60 - 140	Q11749
	cis-1,2-Dichloroethene	79.800	80	µg/L	100	60 - 140	Q11749
	Dibromomethane	78.000	80	µg/L	98	60 - 140	Q11749
i	Dichlorodifluoromethane	57.400	80	µg/L	72	60 - 140	Q11749
	Ethylbenzene	77.040	80	µg/L	96	60 - 140	Q11749
	Hexachlorobutadiene	84.040	80	µg/L	105	60 - 140	Q11749
	sopropyl ether (IPE)	83.720	80	µg/L	105	60 - 140	Q11749
	sopropylbenzene	83.880	80	µg/L	105	60 - 140	Q11749
	n,p-Xylenes	176.320	160	µg/L	110	60 - 140	Q11749
1	Methyl t-butyl ether (MTBE)	74.400	80	µg/L	93	60 - 140	Q11749
1	Vethylene chloride	76.920	80	µg/L	96	60 - 140	Q11749
	n-Butylbenzene	95.160	80	µg/L	119	60 - 140	Q11749
ı	n-Propylbenzene	91.960	80	µg/L	115	60 - 140	Q11749
1	Naphthalene	80.040	80	µg/L	100	60 - 140	Q11749
c	o-Xylene	78.000	80	µg/L	98	60 - 140	Q11749

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert. No. 37735

77.160

74.280

84.800

80

80

80

Level II QC Report

Q11749

Q11749

Q11749

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA 2025-E Eastgate Dr. Greenville, NC 27858		oject ID: oject No.:		3428 FF# 6281		COC Group Number: G0106073 Date/Time Submitted: 1/4/06	15:10
Matrix Spike Sample ID:	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID	
p-lsopropyltoluene	91.680	80	µg/L	115	60 - 140	Q11749	
sec-Butylbenzene	88.720	80	µg/L	111	60 - 140	Q11749	
Styrene	75.520	80	µg/L	94	60 - 140	Q11749	
tert-Butylbenzene	87.800	80	µg/L	110	60 - 140	Q11749	
Tetrachloroethene	70.280	80	µg/L	88	60 - 140	Q11749	
Toluene	79.040	80	µg/L	99	60 - 140	Q11749	

µg/L

µg/L

µg/L

96

93

106

60 - 140

60 - 140

60 - 140

	mentorondoromethane	04.000	80	µg/L	106	60 - 140			Q11749
	Vinyl chloride	76.600	80	μg/L	94	60 - 140			Q11749
Matrix Spi	ike Duplicate					Recovery		RPD	
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch
138896	1,1,1,2-Tetrachloroethane	72.0	80	µg/L	90	60 - 140	2	0 - 20	Q11749
	1,1,1-Trichloroethane	71.2	80	µg/L	89	60 - 140	0	0 - 20	Q11749
	1,1,2,2-Tetrachloroethane	81.0	80	µg/L	101	60 - 140	1	0 - 20	Q11749
	1,1,2-Trichloroethane	79.5	80	µg/L	99	60 - 140	1	0 - 20	Q11749
	1,1-Dichloroethane	78.3	80	µg/L	98	60 - 140	4	0 - 20	Q11749
	1,1-Dichloroethene	75.9	80	µg/L	95	60 - 140	6	0 - 20	Q11749
	1,1-Dichloropropene	75.2	80	µg/L	94	60 - 140	5	0 - 20	Q11749
	1,2,3-Trichlorobenzene	77.6	80	µg/L	97	60 - 140	1	0 - 20	Q11749
	1,2,3-Trichloropropane	91.0	80	µg/L	114	60 - 140	0	0 - 20	Q11749
	1,2,4-Trichlorobenzene	82.3	80	μg/L	103	60 - 140	3	0 - 20	Q11749
	1,2,4-Trimethylbenzene	85.7	80	µg/L	107	60 - 140	2	0 - 20	Q11749
	1,2-Dibromo-3-chloropropane	86.2	80	µg/L	108	60 - 140	5	0 - 20	Q11749
	1,2-Dibromoethane (EDB)	73.2	80	µg/L	92	60 - 140	1	0 - 20	Q11749
	1,2-Dichlorobenzene	82.5	80	µg/L	103	60 - 140	0	0 - 20	Q11749
	1,2-Dichloroethane	77.2	80	µg/L	97	60 - 140	1	0 - 20	Q11749
	1,2-Dichloropropane	82.0	80	µg/L	103	60 - 140	2	0 - 20	Q11749
	1,3,5-Trimethylbenzene	91.0	80	µg/L	114	60 - 140	2	0 - 20	Q11749
	1,3-Dichlorobenzene	83.8	80	μg/L	105	60 - 140	1	0 - 20	Q11749
	1,3-Dichloropropane	76.1	80	µg/L	95	60 - 140	0	0 - 20	Q11749
	1,4-Dichlorobenzene	83.2	80	μg/L	104	60 - 140	1	0 - 20	Q11749
	2,2-Dichloropropane	89.8	80	µg/L	112	60 - 140	3	0 - 20	Q11749
	2-Chlorotoluene	89.0	80	µg/L	111	60 - 140	3	0 - 20	Q11749
	4-Chlorotoluene	85.5	80	µg/L	107	60 - 140	2	0 - 20	Q11749
	Benzene	77.0	80	µg/L	96	60 - 140	2	0 - 20	Q11749
	Bromobenzene	85.0	80	µg/L	106	60 - 140	0	0 - 20	Q11749
	Bromochloromethane	75.1	80	µg/L	94	60 - 140	3	0 - 20	Q11749
	Bromodichloromethane	78.6	80	µg/L	98	60 - 140	0	0 - 20	Q11749
	Bromoform	71.7	80	µg/L	90	60 - 140	5	0 - 20	Q11749
	Bromomethane	84.6	80	µg/L	106	60 - 140	1	0 - 20	Q11749 Q11749
	Carbon tetrachloride	86.8	80	µg/L	109	60 - 140	1	0 - 20	Q11749
	Chlorobenzene	75.3	80	µg/L	94	60 - 140	0	0 - 20	Q11749 Q11749
				r-a-	V-1	00-140	v	0-20	011149

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

72.7

81.0

72.7

Trichlorofluoromethane

Vinyl chloride

80

80

80

µg/L

µg/L

µg/L

91

101

90

60 - 140

60 - 140

60 - 140

2

5

5

0 - 20

0 - 20

0 - 20

Q11749

Q11749

Q11749

Level II QC Report

1/16/06

DENR Division of Waste Management Attn: James Holley c/o GMA	Project ID: Project No.:	COC Group Number: Date/Time Submitted:	3 15:10

2025-E Eastgate Dr. Greenville, NC 27858

Matrix Spike Duplicate Recovery RPD Spike Amount Range Range Recovery RPD QC Batch Sample ID: Result Units % % % D Chlorodibromomethane 75.5 µg/L 80 94 60 - 140 3 0 - 20 Q11749 Chloroethane 79.5 80 µg/L 99 60 - 140 0 - 20 3 Q11749 Chloroform 78.9 80 µg/L 99 60 - 140 2 0 - 20 Q11749 Chloromethane 71.3 80 µg/L 89 60 - 140 3 0 - 20 Q11749 cis-1,2-Dichloroethene 79.3 80 µg/L 99 60 - 140 1 0 - 20 Q11749 Dibromomethane 77.8 80 µg/L 97 60 - 140 0 0 - 20 Q11749 Dichlorodifluoromethane 56.6 80 µg/L 71 60 - 140 1 0 - 20 Q11749 Ethylbenzene 75.1 80 µg/L 94 60 - 140 3 0 - 20 Q11749 Hexachlorobutadiene 80.4 80 µg/L 101 60 - 140 4 0 - 20 Q11749 Isopropyl ether (IPE) 82.7 80 µg/L 103 60 - 140 0 - 20 1 Q11749 Isopropylbenzene 90.4 80 µg/L 113 60 - 140 7 0 - 20 Q11749 m,p-Xylenes 173 µg/L 160 108 60 - 140 2 0 - 20 Q11749 Methyl t-butyl ether (MTBE) 74.9 80 µg/L 94 60 - 140 0 - 20 1 Q11749 Methylene chloride 75.6 80 µg/L 95 60 - 140 2 0 - 20 Q11749 n-Butyibenzene 92.1 80 µg/L 60 - 140 115 3 0 - 20 Q11749 n-Propylbenzene 89.4 80 µg/L 112 60 - 140 3 0 - 20 Q11749 Naphthalene 79.6 80 µg/L 100 60 - 140 1 0 - 20 Q11749 o-Xylene 76.9 80 µg/L 96 60 - 140 1 0 - 20 Q11749 p-lsopropyltoluene 89.0 80 µg/L 111 60 - 140 3 0 - 20 Q11749 sec-Butylbenzene 86.2 80 µg/L 108 60 - 140 3 0 - 20 Q11749 Styrene 73.9 80 µg/L 92 60 - 140 2 0 - 20 Q11749 tert-Butylbenzene 86.0 80 µg/L 108 60 - 140 2 0 - 20 Q11749 Tetrachloroethene 67.8 80 µg/L 85 60 - 140 4 0 - 20 Q11749 Toluene 77.2 80 µg/L 97 60 - 140 2 0 - 20 Q11749 trans-1,2-Dichloroethene 74.0 80 µg/L 93 60 - 140 4 0 - 20 Q11749 Trichloroethene

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

LAB USE ONLY Samples INTACT upon arrival? Beceived ON WET ICE? Temp <u>L</u> PROPER PRESERVATIVES indicated? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY'SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used?	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELAC USACE FL NC V SC OTHER N/A Water Chlorinated: YES NO Sample Iced Upon Collection: VES NO	REMARKS	138610	13861	138613		PRESS DOWN FIRMLY - 3 COPIES	Additional Comments: Site Arrival Time.	Site Departure Time: Field Tech Fee. Mileage:	SEE REVERSE FOR TERMS & CONDITIONS
ODY RECORD	Purchase Order No./Billing Reference TO BE FILLED IN BY CLI Requested Due Date 1 Day 2 Days 1 3 Days 1 4 Days 5 Days Certification: NELAC "Working Days" 0 6-9 Days 2 Standard 10 days Certification: NELAC "Working Days" 0 6-9 Days 2 Standard 10 days Standard 10 days "Samples received after 15:00 will be processed next business day." Sectification: NELAC Tumaround time is based on business days, excluding weekends and holidays. Sc. (SEE REVENSE FOR TERMS & CONDITIONS REQUESING: NOL COLLECT Water Chlorinated: YES RENDERED BY PRISM LADARATORIES, INC. TO CLIEDAR Mater Chlorinated: YES	NALL	CGP31 Persentia HAVAXXX	CGP31 V X	- GIP311 4/4 4/4 4 4		Sampler's Signature House March Sampled By (Print Name) Hard March Affiliation GMA Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested shows Any channel and the second	P 23	THE LABORATION TO THE LABORATORY.	R: SOLID WASTE: RCRA: CERCLA LANDFILL OTHER: DNC DSC DNC DSC DNC DSC DNC DSC
PRISM LABORATONIES, MC. LABORATONIES, MC. LABORATONIES, MC. 2814 Environmental Solutions X 240543 • Charlotte, NC 28224-0543 1/525-0409 1/525-0500 1/525-0409 1/525-04000 1/525-	other mic Com		N 01:11	16:55 W	15:43 6	1 1	MMM Sampled By ody is your authorization for	PCC Manager. Inere will be change	FIGORIA FIGORIA FIS SHOULD BE TAPED SHUT WITH O TED AND VERIFIED AGAINST COC IN	D Prism Field Service Other DUNDWATER: DRINKING WATER: C D SC D NC D SC
Full Service Analytical: & Environmental Solutions Full Service Analytical: & Environmental Solutions 449 Springbrook: Road e P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/523-6364 • Fax: Day/525,0409 Client Company Name: Child	(No) Email Address PDF Excelon Name: 1000 Physical Address	CLIENT SAMPLE DESCRIPTION COLLECTED	WSW-4 1-3-6	1 =	a		Sampler's Signature House	Religivend By: (Signature) of the second sec	Reinquicipéden; (Signadure) Method of Brigment: NOTE: ALL SAMPLE COOLE Method of Brigment: NOTE: ALL SAMPLE COOLE	D Fed Ex D UPS D Hand-delivered D Prism Field Servic NPDES: UST: GROUNDWATER: D NC D SC D SC D NC D SC D NC D SC D SC D NC D SC

PREPARED FOR

NCDEQ, DWM, UST Section 1646 Mail Service Center Raleigh, NC 27699-1646

PREPARED BY

S&ME, Inc. 3201 Spring Forest Road Raleigh, NC 27616

March 8, 2019

March 8, 2019

NCDEQ, DWM, UST Section 1646 Mail Service Center Raleigh, NC 27699-1646

Attention: Ms. Linda Blalock

Via email: linda.blalock@ncdenr.gov

Reference: Phase I Limited Site Assessment Report Mann Store, Incident TF-6281, RA-940 7070 NC Highway 87 Pittsboro, Chatham County, North Carolina S&ME Project No. 4305-18-110

Dear Ms. Blalock:

S&ME, Inc., (S&ME) presents this report in accordance with the North Carolina Department of Environmental Quality/S&ME Contract No. N17002 and S&ME Proposal No. 43-18-00383 dated April 23, 2018, as authorized by Task Authorization No. TA-01 dated April 23, 2018.

The scope of services included the preparation of a Phase I Limited Site Assessment (LSA), which includes the installation of one well in the source area, and collection of a water sample from the adjacent property's water supply well.

If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

ni

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Mour fillence

Thomas P. Raymond, P.E., P.M.P. Senior Engineer traymond@smeinc.com

Attachment: Phase I Limited Site Assessment Report

Table of Contents

1.0	Site Information	1
1.1	Site Identification	1
1.2	Information about Contacts Associated with the Leaking UST System	1
1.3	Information about Release	1
1.4	Information about the Report	1
1.5	Certification	2
2.0	Executive Summary	3
3.0	Scope of Services	4
3.1	- Contract Information	4
3.2	Approved Scope of Services	4
4.0	Site History and Characterization	4
4.1	UST Owner and Operator Information	
4.2	UST Information	5
4.3	Description of the UST Release	5
4.4	Owners and Occupants of Adjoining/Nearby Properties and Land Use	6
5.0	Site Reconnaissance and Receptor Information	6
5.1	Water Supply Wells	
5.1 5.2	Water Supply Wells Public Water Supplies	6
		6 6
5.2	Public Water Supplies	6 6 6
5.2 5.3	Public Water Supplies Surface Water	6 6 6
5.2 5.3 5.4	Public Water Supplies Surface Water Wellhead Protection Areas	6 6 6 6 6
5.2 5.3 5.4 5.5	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures	6 6 6 6 6 7
5.2 5.3 5.4 5.5 5.6	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures Risk Classification	6 6 6 6 7 7
5.2 5.3 5.4 5.5 5.6 6.0	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures Risk Classification Soil and Groundwater Sampling	
5.2 5.3 5.4 5.5 5.6 6.0 6.1	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures Risk Classification Soil and Groundwater Sampling Monitor Well Installation and Soil Sampling	
5.2 5.3 5.4 5.5 5.6 6.0 6.1 6.2	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures Risk Classification Soil and Groundwater Sampling Monitor Well Installation and Soil Sampling Groundwater Sampling	
5.2 5.3 5.4 5.5 5.6 6.0 6.1 6.2 6.3	Public Water Supplies Surface Water Wellhead Protection Areas Subsurface Structures Risk Classification Soil and Groundwater Sampling Monitor Well Installation and Soil Sampling Groundwater Sampling Summary of Soil Analytical Results	

S&ME Project No. 4305-18-110

7.0	Conclusi	on and Recommendations	10
	6.6.2	Cleanup Levels Achieved	.10
	6.6.1	Current Extent and Severity of Contamination	9
6.6	6	Evaluation of Soil and Groundwater Information	9
	6.5.2	Hydrogeology	9

List of Figures

Figure 1 – Site Vicinity Map Figure 2 – Site Map Figure 3 – Receptor Survey Map Figure 4 – Constituent Map

List of Tables

- Table 1 UST Owner/Operator Information
- Table 2 UST System Information
- Table 3 Summary of Property Owners/Occupants Information
- Table 4 Public and Private Confirmed Water Supply Well Information
- Table 5 Monitor Well Construction Data and Groundwater Elevations
- Table 6 Summary of Soil Analytical Results
- Table 7 Summary of Groundwater Analytical Results
- Table 8 Summary of Water Supply Well Analytical Results

Appendices

- Appendix I Figures
- Appendix II Tables
- Appendix III Photographic Log
- Appendix IV Limited Site Assessment Risk Classification and Land Use Form
- Appendix V Field Notes and Field Sampling Forms
- Appendix VI Laboratory Analytical Reports and Chain of Custody Forms

S&ME Project No. 4305-18-110

1.0 Site Information

1.1 Site Identification

- Date of Report: <u>3/8/2019</u>
- Facility I.D. <u>None</u> UST Incident No.: <u>6281</u> UST No.: <u>RA-940</u>
- Site Risk: <u>High</u>. Site Rank: <u>Unknown</u>. Land Use Category: <u>Light Industrial</u>
- Site Name: <u>Mann Store</u>
- Site Address: <u>7070 NC Highway 87</u>
- City/Town: <u>Pittsboro</u>. Zip Code: <u>27312</u>. County: <u>Chatham</u>
- Description of Geographical Data (e.g., diesel fill port): <u>Former UST Area</u>
- Location Method (GPS, Topographical map, other): <u>Google Earth</u>
- Latitude (decimal degrees): <u>35.804004°</u> Longitude (decimal degrees): <u>-79.250509°</u>

1.2 Information about Contacts Associated with the Leaking UST System

- Former UST Owner: <u>Glen Mann (deceased)</u>
- Address: <u>Not Applicable</u>
 Telephone: <u>Not Applicable</u>
- UST Operator: <u>Glen Mann (deceased)</u>
- Address: <u>Not Applicable</u>
 Telephone: <u>Not Applicable</u>
- Property Owners: <u>Glenette and Ronald Vaughn</u>
- Consultant/Contractor: <u>S&ME, Inc.</u>
- Address: <u>3201 Spring Forest Road, Raleigh, NC</u> Telephone: <u>919-872-2660</u>
- Analytical Laboratory: <u>Con-Test Analytical Laboratory</u>
 State Certification No.: <u>652</u>
- Address: <u>39 Spruce Street, East Longmeadow, MA 01028</u> Telephone: <u>413-525-2332</u>

1.3 Information about Release

- Date Discovered: <u>12/19/1990</u>
- Estimated Quantity of Release: Unknown
- Cause of Release: <u>Unknown</u>
- Source of Release (Dispenser/Piping/UST): <u>UST System</u>
- Sizes and contents of UST system(s) from which the release occurred: <u>Two 1,000-gallon gasoline</u> <u>USTs, one 2,000-gallon gasoline UST, one 550-gallon kerosene UST.</u>
- Criteria Used to Classify Risk: <u>In 1998, a concentration of benzene (34.5 micrograms per liter) was</u> detected in water supply well WSW-8.

1.4 Information about the Report

• Date of Soil and Groundwater Sampling: <u>Violations of 2L Standards in MW-1 and off-site water</u> supply well WSW-8. Several active water supply wells within 1,000 feet of the site.

1.5 Certification

I, <u>Thomas P. Raymond</u>, a Licensed Engineer for S&ME, do certify that the information contained in this report is correct and accurate to the best of my knowledge. S&ME is licensed to practice geology/engineering in North Carolina. Geology License Certification #C-145 and Engineering License Certification #F-0176.

2.0 Executive Summary

On May 24, 2018 and May 25, 2018, S&ME conducted a Phase I Limited Site Assessment (LSA) at the Mann Store site located at 7070 NC Highway 87, Pittsboro, North Carolina. The LSA included installing monitor well (MW-1) on site, collecting groundwater and soil sample from MW-1, sampling of a nearby water supply well (WSW-8), and conducting a site reconnaissance, and a sensitive receptor survey. A Site Vicinity Map is included as **Figure 1**. Photos taken during the site assessment are included in **Appendix III.**

A composite soil sample collected from the soil boring associated with monitor well MW-1 on May 24, 2018 was analyzed for volatile organic compounds (VOCs) by EPA Method 8260B, and volatile petroleum hydrocarbons (VPH) by the Massachusetts Department of Environmental Protection (MADEP) method. Results indicated that none of the targeted constituents were detected above the laboratory's method detection limits.

The groundwater sample collected from monitor well MW-1 on May 25, 2018 was analyzed for VOCs by EPA Method 6200B, and VPH by the MADEP method. The laboratory analytical results of the sample collected from MW-1 indicated that benzene, naphthalene, and methyl tert-butyl ether were detected in concentrations above the groundwater quality standards established by 15A NCAC 02L .0202 (2L Standards). In addition, carbon fraction chains, C5-C8 Aliphatics, C9-C12 Aliphatics, and C9-C10 Aromatics, were detected above the 2L Standard by the MADEP VPH analysis method. Several additional constituents were detected below the 2L Standards.

S&ME sampled the neighboring water supply well (WSW-8) located approximately 50 feet south of the former UST bed. The sample was analyzed for VOCs by EPA Method 6200B, and VPH by the MADEP method. Several constituents were detected above their reporting limit. Benzene was detected at a concentration exceeding the 2L Standard.

Eight active water supply wells (WSW-1 through WSW-8) were identified on properties within 1,000 feet of the subject site. Municipal water service is not available for the area and it should be assumed that properties in the area use water supply wells. Three surface water bodies were identified during the receptor survey: Long Branch Stream is located to the south, one intermittent stream is located to the north of the site, and one farm pond is located northwest of the site.

- The following recommendations are presented:
- 1. Install additional monitor wells on other areas of the site to establish groundwater flow direction and delineate the extent of groundwater contamination.
- 2. Obtain access agreements from properties within 1,000 feet of the subject property and collect samples to determine if petroleum constituents are present in these wells.

3.0 Scope of Services

3.1 Contract Information

The scope of services for this report was performed in general accordance with S&ME's proposal number 43-180043, dated April 23, 2018. The scope of services was authorized by the North Carolina Department of Environmental Quality (NCDEQ's) Task Authorization TA-01, dated April 23, 2018, and within contract number N17002.

3.2 Approved Scope of Services

S&ME's approved Scope of Services for this Task Authorization included conducting a project review, and conducting a Phase I LSA, which included identifying potential and sensitive receptors within 1,000 feet of the site, the installing four monitor wells on the site, collecting soil samples during the monitoring well installation, and collecting a groundwater sample from the monitoring well. In addition, S&ME was also tasked with collecting a sample from the water supply well of the neighboring property (WSW-8).

The scope of services was completed as proposed, with the exception of the following:

• Three additional monitor wells were not installed on site due to shallow rock bed encountered during installation of monitor well MW-1.

4.0 Site History and Characterization

The Mann Store site is located at 7070 NC Highway 87 in Pittsboro, Chatham County, North Carolina. According to Chatham County Land Use and Planning Map accessed on June 6, 2018, the site is classified as a light industrial district surrounded by residential-agricultural use properties. Currently, the building is vacant and the site is unoccupied. Structures on the site include one unoccupied building with a car port, and three garages. One large shipping and storage container and a shed are also located on the site. The property had previously been used as a gas station, owned and operated by Mr. Glen Mann. After the closure of the gas station, in 1966, the fuel pumps were removed and the property was used as a TV and Appliance Repair Service and Automotive Repair Shop.

Four USTs were removed from the property on December 19, 1990. A free product film was observed on top of the groundwater that had infiltrated the excavation site. Approximately 217 cubic yards of soil from the UST system's bed was removed at the time of excavation and six soil samples were collected for analysis. Laboratory results reported levels of total petroleum hydrocarbon (TPH) concentrations above regulatory limits. Water supply well WSW-8, located at 7042 Highway 87 North in Pittsboro, North Carolina, approximately 50 feet from the release site was first sampled on March 5, 1992. Results reported from the laboratory analytical data indicated levels above regulatory limits. The Raleigh Regional Office recommended the Mann Store site to the Federal Trust Fund program on March 26, 1992. Subsequently, two water supply wells were sampled by the Federal Trust Fund, one being water supply well WSW-8, the other has since been destroyed. Benzene was reported above its 2L Standard in water supply well WSW-8 at this time.

S&ME advanced four soil borings and collected one soil sample and one water supply sample on July 21, 1998. At this time the soil sample reported with TPH concentrations above the regulatory limit. The water supply well (WSW-8) results were also reported with several constituents above reporting limits and benzene above its 2L Standard. On August 21, 1998, following the results, bottled water service was set up for the tenants of the residence associated with WSW-8.

A site reconnaissance, sensitive receptor survey, and collection of water supply well samples were conducted on December 15, 2004 by Groundwater Management Associates, Inc. (GMA). Six water supply wells (WSW-1, WSW-4, WSW-5, WSW-7, WSW-8 and the since destroyed well on the property located to the north of the site) were sampled from properties within 1,000 feet of the site. Of these wells, water supply well WSW-8 was the only one reported with constituents above the detection limit. Benzene was reported above its 2L Standard. An additional sampling event was conducted on January 3, 2006 by GMA. Samples from WSW-1, WSW-4, WSW-7 and WSW-8 were collected. Concentrations of contaminants were similar to the results of the sampling event conducted in 2004. Benzene was detected again above its 2L Standard indicating a consistent pattern of contamination from 1991 through 2006. The most recent sampling event was conducted in 2010 with similar results to the 2006 sampling event. Benzene was detected in a concentration exceeding the 2L Standard and several other VOCs were detected in WSW-8 below their respective 2L Standards. There were no detections of targeted contaminant constituents in WSW-1, WSW-4, WSW-5, or WSW-7.

The property is now owned by Glenette and Ronald Vaughn - husband and wife. Glenette Mann is the daughter of Mr. and Mrs. Mann. She inherited upon the death of Mrs. Mann; Mr. Mann pre-deceased her. Topography of the area is generally flat. Groundwater elevations and flow have not been calculated due to the limitation of one monitor well. A site map is provided as **Figure 2** and a photographic log of the site and surroundings is provided as **Appendix III**.

4.1 UST Owner and Operator Information

The former owner/operator of the UST system was Glen Mann (deceased in 1992), who operated the UST system from an unknown date until 1966, when the gas station closed and the fuel pumps were removed. The UST system remained under Mr. Mann's ownership until 1990 when the system was removed. Information pertaining to the UST owner and operator information is presented in **Table 1**.

4.2 UST Information

One 2,000-gallon gasoline UST, two 1,000-gallon gasoline USTs, and one 550-gallon kerosene UST formerly operated at the site until 1966. According to an *Underground Storage Tank Closure Program* report, dated January 3, 1991 prepared by ATEC Environmental Consultants, Inc. (ATEC), the four USTs were closed by removal on December 19, 1990. Information about the UST is provided in **Table 2**, and the location of the former UST system is shown in **Figure 2**.

4.3 Description of the UST Release

On December 19, 1990, ATEC removed the USTs from the property. At this time a release was discovered and reported to the Raleigh Regional Office (RRO) of North Carolina Division of Environmental Management (NCDEM). Upon removal of the UST system a film of free product was identified on top of the infiltrating groundwater.

Additionally, soil samples collected at this time were visibly discolored and emitted a strong petroleum odor. Analysis of the soil samples confirmed that TPH concentrations were above the NCDEM action level.

4.4 Owners and Occupants of Adjoining/Nearby Properties and Land Use

There are six adjacent properties to the site. These properties are forested, residential, or farm land. Most homes and structures in the vicinity are mobile home residences, the closest being approximately 50 feet south of the site. Information regarding adjacent properties is presented in **Table 3** and are shown in **Figure 3**.

5.0 Site Reconnaissance and Receptor Information

On May 25, 2018, S&ME personnel completed a receptor survey in general accordance with the NCDEQ *Guidelines for Assessment and Corrective Action*, August 2012. The Limited Site Assessment Risk Classification and Land Use Form is included in **Appendix IV**. Information pertaining to the identified receptors is summarized below. **Figure 3** shows the locations of the adjacent property owners and identified water supply wells.

5.1 Water Supply Wells

Letters requesting water supply well information were mailed to eight addresses located within 1,000 feet of the subject site. To date, one property owner has responded. Nine water supply wells have been visually identified. Of those nine, one well has been identified not in use. The list of identified water supply wells in the area is included as **Table 4**.

5.2 Public Water Supplies

According to the Chatham County Public Utilities Department, municipal water service is not available for the area surrounding the site. Potable water at the site and surrounding area is supplied through private drinking water wells.

5.3 Surface Water

According to the National Wetlands Inventory online Wetlands Mapper, one freshwater farm pond is located approximately 525 feet to the northwest of the source area. Additionally, two streams were identified within 1,500 feet of the subject site; one located approximately 1,000 feet northeast, and the other located approximately 1,500 feet south. These surface water features and potential receptors are included on **Table 4**.

5.4 Wellhead Protection Areas

S&ME personnel accessed the web application viewer of wellhead protection areas on May 31, 2018. According to the online database, the site and surrounding area is not located within a designated wellhead protection area.

5.5 Subsurface Structures

During the site reconnaissance, several underground utilities were identified on the subject property. Underground utilities have the potential to act as subsurface pathways for contamination. No other subsurface structures such as vaults, basements, or storm drain features were identified during the receptor survey.

5.6 Risk Classification

Based on the presence of a water supply wells located within 1,000 feet of the subject property and the detection of constituents above their 2L Standard the site remains as a "High" risk site.

6.0 Soil and Groundwater Sampling

Field activities were performed under a site-specific health and safety plan prepared by S&ME. The project was performed in general accordance with the procedures outlined in the approved task authorization TA-01 dated April 23, 2018. The investigative derived waste, such as soil cuttings, decontamination water, and purge water that were generated during the field activities were spread on the ground at the site.

6.1 Monitor Well Installation and Soil Sampling

On May 24, 2018, S&ME personnel mobilized to the site to install a groundwater monitoring well (MW-1). The soil boring for the monitor well was advanced using a Geoprobe 7730 DT with the ability to turn 4.25 inch outside diameter hollow-stem augers. Macro core refusal was encountered 7-feet below ground surface, at this depth S&ME personnel switched to the air rotary method to advance the well to the final depth of 50-feet below ground surface (ft-bgs). The monitor well (MW-1) was advanced approximately 25-feet south of the onsite building near the front entrance. **Figure 2** represents the location of the monitor well. The boring log used to document observations in the field is included in **Appendix V**. The soil boring was converted into a groundwater monitoring well (MW-1) by installing a 20-foot long section of two-inch diameter polyvinyl chloride (PVC) 0.010-inch slotted screen, attached to a 30-foot long riser pipe to bring the well to ground surface. The well was completed by placing #2 type filter sand in the boring annulus to approximately two feet above the screen section (sand pack). Approximately two feet of hydrated bentonite was placed above the sand pack, and neat cement grout was then placed from the top of the bentonite to approximately six inches below ground surface. The monitor well was completed at the ground surface and is encased with a flush-mounted protective steel casing and a bolted manhole cover. The monitor well construction record is included in **Appendix V** and the monitor well construction details are summarized in **Table 5**.

During the advancement of the soil boring for MW-1 a soil sample was collected from the interval between 0 and 5.0 feet below ground surface (MW-1 (0-5')) and another sample was collected from the interval between 5.0 feet and 7.0 feet below ground surface (MW-1 (5-7')). The soil samples were classified on-site by S&ME personnel and screened with a photo-ionization detector (PID) to measure relative headspace concentrations of VOCs. The maximum PID reading during the advancement of the soil boring for MW-1 was 2.8 ppm at an approximate depth of six feet below ground surface.

The composite soil sample (SS-1) was placed directly into a laboratory-supplied container and stored in an insulated container with ice. The sample was shipped under standard chain-of-custody procedure to Con-Test Analytical Laboratories (Con-Test) of East Longmeadow, Massachusetts, a North Carolina certified laboratory, for analysis of VOCs by EPA Method 8260B and for VPH by the MADEP Method.

6.2 Groundwater Sampling

On May 25, 2018, S&ME personnel measured depth to groundwater in MW-1. The depth to groundwater was measured using an electronic water level indicator, which emits an audible tone when in contact with water. The depth to groundwater was measured at 34.43-feet below the top of casing in MW-1. The depth to water measurement and monitor well construction data is provided in **Table 5**.

After collecting the depth to groundwater measurement, S&ME personnel purged and sampled MW-1 using a new, disposable polyethylene bailer. The well was bailed dry after removing approximately four gallons, and was allowed to recover before sampling. Field parameters consisting of temperature, pH, and conductivity were recorded for each casing volume. The groundwater samples were placed in laboratory-supplied containers, placed in a cooler on ice, and shipped under standard chain-of-custody procedure to Con-Test for analysis for VOCs by EPA Method 6200B, and for VPH by the MADEP Method.

6.3 Water Supply Well Sampling

A sample was also collected from WSW-8, located approximately 50 feet to the south of the former UST system bed. The sample was taken from the spigot of the home associated with WSW-8. The spigot was purged for approximately five minutes at a rate of seven gallons per minute before parameters were taken. Field parameters consisting of temperature, pH, and conductivity were then recorded at five minute intervals. The water supply well samples were placed in laboratory-supplied containers, placed in a cooler on ice, and shipped under standard chain-of-custody procedure to Con-Test for analysis for VOCs by EPA Method 6200B.

Copies of the well sampling forms are provided in **Appendix V**. The chain-of-custody form can be found in **Appendix VI**.

6.4 Summary of Soil Analytical Results

The laboratory analytical results of the composite soil sample (SS-1) collected on May 24, 2018 indicated that no target contaminant constituents were reported above the laboratory's method detection limits. A summary of the laboratory analytical results for the soil samples is presented in **Table 6**, and shown on **Figure 4**. The laboratory analytical report for the soil samples is included in **Appendix VI**.

6.5 Summary of Groundwater Analytical Results

The laboratory analytical result of the groundwater sample collected from monitor well MW-1 indicated that benzene, methyl tert-butyl ether, and naphthalene were detected above their respective 2L Standards. In addition, carbon fractions C5-C8 Aliphatics, C9-C12 Aliphatics, and C9-C10 Aromatics were detected above the regulatory limit. Several VOCs were reported at concentrations above their respective laboratory analytical method detection limits, but below their respective 2L Standards.

6.6 Summary of Water Supply Well Analytical Results

The laboratory analytical results collected from WSW-8 indicated that benzene was detected above the 2L Standard. Several additional constituents were detected below their respective 2L Standards.

No free product was measured during this sampling event. Upon receiving the laboratory analytical results, Ms. Linda Blalock was sent the laboratory analytical report via email on June 7, 2018. A summary of the groundwater analytical results from monitor well MW-1 is presented in **Table 7** and the summary of historical and current contaminants in water supply wells are presented in **Table 8**. Laboratory analytical results are shown in **Figure 4**, and a copy of the laboratory analytical report is provided in **Appendix VI**.

6.7 Regional and Site Geology and Hydrogeology

6.7.1 Soil and Bedrock

Soils encountered at the site during the advancement of the groundwater monitor well by S&ME primarily consisted of silty sands. Partially weathered rock was encountered at approximately 19 feet. Bedrock consisting of siltstone was encountered at approximately 21 feet with possible fractures at 42 to 50 feet.

According to the Geologic Map of North Carolina, dated 1985, the site lies within Carolina Slate Belt, mostly comprised of metamorphic rock. This formation is categorized as metamudstone and meta-argillite with a thin to thick bedding, axial-planar cleavage is common.

6.7.2 Hydrogeology

The depth to groundwater measurement collected on May 25, 2018 measured 34.43 feet below top of casing (ft-BTOC). Due to the limitation of one monitor well, the groundwater flow direction could not be determined. However based on previous reports and land elevations in the area it is estimated groundwater flows to the northeast.

6.8 Evaluation of Soil and Groundwater Information

6.8.1 Current Extent and Severity of Contamination

During the installation of monitor well MW-1 on May 24, 2018 a composite soil sample was collected. Laboratory analytical results show no contaminants were detected above detection limits.

No free product was detected in the monitor well sampled. Several petroleum and gasoline constituents were detected above their reporting limits in monitor well MW-1 and water supply well WSW-8 during the sampling event on May 25, 2018. Benzene in monitor well MW-1 and water supply well WSW-8 was detected above the 2L Standard. Additionally, methyl tert-butyl ether, and naphthalene were detected in MW-1 above their respective 2L Standards.

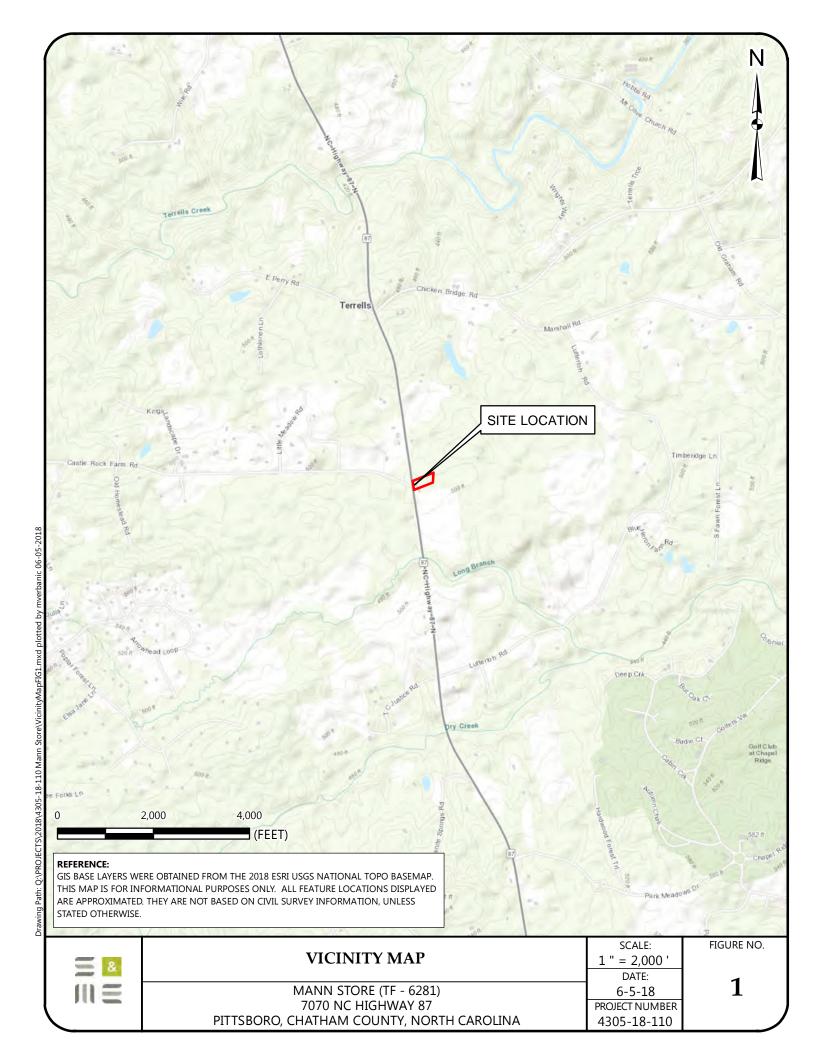
According to previous reports, constituents found in water supply well WSW-8, do not seem to be decreasing at a consistent rate. Benzene, methyl tert-butyl ether, and diisopropyl ether have decreased since the previous sampling event on January 3, 2006. However, many other constituents which had not previously been detected reported above their detection limits during the sampling event on May 25, 2018. The extent of the contaminated groundwater has not been determined.

6.8.2 Cleanup Levels Achieved

٠	Soil (soil-to-groundwater maximum soil contaminant concentrations)	Yes
٠	Groundwater (2L standard concentrations)	No
٠	Free Product - Free product has not been measured at the site.	Yes

7.0 Conclusion and Recommendations

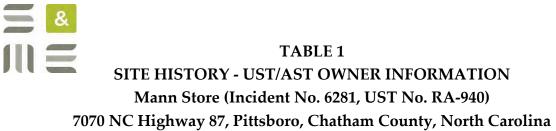
Based on the current and historical assessment information for the site, the following conclusions are presented:


- 1. The laboratory analytical results of soil sample collected on May 24, 2018 indicated that no target contaminant constituents were reported above the laboratory's method detection limits.
- 2. The laboratory analytical results of the groundwater sample collected on May 25, 2018 from monitor well MW-1 indicated that benzene, naphthalene, and methyl tert-butyl ether were detected above their respective 2L Standards. There were no detections above the gross contamination levels (GCLs).
- 3. Water supply well WSW-8 also had laboratory results indicated levels of benzene above the 2L Standard but below the Federal Drinking Water Standard of 5 µg/L.
- 4. During the receptor survey and from responses received from a well survey, eight water supply wells were identified within 1,000 feet of the site. It should be assumed that each property with a residence has a water supply well. Municipal water service is not available to the surrounding area.
- 5. S&ME was unable to install additional monitor wells due to shallow bed rock, and unable to gain access permission to remaining adjacent properties.

Based on the above, the following recommendations are presented:

- 1. Obtain access agreements to sample the water supply wells on properties within 1,000 feet of the site.
- 2. Continue periodic sampling of monitor well MW-1 and install additional monitor wells to determine groundwater flow direction and delineate the extent of contamination.

Appendices


Appendix I – Figures

DIISOPROF ETHYLBEN ISOPROPYI P-ISOPROF METHYL TE NAPHTHAL N-PROPYLE TOLUENE 1,2,4-TRIME	ENZENE BENZENE 'LBENZENE PYL ETHER ZENE LBENZENE PYLTOLUENE ERT-BUTYL ETHER BENZENE ETHYLBENZENE ETHYLBENZENE	μg/L 63 4.2 3.5 0.35 J 52 52 52 12 0.84 35 29 21 1.9 42 7.5 35.8				Z
Cas	FORMER PUMP ISL	NC 87		MW-1 SOIL (0'-7') BDL	mg/Kg	
FOI	RMER UST SYSTEM			N-PROPYLE STYRENE	YL ETHER .BENZENE RT-BUTYL ETHEF SENZENE THYLBENZENE	μg/L 3.9 6.9 0.19 J 3.8 0.18 J 0.25 J 0.55 1.2
MAP IS FOR INFORM	100 200 (FE ERE OBTAINED FROM 2017 NCC MATIONAL PURPOSES ONLY. AN EY ARE NOT BASED ON CIVIL S	LL FEATURE LOCATIONS DI	ISPLAYED ARE			
GROUNDWATER SA µg/L: MICROGRAMS mg/Kg: MILLIGRAM BDL: BELOW DETEC J: CONCENTRATION RESULTING IN AN E	PER KILOGRAM TION LIMIT DETECTED BELOW REPORTING	S LIMIT BUT ABOVE 2L STAI	NDARD,			WELL JPPLY WELL
		MANN STORE (7070 NC HIGH O, CHATHAM COUI	(TF - 6281) HWAY 87		SCALE: 1 " = 100 ' DATE: 6-15-18 PROJECT NUMBER 4305-18-110	FIGURE NO.

Appendix II – Tables

S&ME Project # 4305-18-110

UST ID Numbers	Name of Owner and Operator	Dates of Ownership / Operation	Incident Number	Owner or Operator?
1 through 4	Glen and Muriel Mann	Prior to 1966 - 2007	6281	Both
	Address	Telephone	Number	
	N/A - Deceased	N/A - De	ceased	

TABLE 2 SITE HISTORY - UST SYSTEM INFORMATION Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

UST ID Number	Current Contents	Previous Contents	Capacity (gallons)	Construction Details	Tank Dimensions D/L (ft)	Description of Associated Piping and Pumps	Date USTs Installed	Status of UST ***	Was Release Associated With UST System?
1	None	Gasoline	1,000	Steel	Unknown	Removed 1966		Closed by Removal 1990	
2	None	Gasoline	2,000	Steel	Unknown	Removed 1966	Unknown	Closed by Removal 1990	Yes
3	None	Gasoline	1,000	Steel	Unknown	Removed 1966	Unknown	Closed by Removal 1990	
4	None	Kerosene	550	Steel	Unknown	Removed 1966		Closed by Removal 1990	

Incident	Material	Date of	Description of Release
Number	Released	Release	
6281	Gasoline	Uknown	Soil contamination discovered at time of UST closures by removal.

UST Details from Underground Storage Tank Closure Program, dated January 3, 1991 by ATEC Environmental Consultants.

TABLE 3 PROPERTY OWNERS/OCCUPANTS Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Parcel # or	Owner/Occupant Name	Owner/C	Occupant Mailing Addres	s	
Map ID		Street/PO Box	City	State	Zip
Site	Glenette & Ronald Vaughn	8847 NC Highway 87 N	Pittsboro	NC	27312
1	Glenette & Ronald Vaughn	8847 NC Highway 87 N	Pittsboro	NC	27312
2	Susan Johnson	7192 NC Highway 87 N	Pittsboro	NC	27312
3	Christopher Campbell	635 Sheep Rock Road	Snow Camp	NC	27349
4	Irene Morris	713 Pittsboro-Goldston Road	Pittsboro	NC	27312
5	John & Tammy Flynn	633 Chapel Ridge Drive	Pittsboro	NC	27312
6	Lauraine Rivier	180 Castle Rock Farm Road	Pittsboro	NC	27312

Notes:

Information on property ownership was obtained from Chatham County GIS Website June 2018.

TABLE 4 PUBLIC AND PRIVATE WATER SUPPLY WELL INFORMATION Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Well #	Well Owner / User (indicate which)	Site Address	Phone Number	Latitude (decimal)	Longitude (decimal)	Well Use	Well Depth (ft-BGS)	Type of Well	Well Casing Depth (ft-BGS)	Distance (ft) / Direction from Source	Gradient from Source (Up or Down)
WSW-1	Lauraine Rivier	180 Castle Rock Farm Road	Not Provided	35.805287	-79.253116	Drinking	Unknown	Unknown	Unknown	900' NW	Lower
WSW-1B	Lauraine Rivier	180 Castle Rock Farm Road	Not Provided	35.804527	-79.251304	Inactive	Unknown	Unknown	Unknown	350' NW	Lower
WSW-2	Michael & Sharon Owens	7239 NC Highway 87	Not Provided	35.806471	-79.252033	Drinking	Unknown	Unknown	Unknown	1,000' NW	Lower
WSW-3	Jean and Donald Stubbs	7267 NC Highway 87	Not Provided	Unknown	Unknown	Drinking	Unknown	Unknown	Unknown	1,250' NNW	Lower
WSW-4	Piedmont Farm Animal Refuge	7236 NC Highway 87	919-533-4013	35.806554	-79.250563	Drinking	Unknown	Unknown	Unknown	975' N	Lower
WSW-5	Susan Johnson	7192 NC Highway 87	Not Provided	Unknown	Unknown	Drinking	Unknown	Unknown	Unknown	1,000' NE	Lower
WSW-6	Sandra Fogleman	6989 NC Highway 87	Not Provided	35.802996	-79.251504	Drinking	Unknown	Unknown	Unknown	475' SW	Higher
WSW-7	Sandra Fogleman	6941 NC Highway 87	Not Provided	35.802239	-79.251021	Drinking	Unknown	Unknown	Unknown	650' SSW	Higher
WSW-8	Irene and Clarence Morris	7042 NC Highway 87	Not Provided	35.803843	-79.250551	Drinking	Unknown	Unknown	Unknown	50' S	Higher

Other Receptors

(Other public water supplies, reservoirs, supply lines, surface water bodies, wellhead protection areas, recharge areas for deep aquifers, subsurface structures)

Receptor ID	Description	Location	Latitude (decimal)	Longitude (decimal)	Contact	Phone Number	Usage	Distance (ft) / Direction from Source	Gradient from Source (Up or Down)
P1	Farm Pond	180 Castle Rock Farm Road	35.805393	-79.251711	Lauaine Rivier	Uknown	Farm Pond	525' NW	Lower
S1	Long Brand Stream	South of the Subject Propery	35.799971	-79.249842	Uknown	Uknown	Surface Water Body	1,450' S	Higher
S2	Intermittened Stream	North of the Subject Propery	35.806944	-79.249166	Uknown	Uknown	Surface Water Body	1,000' NE	Lower

Notes: Latitude and Longitude coordinates of water supply wells are estimated values

Only confirmed water supply wells are shown. It should be assumed that each property with a residence has a water supply well as municipal water is not available to the surrounding area. Water Supply well information obtained from responses of property owners as indicated on the letters received back from the well survey

Other receptors identified using the National Wetlands Inventory online Wetlands Mapper system.

Groundwater flow direction has been estimated based on previous reports and land elevations collected from Google Earth

TABLE 5 WELL CONSTRUCTION AND LIQUID LEVEL DATA Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Well ID	Date Installed	Total Well Depth (ft-BTOC)	Screened Interval (ft-bgs)	Date Measured	Top of Casing Elevation (ft-rel)	Depth to Water (ft-BTOC)	Free Product Thickness (ft)	Groundwater Elevation (ft-rel)
MW-1	5/24/2018	50	30-50	5/25/2018	NM	34.43	NM	NM

NOTES: Two-inch diameter PVC well materials were installed.

ft-BGS = Feet Below Ground Surface

NM = Not Measured

BTOC = Below Top of Casing

TABLE 6 SUMMARY OF SOIL SAMPLING RESULTS Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Sample ID	Date Collected	Sample Depth (ft-BGS)	VOCs by EPA Method 8260B (mg/kg) Contaminants of Concern	VPH by MADEP (mg/kg) Contaminants of Concern
SS-1	5/24/2018	0-7	BDL	BDL
		oundwater MSCC		
		Residential MSCC ommerical MSCC	Constituent Specific	Constituent Specific

NOTES:

Analytes that are not shown for the method were not detected

ft-BGS: Feet below ground surface

VOCs: Volatile Organic Compounds

VPH: Volatile Petroleum Hydrocarbons

Results reported in milligrams per kilogram (mg/kg)

BDL: Below Detection Limit

MSCC: Maximum soil contamination concentration

TABLE 7 SUMMARY OF GROUNDWATER SAMPLING RESULTS Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Analytica	al Method \rightarrow		Volatile Organic Compounds (VOCs) EPA Method 6200B (µg/L) MADEP VPH (µg/L)											μg/L)					
Contaminan	nt of Concern \rightarrow								0	ther				izene	izene				
Well ID	Date Collected	Benzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Diisopropyl Ether (DIPE)	Ethylbenzene	Isopropylbenzene	p-Isopropyltoluene	Methyl tert-butyl e	Naphthalene	n-Propylbenzene	Toluene	1,2,4-Trimethylben	1,3,5-Trimethylben	Total Xylenes	C5-C8 Aliphatics	C9-C10 Aromatics	C9-C12 Aliphatics
MW-1	5/25/2018	63	4.2	3.5	0.35 J	52	52	12	0.84	35	29	21	1.9	42	7.5	35.8	770	360	550
	2L Standard	1	70	70	70	70	600	70	25	20	6	70	600	400	400	500	400	200	700
Notos	GCL	5,000	6,900	8,500	15,000	70,000	84,500	25,000	11,700	20,000	6,000	30,000	260,000	28,500	25,000	85,500	NE	NE	NE

Notes:

Analytes that are not shown for the method were not detected.

Concentrations are reported in micrograms per liter (μ g/L).

VPH: Volitile Petrolium Hydrocarbons

MADEP: Massachusetts Department of Environmental Protection

J: Indicates detection above the method detection limit, but below the reporting limit; therefore, result is an estimated concentration

2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.

Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.

GCL - Gross Contaminantion Level

BDL - Not detected in concentrations exceeding laboratory detection limits

NE: Regulatory standard not established for analyte

TABLE 8 SUMMARY OF WATER SUPPLY WELL SAMPLING RESULTS Mann Store (Incident No. 6281, UST No. RA-940) 7070 NC Highway 87, Pittsboro, Chatham County, North Carolina S&ME Project # 4305-18-110

Analytica	l Method \rightarrow			Volatile	Organic (Compoun	ds (VOC	s) EPA Mo	ethod 620	0B (µg/L)		
Contaminan	t of Concern \rightarrow					er				ne		
Well ID	Date Collected	Benzene	Ethylbenzene	Diisopropyl Ether (DIPE)	Isopropylbenzene	Methyl tert-butyl ether	n-Propylbenzene	Styrene	1,2 Dichloroethane	1,2,4-Trimethylbenzene	Total Xylenes	Lead
	12/15/2004	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.3 J
WSW-1	1/3/2006	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	18
	5/25/2018			-		1	Not Sample	d	-	_	-	
	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.3 J	
WSW-4	1/3/2006	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	5/25/2018					I	Not Sample	d				
WSW-5	12/15/2004	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	15
VV3VV-3	5/25/2018		Not Sampled									
	12/15/2004	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.0 J
WSW-7	1/3/2006	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	5/25/2018					I	Not Sample	d				
	7/21/1998	34.5	4.9	3.8	BDL	BDL	BDL	BDL	BDL	BDL	2.0	NA
	4/27/2000	4.5	BDL	BDL	BDL	5.6	BDL	BDL	0.6	BDL	BDL	NA
WSW-8	12/15/2004	5.9	BDL	13	BDL	6.2	BDL	BDL	BDL	BDL	BDL	2.0 J
	1/3/2006	4.4	BDL	13	BDL	4.6	BDL	BDL	BDL	BDL	BDL	BDL
	5/25/2018	3.9	BDL	6.9	0.19 J	3.8	0.18 J	0.25 J	BDL	0.55	1.2	NA
WSW1-B	12/15/2004	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	140
VV 3VV 1-D	5/25/2018						Destoryed					
	2L Standard	1	600	70	70	20	70	70	0.4	400	500	15
	GCL	5,000	84,500	70,000	25,000	20,000	30,000	70,000	400	28,500	85,500	15,000

Notes:

Analytes that are not shown for the method were not detected.

Concentrations are reported in micrograms per liter (μ g/L).

J: Indicates detection above the method detection limit, but below the reporting limit; therefore, result is an estimated concentration

2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

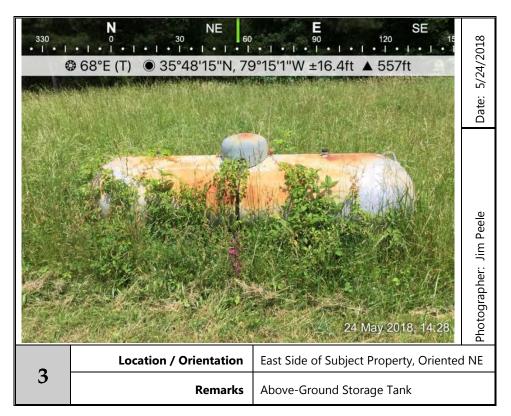
Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.

Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.

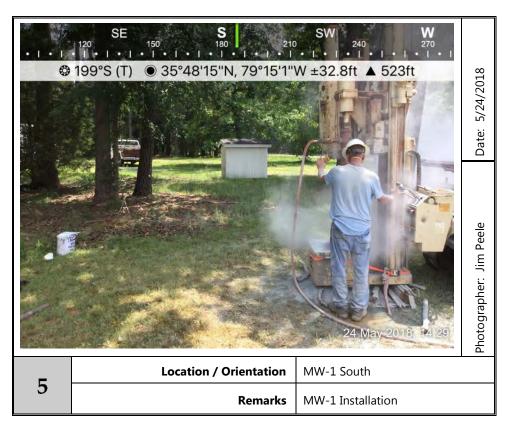
NA: Analysis for sample not requested.

GCL - Gross Contaminantion Level

BDL - Not detected in concentrations exceeding laboratory detection limits


Appendix III – Photographic Log

Phase I Limited Site Assessment Report Mann Store, Incident TF-6281, RA-940 7070 NC Highway 87 Pittsboro, Chatham County, North Carolina S&ME Project No. 4305-18-110



Phase I Limited Site Assessment Report Mann Store, Incident TF-6281, RA-940 7070 NC Highway 87 Pittsboro, Chatham County, North Carolina S&ME Project No. 4305-18-110

Phase I Limited Site Assessment Report Mann Store, Incident TF-6281, RA-940 7070 NC Highway 87 Pittsboro, Chatham County, North Carolina S&ME Project No. 4305-18-110

Appendix IV – Limited Site Assessment Risk Classification and Land Use Form

Limited Site Assessment Risk Classification and Land Use Form

Part I – Groundwater/Surface Water/Vapor Impacts

High Risk

- 1. Has the release contaminated any water supply well including any well used for non-drinking purposes **YES/NO**
- 2. Is a water supply well used for drinking water located within 1,000 feet of the source area of the release? YES;NO
- 3. Is a water supply well not used for drinking water (e.g., irrigation, washing cars, industrial cooling water, filling swimming pools) located within 250 feet of the source area of the release?
- 4. Does groundwater within 500 feet of the source area of the release have the potential for future use (there is no other source of water supply other than the groundwater)?
- Do vapors from the release pose a threat of explosion because of accumulation of the vapors in a confined space or pose any other serious threat to public health, public safety or the environment?
 YES(NO)
 If yes, describe.
 N/A
- 6. Are there any other factors that would cause the release to pose an imminent danger to public health, public safety, or the environment?
 YES NO

If yes, describe. N/A

Intermediate Risk

7. Is a surface water body located within 500 feet of the source area of the release?

S/NO)

If **YES**, does the maximum groundwater contaminant concentration exceed the surface water quality standards and criteria found in 15A NCAC 2B .0200 by a factor of 10? **YES/NO**

8. Is the source area of the release located within an approved or planned wellhead protection area as defined in 42 USC 300h-7(e)?

If yes, describe. N/A

 Is the release located in the Coastal Plain physiographic region as designated on a map entitled "Geology of North Carolina" published by the Department in 1985?
 <u>YES/NO</u>

10. Do the levels of groundwater contamination for any contaminant exceed the gross contamination levels (See Table 4 and Table 5.) established by the Department?

Part II - Land Use

Property Containing Source Area of Release

The questions below pertain to the property containing the source area of the release.

1. Does the property contain one or more primary or secondary residences (permanent or temporary)? **YES(NO**) Describe.

<u>N/A</u>

S&ME Project No. 4305-18-110

	8	

2.	Does the property contain a school, daycare center, hospital, playground, park, recreation area, chur or other place of public assembly?	ch, nursing ho YES/NO
	Describe. <u>N/A</u>	
3.	Does the property contain a commercial (e.g., retail, warehouse, office/business space, etc.) or indus manufacturing, utilities, industrial research and development, chemical/petroleum bulk storage, etc. inactive commercial or industrial enterprise, or is the land undeveloped? (Describe Inactive Commercial, Former car repair, television repair shop, and gas station) enterprise, ar YES/NO
4.	Do children visit the property? Explain. Unknown/ not likely	YES/NO
	Is access to the property reliably restricted consistent with its use (e.g., by fences, security personnel	or both)? YES(NO
	Explain. N/A	Ŭ
5.	Do pavement, buildings, or other structures cap the contaminated soil? Describe. N/A	YESINO
	If yes, what mechanisms are in place or can be put into place to ensure that the contaminated soil w in the foreseeable future?	vill remain cap
6.	What is the zoning status of the property? The site is zoned as Light Industrial according to Chatham County GIS Tax Map, the surrounding pro Residential	operties are
7.	Is the use of the property likely to change in the next 20 years? Explain. Unknown	YES/NO

- 1. What is the distance from the source area of the release to the **nearest** primary or secondary residence (permanent or temporary)? <u>Approximately 50 feet from the subject property line</u>
- 2. What is the distance from the source area of the release to the **nearest** school, daycare center, hospital, playground, park, recreation area, church, nursing home or other place of public assembly? <u>Approximately 2,000 feet from</u> <u>subject property line</u>
- 3. What is the zoning status of properties in the surrounding area? <u>Residential Agricultural</u>

Appendix V – Field Notes and Field Sampling Forms

	W	ELL CON	STF		ETAIL		&
Well ID		Projec	t Nam	ie	Project Number		
MW-1		Mann			4305-18-110		
S&ME Staff	Ins	tallation Date		County	City	Well Pern	nit Number
J. Peele		5/25/2018		Chatham	Pittsboro		
Drilling C	ontractor			License Number	Drill Rig	Well Ty	/pe / Use
S&	ME			2709	GeoProbe 7730DT	Flush Mo	onitor Well
Water Level at TOB (0.01 ft-	BTOC)	Date/Tim	е	Northing (0.1 ft)	Land Surface Elev. (0.01 ft)	-	Method
				TBD	TBD		Rotary
Depth to Water (0.01 ft-	BTOC)	Date/Tim	ie	Easting (0.1 ft)	Total Well Depth (0.1 ft-bgs)	Borehole D	iameter (1 in)
				TBD	50.0		4
							Туре
						2' x 2' (Concrete
							ve Casing
		_		_	n l		ılt (8" diam)
TOC Relative to Ground	0.0	ft				-	Material
Depth Below Ground	Surface	(<u>ft-bgs)</u>					h 40 PVC
							val (0.1 ft-bgs)
							to <u>30.0</u>
							en Type
) PVC (0.010)
							val (0.1 ft-bgs) to 50.0
T (C)	26.0	0161					
Top of Seal -	26.0	0.1 ft-bgs					it Type DY Mix
Top of Filter Pack -	28.0	0.1 ft-bgs					val (0.1 ft-bgs)
	20.0	0.1 11-095					to 26.0
Top of Screen -	30.0	0.1 ft-bgs					I Type
Top of Scient	50.0	0.1 IC 595	-				loleplug®
		Ť					al (0.1 ft-bgs)
							to 28.0
Screened Interval -	20.0	0.1 ft-bgs				Filte	r Pack
		5					ca Sand
						Filter Pack Inte	erval (0.1 ft-bgs
		↓ ↓				28.0	to 50.0
Bottom of Screen -	50.0	0.1 ft-bgs				Develo	opment
Bottom of Filter Pack -	50.0	0.1 ft-bgs					No
Cave In -		0.1 ft-bgs				Developmen	it Volume (gal)
Total Boring Depth -	50.0	0.1 ft-bgs					
lotes:						BTOC - Belov	v Top of Casing
							e Determined
						For lithologi	c information
						see attache	ed boring log
					Form Revision Date:	9/1/17	2:10 PM

PROJECT:										
	Pitts pro, NC				BORIN	IG LOG:	MW-	1		
	S&ME Project No. 4305-18-110									
DATE DRILLED:	Thursday, May 24, 2018	BORING DEPTH (FT):	50							
DRILL RIG:	Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:	S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Peele							
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Hollow Stem Augers (4 1/4-in. ID)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
5 10 15 20	Silt, Soft, Brown, Orange, Tan, Fine, Some Clay and sand intermixed, Mc	sist, Macro core refusal at			2.4	Yes				

PROJECT		Mann's Store									
		Pitts pro, NC				BORIN	IG LOG:	MW-	1		
		S&ME Project No. 4305-18-110									
DATE DRIL	LED:	Thursday, May 24, 2018	BORING DEPTH (FT):	50							
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER	TYPE:	Not Applicable	LOGGED BY:	J. Peele							
	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING I		Hollow Stem Augers (4 1/4-in. ID)	EASTING:								
DIGLEING			EASTING.								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Rock, Siltstone, Gray, Dry. Possible fractures ~42-50'									
		···, · ··· ·, · ·, · ·, · · ·, · · · ·									
	-										
	-										
25											
35 —											
	-										
	_										
	-										
40											
40 —											
	_										
	_										
45											
45 —											
	_										
	1										
	-										
50 —											
		Boring Terminated at 50 Ft-BGS									
	-										
	1										
	-										
55 —	1										
	-										
	4										
	-										
60											
60 —	•			-		-					

WELL CONSTRUCTION R This form can be used for single or multiple well		For Int	ernal	Jse ONI	LY:						
1. Well Contractor Information:							_		_		
Thomas Whitehead		14. W		R ZONI	čS	DESCRIPT	ION		-		
Well Contractor Name			ft.		ft.						
2907-A			ft.	1	ft.						
NC Well Contractor Certification Number					NG (for	multi-cased v					
S&ME Inc		FROM	1 ft.	то	ft.	DIAMETEI	in.	THICKN	ESS	MAT	ERIAL
Company Name		16. II	NER	CASIN	G OR T	UBING (geo	therm	al closed-	loop)	-	
		FROM		TO	ft.	DIAMETEI		THICKN	VESS	MAT	ERIAL
2. Well Construction Permit #: N/A List all applicable well permits (i.e. County, Stat	e, Variance, Injection, etc.)	0	ft.	30	ft.	2	in.	Sch	40	-	PVC
3. Well Use (check well use):		17.5	CREE	N		-				-	
Water Supply Well:		FROM	1	TO		DIAMETER	-	r size	THICK	NESS	MATERIAL
	□Municipal/Public	30	-	50	ft. 2).	010	Sch	40	PVC
□Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.	_	ft.	in.					· · · · · · · · · · · · · · · · · · ·
□Industrial/Commercial	□Residential Water Supply (shared)	18. G	ROU1	ТО	-	MATERIA	L,	EMPL	ACEMEN	T METI	IOD & AMOUNT
□Irrigation		0	ft.	26	ft.	Cement		Pour			
Non-Water Supply Well:	- December /	26	ft.	28	ft.	Bentonit	е	Pour			
☑Monitoring Injection Well:	□Recovery		ft.		ft.						
□Aquifer Recharge	Groundwater Remediation				L PACI	K (if applicat		-			
□Aquifer Storage and Recovery	□Salinity Barrier	FROM	1 ft.	TO	ft.	MATERIAI #2			EMPLAC		METHOD
□Aquifer Test	□Stormwater Drainage	28	ft.	50	ft.	#2 3	Sand			PC	bur
□Experimental Technology	□Subsidence Control	20 0		NCLO		ch additional	ahaate	if nonego		_	
□Geothermal (Closed Loop)	□Tracer	FROM		TO	og (atta					ock type.	grain size, etc.)
Geothermal (Heating/Cooling Return)	Other (explain under #21 Remarks)	0	ft.	8.5	ft.		Bre	own Or	ange	Silt (F	ill)
5/25/18	well ID#_MW-1	8.5	ft.	19	ft.		Br	own Si	lt (Res	siduun	n)
4. Date Well(s) Completed: 5/25/18	Well ID#	19	ft.	21	ft.			PWR	Gray	Silt	
5a. Well Location:		21	ft.	50	ft.			Si	Itstone)	
Mann Store			ft.		ft.						
Facility/Owner Name	Facility ID# (if applicable)	-	ft.		ft.						
7070 NC Highway 87 Pitts	boro NC	-	ft.	-	ft.						
Physical Address, City, and Zip		21. R	EMAI	RKS	-	-					
Chatham											
County	Parcel Identification No. (PIN)							_			
5b. Latitude and Longitude in degrees/n (if well field, one lat/long is sufficient)		22. Co	ertific	ation:		. (21)			(1)
35.804008 N -79	0.250521 w	0	hl	5a	ĺ	N	1			6	14/18
6. Is (are) the well(s): Permanent of	r 🗆 Temporary	By sig	ning th	is form,	I hereb						ed in accordance
If this is a repair, fill out known well construction		сору ој	^r this r	ecord ha	is been p	provided to the	e well d	owner.	Construc	uon sia	ndards and that a
repair under #21 remarks section or on the back 8. Number of wells constructed: 1	of this form.	You n	nay u	se the l	back of	tional well of this page to may also at	о ргоч	vide addi			e details or well sary.
For multiple injection or non-water supply wells submit one form.		-				TIONS					
9. Total well depth below land surface: For multiple wells list all depths if different (example)	50 (ft.) mple- 3@200' and 2@100')				lls: Su follow		orm v	vithin 30) days	of com	pletion of well
10. Static water level below top of casing If water level is above casing, use "+"	;: (ft.)		:			ater Resou Service Cer					
11. Borehole diameter:	(in.)	24a at	ove,	also su	ıbmit a	copy of th					n to the address : completion of w
12. Well construction method: <u>Air</u> (i.e. auger, rotary, cable, direct push, etc.)				n of W		esources, U					rol Program,
FOR WATER SUPPLY WELLS ONLY				1630	5 Mail 1	Service Cer & Injection ¹	ter, R	kaleigh, I			
	Method of test:	Also	submi	t one	copy o	f this form county heal	withi	n 30 da			
13b. Disinfection type:	Amount:	constr									

	GROL	JNDWA	TER SAI	MPLIN	G FORM					&
	Project Name:	Mann's Store	9						(1) :	
	Project Location:	Pittsboro NC	2							
	Project Number:	4305-18-110)				Pu	rge Date:	May 25,	2018
	Source Well:	MW-1					Purge Tir	ne (Min.):	16	
	Locked?:	Yes					_	ple Date:	May 25,	2018
	Sampled By:							ple Time:	- , -,	
	Weather:							Air Temp:		°F
Fauip	ment Calibration Information:							ai remp.		1
-46-							1			1
	Equipment	Date	Time	c	alibration Sol		Cali	bration Che	eck	-
	pH				4.00, 7.00, 10.				·C / cm	
	Conductivity					µS/cm		ł	uS/cm	J
Water	r Level & Well Data									
	Mea	suring Point:	Top of	Casing	1		Well Vol	ume		1
		oth to Water:	34.43	ft-TOC		Well Dia		2	inch	1
		Well Depth:	50.00	ft-TOC		Well Vo		2.5	gal	1
	Height of W		15.57	feet		3 * Well V	Volume	7.6	gal	1
		reen Length:	20	ft-GRD		5 * Well V	Volume	12.7	gal	
	Sti	ckup Height:	0	ft-GRD						-
Well P	Purging Information									
				-			1			1
	Purge Method:	Ва	iler	Purg	ge Start Time:	12:57	End Time:	13	:13	J
	Total Volume Purged:	4	.0	gal		Well F	Purged Dry?:	N	lo	1
Field F	D			-						
riela i	Parameters									
	Cumulative Volume	Time	рН	Temp	Cond	Turbidity		Comments		
	(Gal)		(s.u.)	(°C)	μS/cm	(NTU)				
	1.0	13:00	7.0	20.4	2,190					-
	2.5 4.0	13:08 13:12	6.8 6.7	18.3 17.1	2,490 2,630		Durc	ged dry at 4	aal	-
	4.0	15.12	0.7	17.1	2,050		Fulg	jeu ury at 4	yai	1
										1
										1
	Sam	ple Method:	Bai	ler	1	Sample Time:				
Analyt	tical Data						•	a		
Analy										_
	Method	Qty	Container	Pres.	Me	thod	Qty	Container	Pres.	
									_	
										1
]
Name				Signature				D	ate	
	n Poolo			0-6-	21				E/DE/DO	19
(1) JIN	n Peele			1-02				. 🗕	5/25/20	010
Notes:										

	W	ATER	SUPP	LY WE	ELL SAI	MPLIN	g fori	N				&
	Project Name:	Mann's Store	2								m	-
	Project Location:			Pitts	sboro, NC							
	Project Number:			430	5-18-110			S	ample Date:			5/25/201
	Client Name/Contact:			N	ICDEQ			Water Sup	oply Well ID:	WSW-1		
	Weather:			9	Sunny			W	ell Address:			
	Air Temp (°F):				85			0	wner Name:			
	POE Present (Y/N):				No			Owner	Phone No.:			
Equipment C	Calibration Information:											
	Equipment	Dat	te	Ti	ime	Calib	oration Soluti	on	Ca	libration Chee	:k	
	рН	5/25	/18	11	L:20	4.	00, 7.00, 10.00		4.01	7.00	10.02	
	Conductivity	5/25	/18	11	L:20		1413	μS/cm		1,411	Units	
Well Purging	g Information											
Г		Purge Ra	te (GPM):		7.0			Purae	Start Time:	11:2	5]
		Volume Pu			-7,875.0				e End Time:			
			J					. 9				1
Field Parame	eters and Sampling											_
	Total Volume (Gal)	Tin	ne	рН	(s.u.)	Tempe	rature	°C	Condu	uctivity	mS/cm	
	7.00	11:2	26	6	6.7		18.8			2.6		
	15.00	11:3	31	6	5.6		17.7			2.84		
	22.00	11:3	36	6.	.69		17.5			2.91		
	28.00	11:4			.66		17.8			2.96		
	35.00	11:4	15	6.	.68		17.8			2.89		
	Sample	e ID			Sample	Location		Sampl	e Date	Sample	Time]
	WSW	-1			Spigot on S	Side of House	•	5/25/	/2018	11:5	0	
	Method	Qty	Cont	ainer	Pres.	Met	hod	Qty	Con	tainer	Pres.	
	VOCs 8260	3	40mL	VOAs	HCI			~ ~ /				
	Additional Comments (de	escription of	location of	f sample po	ort, water wel	l, filters, etc.)			Well / S	System Photo	graphs	
			m odor froi									
		:	Site Sketch									
Name				Signature						Date		
(1) Jim Pe	ele			Q=z	21					5/25/201	8	
										0,20,201	-	
(2)												
<u> </u>										Revision:	9/1/17	

Appendix VI– Laboratory Analytical Reports and Chain of Custody Forms

June 6, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Pittsboro, NC Client Job Number: Project Number: 4305-18-110 Laboratory Work Order Number: 18E1498

Enclosed are results of analyses for samples received by the laboratory on May 25, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Benj K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	7
18E1498-01	7
18E1498-02	11
18E1498-03	14
Sample Preparation Information	16
QC Data	17
Volatile Organic Compounds by GC/MS	17
B204551	17
B204720	21
B204809	25
Petroleum Hydrocarbons Analyses - VPH	30
B204406	30
B204608	31
Flag/Qualifier Summary	33
Certifications	34
Chain of Custody/Sample Receipt	38

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 6/6/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-110

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18E1498

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Pittsboro, NC

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SS-1	18E1498-01	Soil		MADEP-VPH-Feb 2018 Rev 2.1 SM 2540G SW-846 8260B	
MW-1	18E1498-02	Ground Water		MADEP-VPH-Feb 2018 Rev 2.1 SM21-22 6200B	
WSW-1	18E1498-03	Water		SM21-22 6200B	

EXECUTIVE SUMMARY

Client ID: SS-1	Lab I	D: 18E1498-01				
Analyte	Results/Qual		DL	RL	Units	Method
% Solids	77.7				% Wt	SM 2540G
Client ID: MW-1	Lab I	D: 18E1498-02				
Analyte	Results/Qual		DL	RL	Units	Method
1,2,4-Trimethylbenzene	42		0.18	0.50	μg/L	SM21-22 6200B
1,3,5-Trimethylbenzene	7.5		0.13	0.50	μg/L	SM21-22 6200B
Benzene	63		0.12	0.50	μg/L	SM21-22 6200B
Diisopropyl Ether (DIPE)	52		0.18	0.50	μg/L	SM21-22 6200B
Ethylbenzene	52		0.13	0.50	μg/L	SM21-22 6200B
Isopropylbenzene (Cumene)	12		0.12	0.50	μg/L	SM21-22 6200B
m+p Xylene	35		0.26	1.0	μg/L	SM21-22 6200B
Methyl tert-Butyl Ether (MTBE)	35		0.090	0.50	μg/L	SM21-22 6200B
Naphthalene	29		0.12	5.0	μg/L	SM21-22 6200B
n-Butylbenzene	4.2		0.15	0.50	μg/L	SM21-22 6200B
n-Propylbenzene	21		0.13	0.50	μg/L	SM21-22 6200B
o-Xylene	0.82		0.13	0.50	μg/L	SM21-22 6200B
p-Isopropyltoluene (p-Cymene)	0.84		0.15	0.50	μg/L	SM21-22 6200B
sec-Butylbenzene	3.5		0.13	0.50	μg/L	SM21-22 6200B
tert-Butylbenzene	0.35 J		0.12	0.50	μg/L	SM21-22 6200B
Toluene	1.9		0.17	0.50	μg/L	SM21-22 6200B
C5-C8 Aliphatics	770		50	100	μg/L	MADEP-VPH-Feb 2018 I
C9-C10 Aromatics	360		28	100	μg/L	MADEP-VPH-Feb 2018 I
Unadjusted C5-C8 Aliphatics	870		50	100	μg/L	MADEP-VPH-Feb 2018 I
Unadjusted C9-C12 Aliphatics	550		36	100	$\mu g/L$	MADEP-VPH-Feb 2018 I
Client ID: WSW-1	Lab I	D: 18E1498-03				
Analyte	Results/Qual		DL	RL	Units	Method
1,2,4-Trimethylbenzene	0.55		0.18	0.50	μg/L	SM21-22 6200B
Benzene	3.9		0.12	0.50	μg/L	SM21-22 6200B

1,2,4-TIIIIetiiyidenzene	0.33		0.18	0.50	µg/L	SM21-22 0200D
Benzene	3.9		0.12	0.50	μg/L	SM21-22 6200B
Diisopropyl Ether (DIPE)	6.9		0.18	0.50	μg/L	SM21-22 6200B
Isopropylbenzene (Cumene)	0.19	J	0.12	0.50	μg/L	SM21-22 6200B
m+p Xylene	1.2		0.26	1.0	μg/L	SM21-22 6200B
Methyl tert-Butyl Ether (MTBE)	3.8		0.090	0.50	μg/L	SM21-22 6200B
n-Propylbenzene	0.18	J	0.13	0.50	μg/L	SM21-22 6200B
Styrene	0.25	J	0.15	0.50	μg/L	SM21-22 6200B

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method MA VPH only hydrocarbon ranges were requested and reported.

MADEP-VPH-Feb 2018 Rev 2.1

MADEP-VPH-FeD 2018 KeV 2.1	
Qualifications:	
O-01	
Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount. Analyte & Samples(s) Qualified:	
18E1498-01[SS-1]	
SM21-22 6200B	
Qualifications:	
L-04	
Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:	
2,2-Dichloropropane 18E1498-02[MW-1], B204720-BLK1, B204720-BS1, B204720-BSD1, S023857-CCV1	
Acetone 18E1498-02[MW-1], B204720-BLK1, B204720-BS1, B204720-BSD1, S023857-CCV1	
Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified: 1.2.3-Trichlorobenzene	
B204809-BS1	
SW-846 8260B	
Qualifications:	
L-02	
Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:	
1,1-Dichloroethylene B204551-BS1, B204551-BSD1	
Bromochloromethane B204551-BS1, B204551-BSD1	
R-05	
Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound. Analyte & Samples(s) Qualified:	
Tetrahydrofuran 18E1498-01[SS-1], B204551-BLK1, B204551-BS1, B204551-BSD1	
V-34	
Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated. Analyte & Samples(s) Qualified:	
Bromomethane	

B204551-BS1, B204551-BSD1, S023697-CCV1

MADEP-VPH-Feb 2018 Rev 2.1

No significant modifications were made to the method. All VPH samples were received preserved properly at pH < 2 in the proper containers as specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmID, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III.

No significant modifications were made to the method. All VPH samples were received properly in methanol with a soil/methanol ratio of 1:1 +/- 25% completely covered by methanol in the proper containers specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmID, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kappennel

Tod E. Kopyscinski Laboratory Director

Project Location: Pittsboro, NC Date Received: 5/25/2018 Field Sample #: SS-1

Sample ID: 18E1498-01

Sample Matrix: Soil

trans-1,3-Dichloropropene

Diethyl Ether

ND

ND

0.0013

0.027

0.00093

0.0024

mg/Kg dry

mg/Kg dry

1

1

Sampled: 5/24/2018 09:35

headRankRa	Sample Matrix. Son			Volatil	e Organic Con	npounds by G	C/MS				
Actions ND 0.13 0.051 mg/kg dy 1 SW-446 \$200B 5301B	Analyte	Results	RL	DL	Units	Dilution	Flag/Oual	Method			Analyst
Accyonania ND 0.003 0.0031 0.0037 mg kg dry 1 NN 446 K2001 50.018 50.018 0.016 MTF Bernscher ND 0.002 0.0003 mg kg dry 1 NN 466 K2001 50.018 50.018 60.016 MTF Bernscherter ND 0.002 0.0011 mg kg dry 1 SN 446 K2001 50.018 50.018 60.016 MTF Bernscheltoromethane ND 0.002 0.0019 mg kg dry 1 SN 446 K2001 50.018 50.018 MTF Brenscheltoromethane ND 0.022 0.0098 mg kg dry 1 SN 446 K2001 50.018 50.018 MTF MTF Brenscheltoromethane ND 0.027 0.028 mg kg dry 1 SN 446 K2001 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.018 50.							Ting/Quai		-	-	
ier-Anyl Mehyl Ebler (TAMF) ND 0.003 0.003 norpsky dry 1 SN-46 8200 50118 50118 MEF Harners ND 0.002 0.001 mgk dry 1 SN-46 8200 50118 50118 ME ME Bronnschuteners	Acrylonitrile										
BareareNDND0.0070.0097 <t< td=""><td>tert-Amyl Methyl Ether (TAME)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	tert-Amyl Methyl Ether (TAME)										
Innombanyme ND 0.0027 0.0027 mgk g dy 1 SW 446 42601 SU 018 MI Bronedicilorenchane ND 0.0027 0.008 mgk g dy 1 SW 446 82608 SU 018 MI Bronedicilorenchane ND 0.002 0.008 mgk g dy 1 SW 446 82608 SU 018 MI MI Bronedicilorenchane ND 0.013 0.028 mgk g dy 1 SW 446 82608 SU 018 MI MI Ethalmon (MEA) ND 0.027 0.003 mgk g dy 1 SW 446 82608 SU 018 MI											
Bronochlaromethane ND 0.0027 0.0027 0.00800 mgKg dy 1 SW-464 6200B S-0018 JS018 ID Bronochlaromethane ND 0.0027 0.0080 mgKg dy 1 SW-464 6200B S-0018 S-0018 MTF Bronochran ND 0.003 0.003 mgKg dy 1 SW-464 6200B S-0018 S-0018 NDF NDF 2-haumonethane ND 0.033 0.033 mgKg dy 1 SW-464 6200B S-0018 S-0018 NDF NDF Debugberazce ND 0.0027 0.0037 mgKg dy 1 SW-464 6200B S-0018 S-0018 NDF NDF See-Buybherazce ND 0.0027 0.0017 mgKg dy 1 SW-464 8200B S-0018 S-0018 NDF NDF <td>Bromobenzene</td> <td></td>	Bromobenzene										
BenendichlorenchaneND0.00270.0080ng/kg dy mg/kg dy1SNN-466 52085.0181.018MFTBenoniorinND0.00270.0019ng/kg dy mg/kg dy1SNN-466 52085.01810MFT2-hatanone (MEK)ND0.0530.023ng/kg dy mg/kg dy1SNN-466 52085.01810MFT2-hatanone (MEK)ND0.0530.020ng/kg dy mg/kg dy1SNN-466 52085.0185.01810MFT2-hatanone (MEK)ND0.0270.020ng/kg dy mg/kg dy1SNN-466 52085.0185.01810MFTendraphicenceND0.0270.010ng/kg dy mg/kg dy1SNN-466 52085.0185.01810MFTtarl-ButylbezeneND0.0270.010ng/kg dy mg/kg dy1SNN-466 52085.0185.01810MFTCarlon DavifformND0.0270.011ng/kg dy mg/kg dy1SNN-466 52085.0185.01810MFTCarlon DavifformND0.0270.021ng/kg dy1SNN-466 52085.0185.01810MFTCarlon DavifformND0.0270.021ng/kg dy1SNN-466 52085.0185.01810MFTCarlon DavifformND0.0270.021ng/kg dy1SNN-466 52085.0185.01810MFTCarlon DavifformND0.0270.021ng/kg dy <td>Bromochloromethane</td> <td>ND</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>MFF</td>	Bromochloromethane	ND				1					MFF
BromoformND0.00270.003ng/kg up1NN-46 820085.01810.0181M FFBromonhameND0.0130.005ng/kg up1NN-46 820085.00186.0181M FF2-Buanase (MEA)ND0.0530.023ng/kg up1NN-46 820085.00186.0181M FF2-Buanase (MEA)ND0.00270.0003ng/kg up1NN-46 820085.00185.0018M FF8-BuyhbezeneND0.00270.0017ng/kg up1NN-46 820085.00185.0018M FF8e-BuyhbezeneND0.00270.0027ng/kg up1NN-46 820085.00185.0018M FF1erl-BuylEbpl (Dier (TBEE)ND0.00270.0027ng/kg up1NN-46 820085.00185.0018M FFCarbon TanchindeND0.00270.0027ng/kg up1NN-46 820085.00185.0018M FFChorocharceND0.00270.0027ng/kg up1 <td< td=""><td>Bromodichloromethane</td><td>ND</td><td>0.0027</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>MFF</td></td<>	Bromodichloromethane	ND	0.0027			1					MFF
BrononshhaneND0.0130.005mgKg dy1SNR-46 8208S.0180.018M F2-butinon (MEK)ND0.0530.023mgKg dy1SNR-46 8208S.018S.018M Ftent-buty/Alcohol (TBA)ND0.0270.003mgKg dy1SNR-46 8208S.018S.018M Fsee-Buty/BuzzneND0.0070.001mgKg dy1SNR-46 8208S.018S.018M Fsee-Buty/BuzzneND0.0070.001mgKg dy1SNR-46 8208S.018S.018M Ftent-Buty/Biztner/TBEE)ND0.0070.001mgKg dy1SNR-46 8208S.018S.018M FCahon DisulfideND0.0070.000mgKg dy1SNR-46 8208S.018S.018M FCahon DisulfideND0.0070.000mgKg dy1SNR-46 8208S.018S.018M FCahon DisulfideND0.0070.000mgKg dy1SNR-46 8208S.018S.018M FChorodinameND0.0070.000mgKg dy1SNR-46 8208S.018S.018M FChorodinameND0.0070.000mgKg dy1SNR-46 8208S.018S.018M FChorodinameND0.0070.001mgKg dy1SNR-46 8208S.018S.018M FChorodinameND0.0070.001mgKg dy1SNR-46 8208S.018S.018	Bromoform	ND	0.0027	0.0019		1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
tert-Buryl Akcohol (TBA) ND 0.03 0.022 mg/kg dry 1 SW-846 82008 S7018 0.5118 0.016 MFF n-Buryl Buzzne ND 0.0027 0.0003 mg/kg dry 1 SW-846 82008 S7018 S7018 0.016 MFF see-Buryl Buryl Enber (TBEE) ND 0.0027 0.0013 mg/kg dry 1 SW-846 82008 S7018 S7018 0.016 MFF tert-Buryl Enbyl Enber (TBEE) ND 0.0013 0.0003 mg/kg dry 1 SW-846 82008 S7018 S7018 0.016 MFF Carbon Enzenberide ND 0.0027 0.0003 mg/kg dry 1 SW-846 82008 S7018 S7018 0.16 MFF Chorobenzene ND 0.0027 0.0003 mg/kg dry 1 SW-846 82008 S7018 S7018 0.16 MFF Chorobenzene ND 0.012 0.0023 mg/kg dry 1 SW-846 82008 S7018 S7018 0.16 MFF	Bromomethane	ND	0.013	0.0056		1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
text-Buly Akkoho (TBA) ND 0.03 0.023 mg/kg dry 1 SN-846 8200B S-7018 S-7018 MF P-Buly Ibezare ND 0.002 0.0003 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.018 0.016 MF see-Duty Ibezare ND 0.002 0.0027 0.002 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.016 MF text-Buly Ibezare ND 0.002 0.0027 0.0027 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.016 MFF Cahon Tarachoride ND 0.002 0.0003 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.016 MFF Chorocharanc ND 0.002 0.003 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.016 MFF Chorocharanc ND 0.002 0.002 mg/kg dry 1 SN-846 8200B S-7018 S-7018 0.016 MFF	2-Butanone (MEK)	ND	0.053	0.023		1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
see-Buylbenzene ND 0.0027 0.0013 mg/kg dy 1 SW-446 8260B 530/18 5.30/18 0.010 MFF tert-Buylbenzene ND 0.0027 0.0020 mg/kg dy 1 SW-446 8260B 530/18 530/18 630/18 10.10 MFF tert-Buylbenzene ND 0.0027 0.0071 mg/kg dy 1 SW-446 8260B 530/18 530/18 530/18 10.10 MFF Carbon Distifiade ND 0.0027 0.0003 mg/kg dy 1 SW-446 8260B 530/18 <	tert-Butyl Alcohol (TBA)	ND	0.053	0.028	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ter-BulylEnzene ND 0.002 mg/Kg dry 1 SW-846 8200B 530/18 530/18 0.50/16 MFF tert-BulylEther (TBEE) ND 0.002 0.0057 mg/Kg dry 1 SW-846 8200B 530/18 530/18 0.50/18 0.6016 MFF Carbon Tetrachloride ND 0.002 0.0011 mg/Kg dry 1 SW-846 8200B 530/18 530/18 0.6016 MFF Carbon Tetrachloride ND 0.0027 0.0009 mg/Kg dry 1 SW-846 8200B 530/18 530/18 0.6016 MFF Chlorodhizmomethane ND 0.0027 0.0023 mg/Kg dry 1 SW-846 8200B 530/18 <t< td=""><td>n-Butylbenzene</td><td>ND</td><td>0.0027</td><td>0.00093</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260B</td><td>5/30/18</td><td>5/30/18 10:16</td><td>MFF</td></t<>	n-Butylbenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ter-Bayl Ehryl Ehryl TBEE ND 0.0013 0.0008 mg/kg dry 1 SW-846 8200B 5/30/18 5/30/18 0.5/	sec-Butylbenzene	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Carbon Disutifiée ND 0.0077 mg/kg dry 1 SW-346 8260B S3018 10.10 MFF Carbon Tetrachloride ND 0.0027 0.0011 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF Chlorobnzene ND 0.0027 0.0003 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF Chlorobnzene ND 0.002 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF Chlorothane ND 0.0023 0.0023 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF Chlorothane ND 0.0027 0.0011 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF 2-Chlorothane ND 0.0027 0.0011 mg/kg dry 1 SW-346 8260B S3018 S3018 10.16 MFF 2-Chlorothane ND 0.0027 0.0011 mg/kg dry 1 SW-346 8260B S3018 S3018	tert-Butylbenzene	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Carbon Tetrachloride ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 53/018 53/018 0.018 0.016 MFF Chlorodbromomethane ND 0.0027 0.0003 mg/Kg dry 1 SW-846 8260B 53/018 53/018 10.16 MFF Chlorodbromomethane ND 0.0027 0.0003 mg/Kg dry 1 SW-846 8260B 53/018 53/018 10.16 MFF Chlorodbromomethane ND 0.027 0.0003 mg/Kg dry 1 SW-846 8260B 53/018 53/018 10.16 MFF Chlorodbromomethane ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 53/018 5/3/018 10.16 MFF 2.Chlorotoluene ND 0.0027 0.0013 mg/Kg dry 1 SW-846 8260B 5/3/018 5/3/018 10.16 MFF 1.2-Dibromomethane (EDB) ND 0.0027 0.0003 mg/Kg dry 1 SW-846 8260B 5/3/018 5/3/018 5/3/018	tert-Butyl Ethyl Ether (TBEE)	ND	0.0013	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Chlorodenzene ND 0.0027 0.0003 mg/kg dry 1 NB 48 6200B 5.3018 10.10 MFF Chlorodhane ND 0.003 0.0003 mg/kg dry 1 SW-846 8200B 5.3018 5.3018 10.10 MFF Chlorodhane ND 0.0027 0.0011 mg/kg dry 1 SW-846 8200B 5.3018 5.3018 10.10 MFF 4.2-Dibromochane (DBCP) ND 0.0027 0.0013 mg/kg dry 1 SW-846 8200B 5.3018 5.3018 10.10 MFF 1.2-Dibromochane (CBB) ND 0.0027 0.0003 mg/kg dry 1 SW-846 8200B 5.3018	Carbon Disulfide	ND	0.027	0.0057	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Number of the formation of the for	Carbon Tetrachloride	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ChloroethaneND0.0270.002mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFFChloroethaneND0.0330.0093mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFFChloroethaneND0.0130.0085mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF2-ChlorotolueneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF2-ChlorotolueneND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_2-Dibromor-3-chloropropane (DBCP)ND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_2-Dibromorthane (EDB)ND0.00270.0003mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_2-DichlorobenzeneND0.00270.0003mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_3-DichlorobenzeneND0.00270.0003mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_4-DichlorobenzeneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_4-DichloroethaneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1_4-DichloroethyleneND0.00270.0017mg/kg dry1 <td< td=""><td>Chlorobenzene</td><td>ND</td><td>0.0027</td><td>0.00093</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260B</td><td>5/30/18</td><td>5/30/18 10:16</td><td>MFF</td></td<>	Chlorobenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Chloroform ND 0.003 0.003 ng/kg dry 1 NR-16.00 S/30/18 S/30/18 S/30/18 0.010 MF Chloroform ND 0.002 0.0011 mg/kg dry 1 SW-846 8260B 5/30/18 5/30/18 5/30/18 5/30/18 10.013 MF 2-Chlorotoluene ND 0.0027 0.0011 mg/kg dry 1 SW-846 8260B 5/30/18 5/30/18 5/30/18 10.013 MF 1_2-Dibromo-3-chloropropane (DBCP) ND 0.0027 0.0013 mg/kg dry 1 SW-846 8260B 5/30/18 5/30/18 10.016 MFF 1_2-Dibromo-shchoropropane (DBCP) ND 0.0027 0.0003 mg/kg dry 1 SW-846 8260B 5/30/18 5/30/18 5/30/18 10.16 MFF 1_2-Dichlorobenzene ND 0.0027 0.0003 mg/kg dry 1 SW-846 8260B 5/30/18 5/30/18 5/30/18 10.16 MFF 1_2-Dichlorobenzene ND 0.0027 0.0003 mg/k	Chlorodibromomethane	ND	0.0013	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ChloromethaneND0.0130.0085mg/kg dry1NR-86 8260B5/30/185/30/1810:16MFF2-ChlorotolueneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF4-ChlorotolueneND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-Dibromo-3-chloropropane (DBCP)ND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-Dibromoethane (EDB)ND0.00270.0009mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroberzeneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichloroberzeneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichloroberzeneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichloroberzeneND0.0270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichloroberzeneND0.0270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichloroberzeneND0.0270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF<	Chloroethane	ND	0.027	0.0020	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
2-ChlorotolueneND0.00270.0011mg/kg dry1NUNU0.00270.0011mg/kg dry14-ChlorotolueneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.2-Dibromo-3-chloropropane (DBCP)ND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.2-Dibromoethane (EDB)ND0.00270.0008mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.2-DichlorobenzeneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichlorobenzeneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MF	Chloroform	ND	0.0053	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
A-ChloroblueneND0.00270.0011mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,2-Dibromo-3-chloropropane (DBCP)ND0.00270.0013mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,2-Dibromo-thane (EDB)ND0.00270.0008mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,2-DichlorobenzeneND0.00270.00093mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,3-DichlorobenzeneND0.00270.00093mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,4-DichlorobenzeneND0.00270.0011mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,4-DichlorobenzeneND0.00270.0017mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,4-DichlorobenzeneND0.00270.0017mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,1-DichloroethaneND0.00270.0017mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SN-846 8260B5/30/185/30/1810.16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SN-846 8260B5/30/185/30/1810.16 <td< td=""><td>Chloromethane</td><td>ND</td><td>0.013</td><td>0.0085</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260B</td><td>5/30/18</td><td>5/30/18 10:16</td><td>MFF</td></td<>	Chloromethane	ND	0.013	0.0085	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1.2-Dibromo-3-chloropropane (DBCP)ND0.00270.0015mg/kg dry1SW-846 8260B5/30/185/30/181/30/1810.16MFF1.2-Dibromoethane (EDB)ND0.00130.0013mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.2-DibrloroethaneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.2-DichloroethaneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.3-DichloroethaneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichloroethaneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichloroethaneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.4-DichloroethaneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.1-DichloroethaneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810.16MFF1.1-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/185/30/1810.16MFF1.2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/18<	2-Chlorotoluene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1.2-Dirbomoethane (EDB)ND0.00130.0013mg/Kg dry1SW-846 8260B5/30/185/30/180/116MFFDirbomomethaneND0.00270.00080mg/Kg dry1SW-846 8260B5/30/185/30/1810/116MFF1,2-DichlorobenzeneND0.00270.00093mg/Kg dry1SW-846 8260B5/30/185/30/1810/116MFF1,3-DichlorobenzeneND0.00270.00093mg/Kg dry1SW-846 8260B5/30/185/30/1810/116MFF1,4-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFF1,4-Dichloro-2-buteneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFFDichlorodifluoromethane (Freon 12)ND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFF1,1-DichloroethaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810/16<	4-Chlorotoluene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
DirborND0.00270.00080mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichlorobenzeneND0.00270.00093mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,3-DichlorobenzeneND0.00270.00093mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,4-DichlorobenzeneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFFDichloroethaneND0.0270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,1-DichloroethaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-Dichl	1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0027	0.0015	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2-DichlorobenzeneND0.00270.00093mg/Kg dry1SW-846 8260B5/30/185/30/186/30/18MFF1,3-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,4-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,4-Dichloro-2-buteneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFFDichlorodifluoromethane (Freon 12)ND0.0270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,1-DichloroethaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,2-DichloroethaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,1-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/185/30/1810.16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810.16MFF1,2-DichloropropaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/18 <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>0.0013</td> <td>0.0013</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>5/30/18</td> <td>5/30/18 10:16</td> <td>MFF</td>	1,2-Dibromoethane (EDB)	ND	0.0013	0.0013	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,3-DichlorobenzeneND0.00270.00093mg/kg dry1SW-846 8260B5/30/185/30/18 10:16MFF1,4-DichlorobenzeneND0.00270.0011mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFFtrans-1,4-Dichloro-2-buteneND0.00230.0028mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFFDichlorodifluoromethane (Freon 12)ND0.0270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,1-DichloroethaneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/kg dry1SW-846 8260B5/30/185/30/1810:16	Dibromomethane	ND	0.0027	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,4-DichlorobenzeneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/18 10:16MFFtrans-1,4-Dichloro-2-buteneND0.00530.0028mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFFDichlorodifluoromethane (Freon 12)ND0.0270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,1-DichloroethaneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0011mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0012mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,2-DichloroethyleneND0.00270.0017mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF1,3-DichloropropaneND0.00270.0012mg/Kg dry1SW-846 8260B5/30/185/30/1810:16MFF2,2-DichloropropaneND0.00270.0012mg/Kg dry1SW-846 8260B5/30/185/30/1810:16 <t< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td>0.0027</td><td>0.00093</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260B</td><td>5/30/18</td><td>5/30/18 10:16</td><td>MFF</td></t<>	1,2-Dichlorobenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
trans-1,4-Dichloro-2-butene ND 0.0053 0.0028 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF Dichlorodifluoromethane (Freon 12) ND 0.027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017	1,3-Dichlorobenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Dichlorodifluoromethane (Freon 12) ND 0.027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethane ND 0.0027 0.00093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10	1,4-Dichlorobenzene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1-Dichloroethane ND 0.0027 0.00093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0015 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF trans-1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloropropane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,3-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 <td>trans-1,4-Dichloro-2-butene</td> <td>ND</td> <td>0.0053</td> <td>0.0028</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>5/30/18</td> <td>5/30/18 10:16</td> <td>MFF</td>	trans-1,4-Dichloro-2-butene	ND	0.0053	0.0028	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2-Dichloroethane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF cis-1,2-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF trans-1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,3-Dichloropropane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:1	Dichlorodifluoromethane (Freon 12)	ND	0.027	0.0017	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1-Dichloroethylene ND 0.0053 0.0015 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF cis-1,2-Dichloroethylene ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF trans-1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloropropane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:1	1,1-Dichloroethane	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
visual circle ND 0.0027 0.0011 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF trans-1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloroethylene ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,3-Dichloropropane ND 0.0013 0.00093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0017 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16	1,2-Dichloroethane	ND	0.0027	0.0017	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
trans-1,2-Dichloroethylene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,2-Dichloropropane ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,3-Dichloropropane ND 0.0013 0.0093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF	1,1-Dichloroethylene	ND	0.0053	0.0015	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ND 0.0027 0.0017 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,3-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF	cis-1,2-Dichloroethylene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
ND 0.0013 0.00093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 2,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF	trans-1,2-Dichloroethylene	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
x,2-Dichloropropane ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF 1,1-Dichloropropene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 10:16 MFF	1,2-Dichloropropane	ND	0.0027	0.0017	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1-Dichloropropene ND 0.0027 0.0012 mg/Kg dry 1 SW-846 8260B 5/30/18 10:16 MFF	1,3-Dichloropropane	ND	0.0013	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
	2,2-Dichloropropane	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
cis-1,3-Dichloropropene ND 0.0013 0.00093 mg/Kg dry 1 SW-846 8260B 5/30/18 5/30/18 10:16 MFF	1,1-Dichloropropene	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
	cis-1,3-Dichloropropene	ND	0.0013	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF

MFF

Work Order: 18E1498

Page 7 of 40

5/30/18 10:16

SW-846 8260B

SW-846 8260B

5/30/18

5/30/18

Sampled: 5/24/2018 09:35

Project Location: Pittsboro, NC Date Received: 5/25/2018 Field Sample #: SS-1

Sample ID: 18E1498-01

Sample Matrix: Soil

			Volati	le Organic Com	pounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.0013	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,4-Dioxane	ND	0.13	0.076	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Ethylbenzene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Hexachlorobutadiene	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
2-Hexanone (MBK)	ND	0.027	0.014	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Isopropylbenzene (Cumene)	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0053	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Methylene Chloride	ND	0.027	0.0094	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.027	0.010	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Naphthalene	ND	0.0053	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
n-Propylbenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Styrene	ND	0.0027	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1,1,2-Tetrachloroethane	ND	0.0027	0.0024	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1,2,2-Tetrachloroethane	ND	0.0013	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Tetrachloroethylene	ND	0.0027	0.0017	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Tetrahydrofuran	ND	0.013	0.0029	mg/Kg dry	1	R-05	SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Toluene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2,3-Trichlorobenzene	ND	0.0027	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2,4-Trichlorobenzene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,3,5-Trichlorobenzene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1,1-Trichloroethane	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1,2-Trichloroethane	ND	0.0027	0.0016	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Trichloroethylene	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Trichlorofluoromethane (Freon 11)	ND	0.013	0.0015	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2,3-Trichloropropane	ND	0.0027	0.0015	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.013	0.0012	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,2,4-Trimethylbenzene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
1,3,5-Trimethylbenzene	ND	0.0027	0.00080	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Vinyl Chloride	ND	0.013	0.0015	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
m+p Xylene	ND	0.0053	0.0023	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
o-Xylene	ND	0.0027	0.00093	mg/Kg dry	1		SW-846 8260B	5/30/18	5/30/18 10:16	MFF
Surrogates		% Reco	overy	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		110		70-130					5/30/18 10:16	
Toluene-d8 4-Bromofluorobenzene		108 86.1		70-130 70-130					5/30/18 10:16 5/30/18 10:16	

Work Order: 18E1498

Sampled: 5/24/2018 09:35

Work Order: 18E1498

Table of Contents

Date Received:	5/25/2018
----------------	-----------

Project Location: Pittsboro, NC

Field Sample #: SS-1

Sample ID: 18E1498-01

Sample Matrix: Soil									
Sample Flags: O-01		Pet	roleum Hydrocarbo	ons Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.40							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	12	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	5/29/18	5/29/18 22:34	EEH
C5-C8 Aliphatics	ND	12	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	5/29/18	5/29/18 22:34	EEH
Unadjusted C9-C12 Aliphatics	ND	12	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	5/29/18	5/29/18 22:34	EEH
C9-C12 Aliphatics	ND	12	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	5/29/18	5/29/18 22:34	EEH
C9-C10 Aromatics	ND	12	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	5/29/18	5/29/18 22:34	EEH
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2,5-Dibromotoluene (FID)		87.8	70-130					5/29/18 22:34	
2,5-Dibromotoluene (PID)		77.2	70-130					5/29/18 22:34	

	39 Spruce S	treet * East Lo	ongmeadow, MA 0	1028 * FAX 4	13/525-6405 * TEI	L. 413/525-2332			
Project Location: Pittsboro, NC	Sa	mple Description	on:				Work Orde	er: 18E1498	
Date Received: 5/25/2018									
Field Sample #: SS-1	Sa	mpled: 5/24/20	018 09:35						
Sample ID: 18E1498-01									
Sample Matrix: Soil									
	Conv	entional Chem	istry Parameters by	EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	77.7		% Wt	1		SM 2540G	6/4/18	6/5/18 7:16	MJR

Project Location: Pittsboro, NC

Date Received: 5/25/2018 Field Sample #: MW-1

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 18E1498

Sample ID: 18E1498-02	Si	tart Date/T	ime: 5/25/20	018 1:25:00F	ΡM					
Sample Matrix: Ground Water	St	top Date/T	ime: 5/25/2	018 1:30:00	PM					
			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	9.7	μg/L	1	L-04	SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Benzene	63	0.50	0.12	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Bromobenzene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Bromochloromethane	ND	0.50	0.22	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Bromodichloromethane	ND	0.50	0.30	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Bromoform	ND	2.0	0.21	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Bromomethane	ND	5.0	0.94	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
2-Butanone (MEK)	ND	5.0	2.4	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
n-Butylbenzene	4.2	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
sec-Butylbenzene	3.5	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
tert-Butylbenzene	0.35	0.50	0.12	μg/L	1	J	SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Carbon Tetrachloride	ND	0.50	0.25	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Chlorobenzene	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Ethanol	ND	50	28	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Chlorodibromomethane	ND	0.50	0.10	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Chloroethane	ND	0.50	0.28	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Chloroform	ND	0.50	0.22	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Chloromethane	ND	2.0	0.55	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
2-Chlorotoluene	ND	0.50	0.12	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
4-Chlorotoluene	ND	0.50	0.14	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,3-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,4-Dichlorobenzene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	0.28	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1-Dichloroethane	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2-Dichloroethane	ND	1.0	0.19	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1-Dichloroethylene	ND	0.50	0.21	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
cis-1,2-Dichloroethylene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
trans-1,2-Dichloroethylene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2-Dichloropropane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,3-Dichloropropane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
2,2-Dichloropropane	ND	0.50	0.21	μg/L	1	L-04	SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1-Dichloropropene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
cis-1,3-Dichloropropene	ND	0.50	0.12	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
trans-1,3-Dichloropropene	ND	0.50	0.11	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Diisopropyl Ether (DIPE)	52	0.50	0.18	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Ethylbenzene	52	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
2-Hexanone (MBK)	ND	5.0	1.5	μg/L μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Isopropylbenzene (Cumene)	12	0.50	0.12	μg/L μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
p-Isopropyltoluene (p-Cymene)	0.84	0.50	0.12	μg/L μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Methyl tert-Butyl Ether (MTBE)		0.50			1					EEH
Methylene Chloride	35 ND	5.0	0.090 3.2	μg/L ug/I	1		SM21-22 6200B SM21-22 6200B	6/1/18 6/1/18	6/2/18 13:44	EEH
4-Methyl-2-pentanone (MIBK)				μg/L μg/I					6/2/18 13:44	
meanyi-2-pentatione (wiDK)	ND	5.0	1.5	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44 Page 11	EEH

Project Location: Pittsboro, NC

Date Received: 5/25/2018

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 18E1498

Table of Contents

Field Sample #: MW-1										
Sample ID: 18E1498-02	S	tart Date/T	ime: 5/25	5/2018 1:25:00PM						
Sample Matrix: Ground Water	S	top Date/T	ime: 5/2:	5/2018 1:30:00PM	[
				tile Organic Com		C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Naphthalene	29	5.0	0.12	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
n-Propylbenzene	21	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Styrene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Tetrachloroethylene	ND	0.50	0.27	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Toluene	1.9	0.50	0.17	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2,4-Trichlorobenzene	ND	2.0	0.19	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1,1-Trichloroethane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,1,2-Trichloroethane	ND	0.50	0.24	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Trichloroethylene	ND	0.50	0.20	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2,3-Trichloropropane	ND	0.50	0.22	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,2,4-Trimethylbenzene	42	0.50	0.18	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
1,3,5-Trimethylbenzene	7.5	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Vinyl Acetate	ND	5.0	1.4	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Vinyl Chloride	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
m+p Xylene	35	1.0	0.26	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
o-Xylene	0.82	0.50	0.13	μg/L	1		SM21-22 6200B	6/1/18	6/2/18 13:44	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		88.4		70-130					6/2/18 13:44	
Toluene-d8		99.7		70-130					6/2/18 13:44	
4-Bromofluorobenzene		94.7		70-130					6/2/18 13:44	

Work Order: 18E1498

Date Received: 5/25/2018 Field Sample #: MW-1

Sample ID: 18E1498-02

Project Location: Pittsboro, NC

Start Date/Time: 5/25/2018 1:25:00PM Sample Matrix: Ground Water Stop Date/Time: 5/25/2018 1:30:00PM Petroleum Hydrocarbons Analyses - VPH

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	870	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	5/31/18	6/1/18 12:01	EEH
C5-C8 Aliphatics	770	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	5/31/18	6/1/18 12:01	EEH
Unadjusted C9-C12 Aliphatics	550	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	5/31/18	6/1/18 12:01	EEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	5/31/18	6/1/18 12:01	EEH
C9-C10 Aromatics	360	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	5/31/18	6/1/18 12:01	EEH
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2,5-Dibromotoluene (FID)		97.9	70-130					6/1/18 12:01	
2,5-Dibromotoluene (PID)		91.7	70-130					6/1/18 12:01	

Project Location: Pittsboro, NC

Date Received: 5/25/2018 Field Sample #: WSW-1 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 18E1498

Sample ID: 18E1498-03	St	tart Date/T	ime: 5/25/20	018 11:55:00	АМ					
Sample Matrix: Water				018 12:05:00						
					mpounds by G	C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	9.7	$\mu g/L$	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Benzene	3.9	0.50	0.12	$\mu g/L$	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Bromobenzene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Bromochloromethane	ND	0.50	0.22	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Bromodichloromethane	ND	0.50	0.30	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Bromoform	ND	2.0	0.21	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Bromomethane	ND	5.0	0.94	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
2-Butanone (MEK)	ND	5.0	2.4	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
n-Butylbenzene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
sec-Butylbenzene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
tert-Butylbenzene	ND	0.50	0.12	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Carbon Tetrachloride	ND	0.50	0.25	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Chlorobenzene	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Ethanol	ND	50	28	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Chlorodibromomethane	ND	0.50	0.10	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Chloroethane	ND	0.50	0.28	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Chloroform	ND	0.50	0.22	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Chloromethane	ND	2.0	0.55	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
2-Chlorotoluene	ND	0.50	0.12	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
4-Chlorotoluene	ND	0.50	0.14	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,3-Dichlorobenzene	ND	0.50	0.17	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,4-Dichlorobenzene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	0.28	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1-Dichloroethane	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2-Dichloroethane	ND	1.0	0.19	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1-Dichloroethylene	ND	0.50	0.21	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
cis-1,2-Dichloroethylene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
trans-1,2-Dichloroethylene	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2-Dichloropropane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,3-Dichloropropane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
2,2-Dichloropropane	ND	0.50	0.21	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1-Dichloropropene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
cis-1,3-Dichloropropene	ND	0.50	0.12	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
trans-1,3-Dichloropropene	ND	0.50	0.11	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Diisopropyl Ether (DIPE)	6.9	0.50	0.18	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Ethylbenzene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
2-Hexanone (MBK)	ND	5.0	1.5	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Isopropylbenzene (Cumene)	0.19	0.50	0.12	μg/L μg/L	1	J	SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
p-Isopropyltoluene (p-Cymene)	ND	0.50	0.12	μg/L μg/L	1	3	SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Methyl tert-Butyl Ether (MTBE)	3.8	0.50	0.090	μg/L μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Methylene Chloride	ND	5.0	3.2	μg/L μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
4-Methyl-2-pentanone (MIBK)	ND	5.0	1.5	μg/L μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
· ····································	IND.	5.0	1.5	μg/L	1		51V121-22 0200D	0/ 4/ 10	0/4/18 14.40	

Page 14 of 40

Project Location: Pittsboro, NC

Date Received: 5/25/2018

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 18E1498

Field Sample #: WSW-1										
Sample ID: 18E1498-03	S	tart Date/T	ime: 5/25	5/2018 11:55:00AN	А					
Sample Matrix: Water	S	top Date/T	ime: 5/2:	5/2018 12:05:00PM	Л					
				tile Organic Com		GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Naphthalene	ND	5.0	0.12	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
n-Propylbenzene	0.18	0.50	0.13	μg/L	1	J	SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Styrene	0.25	0.50	0.15	μg/L	1	J	SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.16	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Tetrachloroethylene	ND	0.50	0.27	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Toluene	ND	0.50	0.17	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2,4-Trichlorobenzene	ND	2.0	0.19	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1,1-Trichloroethane	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,1,2-Trichloroethane	ND	0.50	0.24	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Trichloroethylene	ND	0.50	0.20	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	0.15	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2,3-Trichloropropane	ND	0.50	0.22	µg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,2,4-Trimethylbenzene	0.55	0.50	0.18	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
1,3,5-Trimethylbenzene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Vinyl Acetate	ND	5.0	1.4	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Vinyl Chloride	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
m+p Xylene	1.2	1.0	0.26	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
o-Xylene	ND	0.50	0.13	μg/L	1		SM21-22 6200B	6/4/18	6/4/18 14:46	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		95.8		70-130					6/4/18 14:46	
Toluene-d8		100		70-130					6/4/18 14:46	
4-Bromofluorobenzene		90.0		70-130					6/4/18 14:46	

Sample Extraction Data

Prep Method: MA VPH-MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
18E1498-01 [SS-1]	B204406	7.00	6.60	05/29/18	
Prep Method: MA VPH-MADEP-VPH-Feb 2018 Rev	2.1				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E1498-02 [MW-1]	B204608	5	5.00	05/31/18	
Prep Method: % Solids-SM 2540G					
Lab Number [Field ID]	Batch			Date	
18E1498-01 [SS-1]	B204889			06/04/18	
Prep Method: SW-846 5030B-SM21-22 6200B Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E1498-02 [MW-1]	B204720	5	5.00	06/01/18	
Prep Method: SW-846 5030B-SM21-22 6200B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E1498-03 [WSW-1]	B204809	5	5.00	06/04/18	
Prep Method: SW-846 5035-SW-846 8260B					
Prep Method: SW-846 5035-SW-846 8260B Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204551 - SW-846 5035										
Blank (B204551-BLK1)]	Prepared &	Analyzed: 05	/30/18				
Acetone	ND	0.10	mg/Kg wet							
cerylonitrile	ND	0.0060	mg/Kg wet							
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.0020	mg/Kg wet							
Bromomethane	ND	0.010	mg/Kg wet							
-Butanone (MEK)	ND	0.040	mg/Kg wet							
ert-Butyl Alcohol (TBA)	ND	0.040	mg/Kg wet							
-Butylbenzene	ND	0.0020	mg/Kg wet							
ec-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.0060	mg/Kg wet							
Carbon Tetrachloride	ND	0.0020	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.020	mg/Kg wet							
Chloroform	ND	0.0040	mg/Kg wet							
Chloromethane	ND	0.010	mg/Kg wet							
-Chlorotoluene	ND	0.0020	mg/Kg wet							
-Chlorotoluene	ND	0.0020	mg/Kg wet							
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							
,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0020	mg/Kg wet							
,2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
rans-1,4-Dichloro-2-butene	ND	0.0040	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.020	mg/Kg wet							
,1-Dichloroethane	ND	0.0020	mg/Kg wet							
,2-Dichloroethane	ND	0.0020	mg/Kg wet							
,1-Dichloroethylene	ND	0.0040	mg/Kg wet							
is-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,3-Dichloropropane	ND	0.0010	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,1-Dichloropropene	ND	0.0020	mg/Kg wet							
is-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
rans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
Diethyl Ether	ND ND	0.020	mg/Kg wet							
Disopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
,4-Dioxane	ND ND	0.10	mg/Kg wet							
Cthylbenzene	ND ND	0.0020	mg/Kg wet							
Iexachlorobutadiene	ND ND	0.0020	mg/Kg wet							
-Hexanone (MBK)		0.020	mg/Kg wet							
sopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
-Isopropyltoluene (p-Cymene)	ND ND	0.0020	mg/Kg wet							
	ND	0.0020	mg/mg wet							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B204551 - SW-846 5035										
Blank (B204551-BLK1)				Prepared &	Analyzed: 05	/30/18				
Aethylene Chloride	ND	0.020	mg/Kg wet							
-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
laphthalene	ND	0.0040	mg/Kg wet							
-Propylbenzene	ND	0.0020	mg/Kg wet							
tyrene	ND	0.0020	mg/Kg wet							
,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
etrachloroethylene	ND	0.0020	mg/Kg wet							
etrahydrofuran	ND	0.010	mg/Kg wet							R-05
oluene	ND	0.0020	mg/Kg wet							
2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
,3,5-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,1-Trichloroethane	ND	0.0020	mg/Kg wet							
1,2-Trichloroethane	ND	0.0020	mg/Kg wet							
richloroethylene	ND	0.0020	mg/Kg wet							
richlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet							
2,3-Trichloropropane	ND	0.0020	mg/Kg wet							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.010	mg/Kg wet							
13) 2.4 Trimethellemene		0.0020	··· - /V - ··· +							
2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet							
3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet							
inyl Chloride	ND	0.010	mg/Kg wet							
n+p Xylene -Xylene	ND ND	0.0040 0.0020	mg/Kg wet mg/Kg wet							
urrogate: 1,2-Dichloroethane-d4	0.0524	0.0020	mg/Kg wet	0.0500		105	70-130			
urrogate: Toluene-d8	0.0541		mg/Kg wet	0.0500		103	70-130			
urrogate: 4-Bromofluorobenzene	0.0444		mg/Kg wet	0.0500		88.9	70-130			
-										
CS (B204551-BS1)		0.10	mg/Kg wet		Analyzed: 05		70.1(0			
crylonitrile	0.273	0.10	mg/Kg wet	0.200		137	70-160			
ert-Amyl Methyl Ether (TAME)	0.0234	0.0000	mg/Kg wet	0.0200		117	70-130			
	0.0200	0.0010		0.0200		99.9	70-130			
enzene	0.0241		mg/Kg wet	0.0200		120	70-130			
romobenzene cromochloromethane	0.0180	0.0020	mg/Kg wet mg/Kg wet	0.0200		90.2 145 *	70-130			1.02
romodichloromethane	0.0290	0.0020	mg/Kg wet	0.0200 0.0200			70-130			L-02
romoform	0.0220	0.0020	mg/Kg wet	0.0200		110 90.7	70-130 70-130			
romomethane	0.0181	0.0020	mg/Kg wet	0.0200		90.7 106	40-130			V-34
Butanone (MEK)	0.0212	0.010	mg/Kg wet	0.0200		106	40-130 70-160			v-34
-Butanone (MEK) ert-Butyl Alcohol (TBA)	0.220	0.040	mg/Kg wet	0.200			70-160 40-130			
-Butylbenzene	0.223	0.040	mg/Kg wet	0.200		112 96.0	40-130 70-130			
c-Butylbenzene	0.0192	0.0020	mg/Kg wet				70-130			
ert-Butylbenzene	0.0185	0.0020	mg/Kg wet	0.0200 0.0200		92.3 86.3	70-130 70-160			
rt-Butyl Ethyl Ether (TBEE)	0.0173	0.0020	mg/Kg wet	0.0200						
arbon Disulfide	0.0192	0.0010	mg/Kg wet	0.0200		96.1 124	70-130 70-130			
arbon Tetrachloride	0.0248 0.0188	0.0000	mg/Kg wet	0.0200		94.0	70-130			
hlorobenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.0 93.6	70-130			
hlorodibromomethane		0.0020	mg/Kg wet	0.0200		93.0 108	70-130			
hloroethane	0.0217	0.0010	mg/Kg wet	0.0200		108	70-130			
hloroform	0.0229	0.020	mg/Kg wet	0.0200		114	70-130			
hloromethane	0.0253	0.0040	mg/Kg wet	0.0200						
-Chlorotoluene	0.0181 0.0185	0.0020	mg/Kg wet	0.0200		90.6 92.7	70-130 70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

		Reporting	T T 1	Spike	Source	A/DE2	%REC	0.00	RPD	N T -	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B204551 - SW-846 5035											
LCS (B204551-BS1)			1	Prepared &	Analyzed: 05	/30/18					
4-Chlorotoluene	0.0184	0.0020	mg/Kg wet	0.0200		92.2	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	0.0173	0.0020	mg/Kg wet	0.0200		86.5	70-130				
1,2-Dibromoethane (EDB)	0.0214	0.0010	mg/Kg wet	0.0200		107	70-130				
Dibromomethane	0.0231	0.0020	mg/Kg wet	0.0200		115	70-130				
,2-Dichlorobenzene	0.0185	0.0020	mg/Kg wet	0.0200		92.3	70-130				
,3-Dichlorobenzene	0.0181	0.0020	mg/Kg wet	0.0200		90.6	70-130				
,4-Dichlorobenzene	0.0177	0.0020	mg/Kg wet	0.0200		88.3	70-130				
rans-1,4-Dichloro-2-butene	0.0169	0.0040	mg/Kg wet	0.0200		84.6	70-130				
Dichlorodifluoromethane (Freon 12)	0.00945	0.020	mg/Kg wet	0.0200		47.2	40-160			J	
,1-Dichloroethane	0.0245	0.0020	mg/Kg wet	0.0200		123	70-130				
,2-Dichloroethane	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130				
,1-Dichloroethylene	0.0267	0.0040	mg/Kg wet	0.0200		134 *	70-130			L-02	
is-1,2-Dichloroethylene	0.0242	0.0020	mg/Kg wet	0.0200		121	70-130				
rans-1,2-Dichloroethylene	0.0236	0.0020	mg/Kg wet	0.0200		118	70-130				
,2-Dichloropropane	0.0223	0.0020	mg/Kg wet	0.0200		112	70-130				
,3-Dichloropropane	0.0225	0.0010	mg/Kg wet	0.0200		112	70-130				
,2-Dichloropropane	0.0173	0.0020	mg/Kg wet	0.0200		86.4	70-130				
,1-Dichloropropene	0.0236	0.0020	mg/Kg wet	0.0200		118	70-130				
is-1,3-Dichloropropene	0.0184	0.0010	mg/Kg wet	0.0200		91.9	70-130				
ans-1,3-Dichloropropene	0.0178	0.0010	mg/Kg wet	0.0200		89.0	70-130				
iethyl Ether	0.0246	0.020	mg/Kg wet	0.0200		123	70-130				
iisopropyl Ether (DIPE)	0.0231	0.0010	mg/Kg wet	0.0200		116	70-130				
,4-Dioxane	0.247	0.10	mg/Kg wet	0.200		124	40-160				
thylbenzene	0.0185	0.0020	mg/Kg wet	0.0200		92.5	70-130				
lexachlorobutadiene	0.0173	0.0020	mg/Kg wet	0.0200		86.3	70-160				
-Hexanone (MBK)	0.235	0.020	mg/Kg wet	0.200		118	70-160				
sopropylbenzene (Cumene)	0.0195	0.0020	mg/Kg wet	0.0200		97.3	70-130				
-Isopropyltoluene (p-Cymene)	0.0185	0.0020	mg/Kg wet	0.0200		92.3	70-130				
Aethyl tert-Butyl Ether (MTBE)	0.0221	0.0040	mg/Kg wet	0.0200		110	70-130				
1ethylene Chloride	0.0221	0.020	mg/Kg wet	0.0200		144	40-160				
-Methyl-2-pentanone (MIBK)	0.222	0.020	mg/Kg wet	0.200		111	70-160				
laphthalene	0.0149	0.0040	mg/Kg wet	0.0200		74.5	40-130				
-Propylbenzene	0.0149	0.0020	mg/Kg wet	0.0200		91.5	70-130				
tvrene	0.0183	0.0020	mg/Kg wet	0.0200		91.2	70-130				
,1,1,2-Tetrachloroethane		0.0020	mg/Kg wet	0.0200		83.3	70-130				
,1,2,2-Tetrachloroethane	0.0167 0.0201	0.0010	mg/Kg wet	0.0200		100	70-130				
etrachloroethylene	0.0201	0.0010	mg/Kg wet	0.0200		100	70-130				
etrahydrofuran	0.0215	0.010	mg/Kg wet	0.0200		89.5	70-130			R-05	
oluene	0.0179	0.0020	mg/Kg wet	0.0200		112	70-130			11-05	
,2,3-Trichlorobenzene		0.0020	mg/Kg wet	0.0200		76.9	70-130				
,2,4-Trichlorobenzene	0.0154	0.0020	mg/Kg wet	0.0200		73.2	70-130				
,3,5-Trichlorobenzene	0.0146	0.0020	mg/Kg wet	0.0200		78.5	70-130				
,1,1-Trichloroethane	0.0157	0.0020	mg/Kg wet	0.0200		78.5 107	70-130				
1,2-Trichloroethane	0.0213	0.0020	mg/Kg wet								
richloroethylene	0.0227	0.0020	mg/Kg wet	0.0200 0.0200		114	70-130 70-130				
richlorofluoromethane (Freon 11)	0.0211	0.0020	mg/Kg wet			106					
	0.0243			0.0200		121	70-130				
,2,3-Trichloropropane ,1,2-Trichloro-1,2,2-trifluoroethane (Freon	0.0198 0.0224	0.0020 0.010	mg/Kg wet mg/Kg wet	0.0200 0.0200		99.0 112	70-130 70-130				
13)			-								
,2,4-Trimethylbenzene	0.0168	0.0020	mg/Kg wet	0.0200		83.9	70-130				
,3,5-Trimethylbenzene	0.0181	0.0020	mg/Kg wet	0.0200		90.5	70-130				
/inyl Chloride	0.0207	0.010	mg/Kg wet	0.0200		104	40-130				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Quillant continue

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B204551 - SW-846 5035											
LCS (B204551-BS1)				Prepared &	Analyzed: 05	/30/18					
m+p Xylene	0.0368	0.0040	mg/Kg wet	0.0400		92.1	70-130				
o-Xylene	0.0179	0.0020	mg/Kg wet	0.0200		89.6	70-130				
Surrogate: 1,2-Dichloroethane-d4	0.0544		mg/Kg wet	0.0500		109	70-130				
Surrogate: Toluene-d8	0.0542		mg/Kg wet	0.0500		108	70-130				
Surrogate: 4-Bromofluorobenzene	0.0491		mg/Kg wet	0.0500		98.2	70-130				
LCS Dup (B204551-BSD1)				Prepared &	Analyzed: 05	/30/18					
Acetone	0.277	0.10	mg/Kg wet	0.200		138	70-160	1.17	25		
Acrylonitrile	0.0204	0.0060	mg/Kg wet	0.0200		102	70-130	13.7	25		
tert-Amyl Methyl Ether (TAME)	0.0200	0.0010	mg/Kg wet	0.0200		100	70-130	0.130	25		
Benzene	0.0244	0.0020	mg/Kg wet	0.0200		122	70-130	1.33	25		
Bromobenzene	0.0181	0.0020	mg/Kg wet	0.0200		90.7	70-130	0.553	25		
Bromochloromethane	0.0304	0.0020	mg/Kg wet	0.0200		152 *	70-130	4.73	25	L-02	
Bromodichloromethane	0.0225	0.0020	mg/Kg wet	0.0200		113	70-130	2.51	25		
Bromoform	0.0169	0.0020	mg/Kg wet	0.0200		84.7	70-130	6.83	25		
Bromomethane	0.0211	0.010	mg/Kg wet	0.0200		105	40-130	0.416	25	V-34	
2-Butanone (MEK)	0.211	0.040	mg/Kg wet	0.200		106	70-160	3.85	25		
tert-Butyl Alcohol (TBA)	0.215	0.040	mg/Kg wet	0.200		108	40-130	3.56	25		
n-Butylbenzene	0.0196	0.0020	mg/Kg wet	0.0200		98.1	70-130	2.17	25		
sec-Butylbenzene	0.0189	0.0020	mg/Kg wet	0.0200		94.6	70-130	2.45	25		
tert-Butylbenzene	0.0185	0.0020	mg/Kg wet	0.0200		92.5	70-160	6.90	25		
tert-Butyl Ethyl Ether (TBEE)	0.0191	0.0010	mg/Kg wet	0.0200		95.7	70-130	0.344	25		
Carbon Disulfide	0.0243	0.0060	mg/Kg wet	0.0200		122	70-130	1.93	25		
Carbon Tetrachloride	0.0191	0.0020	mg/Kg wet	0.0200		95.3	70-130	1.38	25		
Chlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130	2.26	25		
Chlorodibromomethane	0.0216	0.0010	mg/Kg wet	0.0200		108	70-130	0.527	25		
Chloroethane	0.0184	0.020	mg/Kg wet	0.0200		91.8	70-130	22.0	25	J	
Chloroform	0.0257	0.0040	mg/Kg wet	0.0200		128	70-130	1.47	25		
Chloromethane	0.0177	0.010	mg/Kg wet	0.0200		88.4	70-130	2.43	25		
2-Chlorotoluene	0.0182	0.0020	mg/Kg wet	0.0200		91.1	70-130	1.76	25		
4-Chlorotoluene	0.0186	0.0020	mg/Kg wet	0.0200		93.0	70-130	0.907	25		
1,2-Dibromo-3-chloropropane (DBCP)	0.0175	0.0020	mg/Kg wet	0.0200		87.3	70-130	0.874	25		
1,2-Dibromoethane (EDB)	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130	2.23	25		
Dibromomethane	0.0245	0.0020	mg/Kg wet	0.0200		123	70-130	6.20	25		
1,2-Dichlorobenzene	0.0189	0.0020	mg/Kg wet	0.0200		94.3	70-130	2.11	25		
1,3-Dichlorobenzene	0.0193	0.0020	mg/Kg wet	0.0200		96.3	70-130	6.10	25		
1,4-Dichlorobenzene	0.0182	0.0020	mg/Kg wet	0.0200		91.2	70-130	3.25	25		
trans-1,4-Dichloro-2-butene	0.0166	0.0040	mg/Kg wet	0.0200		83.2	70-130	1.66	25		
Dichlorodifluoromethane (Freon 12)	0.00927	0.020	mg/Kg wet	0.0200		46.4	40-160	1.88	25	J	
1,1-Dichloroethane	0.0248	0.0020	mg/Kg wet	0.0200		124	70-130	1.05	25		
1,2-Dichloroethane	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130	1.04	25		
1,1-Dichloroethylene	0.0272	0.0040	mg/Kg wet	0.0200		136 *	70-130	1.68	25	L-02	
cis-1,2-Dichloroethylene	0.0244	0.0020	mg/Kg wet	0.0200		122	70-130	0.543	25		
trans-1,2-Dichloroethylene	0.0245	0.0020	mg/Kg wet	0.0200		123	70-130	3.84	25		
1,2-Dichloropropane	0.0239	0.0020	mg/Kg wet	0.0200		120	70-130	6.83	25		
1,3-Dichloropropane	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130	6.83	25		
2,2-Dichloropropane	0.0171	0.0020	mg/Kg wet	0.0200		85.4	70-130	1.25	25		
1,1-Dichloropropene	0.0227	0.0020	mg/Kg wet	0.0200		114	70-130	3.84	25		
cis-1,3-Dichloropropene	0.0189	0.0010	mg/Kg wet	0.0200		94.4	70-130	2.64	25		
trans-1,3-Dichloropropene	0.0181	0.0010	mg/Kg wet	0.0200		90.4	70-130	1.49	25		
Diethyl Ether	0.0243	0.020	mg/Kg wet	0.0200		121	70-130	1.38	25		
Diisopropyl Ether (DIPE)	0.0235	0.0010	mg/Kg wet	0.0200		118	70-130	1.83	25		

Page 20 of 40

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B204551 - SW-846 5035											
LCS Dup (B204551-BSD1)			-	Prepared & A	Analyzed: 05	/30/18					
1,4-Dioxane	0.216	0.10	mg/Kg wet	0.200		108	40-160	13.8	50		† 1
Ethylbenzene	0.0190	0.0020	mg/Kg wet	0.0200		95.1	70-130	2.72	25		
Hexachlorobutadiene	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-160	10.4	25		
2-Hexanone (MBK)	0.229	0.020	mg/Kg wet	0.200		114	70-160	2.76	25		Ť
Isopropylbenzene (Cumene)	0.0200	0.0020	mg/Kg wet	0.0200		99.8	70-130	2.53	25		
p-Isopropyltoluene (p-Cymene)	0.0191	0.0020	mg/Kg wet	0.0200		95.5	70-130	3.36	25		
Methyl tert-Butyl Ether (MTBE)	0.0225	0.0040	mg/Kg wet	0.0200		112	70-130	1.68	25		
Methylene Chloride	0.0298	0.020	mg/Kg wet	0.0200		149	40-160	3.33	25		Ť
4-Methyl-2-pentanone (MIBK)	0.227	0.020	mg/Kg wet	0.200		114	70-160	2.30	25		Ť
Naphthalene	0.0152	0.0040	mg/Kg wet	0.0200		76.1	40-130	2.18	25		Ť
n-Propylbenzene	0.0186	0.0020	mg/Kg wet	0.0200		92.8	70-130	1.37	25		
Styrene	0.0183	0.0020	mg/Kg wet	0.0200		91.5	70-130	0.372	25		
1,1,1,2-Tetrachloroethane	0.0169	0.0020	mg/Kg wet	0.0200		84.7	70-130	1.73	25		
1,1,2,2-Tetrachloroethane	0.0213	0.0010	mg/Kg wet	0.0200		106	70-130	5.94	25		
Tetrachloroethylene	0.0225	0.0020	mg/Kg wet	0.0200		113	70-130	4.94	25		
Tetrahydrofuran	0.0235	0.010	mg/Kg wet	0.0200		118	70-130	27.1	* 25	R-05	
Toluene	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130	0.709	25		
1,2,3-Trichlorobenzene	0.0160	0.0020	mg/Kg wet	0.0200		79.9	70-130	3.93	25		
1,2,4-Trichlorobenzene	0.0157	0.0020	mg/Kg wet	0.0200		78.3	70-130	6.65	25		
1,3,5-Trichlorobenzene	0.0159	0.0020	mg/Kg wet	0.0200		79.4	70-130	1.05	25		
1,1,1-Trichloroethane	0.0213	0.0020	mg/Kg wet	0.0200		107	70-130	0.0281	25		
1,1,2-Trichloroethane	0.0233	0.0020	mg/Kg wet	0.0200		116	70-130	2.48	25		
Trichloroethylene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	2.28	25		
Trichlorofluoromethane (Freon 11)	0.0237	0.010	mg/Kg wet	0.0200		118	70-130	2.69	25		
1,2,3-Trichloropropane	0.0191	0.0020	mg/Kg wet	0.0200		95.3	70-130	3.85	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0218	0.010	mg/Kg wet	0.0200		109	70-130	2.81	25		
1,2,4-Trimethylbenzene	0.0177	0.0020	mg/Kg wet	0.0200		88.6	70-130	5.46	25		
1,3,5-Trimethylbenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.1	70-130	3.82	25		
Vinyl Chloride	0.0189	0.010	mg/Kg wet	0.0200		94.4	40-130	9.43	25		t
m+p Xylene	0.0367	0.0040	mg/Kg wet	0.0400		91.8	70-130	0.326	25		
o-Xylene	0.0181	0.0020	mg/Kg wet	0.0200		90.6	70-130	1.10	25		
Surrogate: 1,2-Dichloroethane-d4	0.0547		mg/Kg wet	0.0500		109	70-130				
Surrogate: Toluene-d8	0.0542		mg/Kg wet	0.0500		108	70-130				
Surrogate: 4-Bromofluorobenzene	0.0484		mg/Kg wet	0.0500		96.8	70-130				

Batch B204720 - SW-846 5030B

Dlank	(D204720	DI 1/1)	

			Prepared: 06/01/18 Analyzed: 06/02/18	
ND	50	μg/L		L-04
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	1.0	μg/L		
ND	5.0	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	0.50	μg/L		
ND	50	μg/L		
	ND ND ND ND ND ND ND ND ND ND	ND 0.50 ND 1.0 ND 5.0 ND 0.50 ND 0.50	ND 0.50 µg/L ND 1.0 µg/L ND 5.0 µg/L ND 0.50 µg/L	ND 50 $\mu g/L$ ND 0.50 $\mu g/L$ ND 1.0 $\mu g/L$ ND 5.0 $\mu g/L$ ND 0.50 $\mu g/L$

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204720 - SW-846 5030B										
Blank (B204720-BLK1)				Prepared: 06	01/18 Anal	yzed: 06/02/	18			
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	0.50	μg/L							
Chloroform	ND	0.50	μg/L							
Chloromethane	ND	0.60	μg/L							
2-Chlorotoluene	ND	0.50	μg/L							
-Chlorotoluene	ND	0.50	μg/L							
,2-Dibromoethane (EDB)	ND	0.50	μg/L							
,2-Dichlorobenzene	ND	0.50	μg/L							
,3-Dichlorobenzene	ND	0.50	μg/L							
,4-Dichlorobenzene	ND	0.50	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	0.50	μg/L							
,1-Dichloroethane	ND	0.50	μg/L							
,2-Dichloroethane	ND	0.50	μg/L							
,1-Dichloroethylene	ND	0.50	μg/L							
is-1,2-Dichloroethylene	ND	0.50	μg/L							
rans-1,2-Dichloroethylene	ND	0.50	μg/L							
,2-Dichloropropane	ND	0.50	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
,2-Dichloropropane	ND	0.50	μg/L							L-04
,1-Dichloropropene	ND	0.50	μg/L							
is-1,3-Dichloropropene	ND	0.50	μg/L							
ans-1,3-Dichloropropene	ND	0.50	μg/L							
iisopropyl Ether (DIPE)	ND	0.50	μg/L							
thylbenzene	ND	0.50	μg/L							
-Hexanone (MBK)	ND	5.0	μg/L							
opropylbenzene (Cumene)	ND	0.50	μg/L							
-Isopropyltoluene (p-Cymene)	ND	0.50	μg/L							
fethyl tert-Butyl Ether (MTBE)	ND	0.50	μg/L							
Iethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L							
laphthalene	ND	0.50	μg/L							
-Propylbenzene	ND	0.50	μg/L							
tyrene	ND	0.50	μg/L							
,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	0.50	μg/L							
oluene	ND	0.50	μg/L μg/L							
,2,3-Trichlorobenzene	ND ND	0.50	μg/L μg/L							
,2,4-Trichlorobenzene	ND	0.50	μg/L μg/L							
,1,1-Trichloroethane	ND	0.50	μg/L μg/L							
,1,2-Trichloroethane		0.50	μg/L μg/L							
richloroethylene	ND	0.50	μg/L μg/L							
richlorofluoromethane (Freon 11)	ND	0.50	μg/L μg/L							
,2,3-Trichloropropane	ND	0.50	μg/L μg/L							
,2,3-1 Inchioropropane ,2,4-Trimethylbenzene	ND	0.50	μg/L μg/L							
,3,5-Trimethylbenzene	ND	0.50	μg/L μg/L							
inyl Acetate	ND									
-	ND	5.0	μg/L μα/Ι							
Vinyl Chloride	ND	0.50	μg/L ug/I							
n+p Xylene	ND	1.0	μg/L α/I							
-Xylene	ND	0.50	μg/L							
urrogate: 1,2-Dichloroethane-d4	23.7		μg/L	25.0		94.9	70-130			
urrogate: Toluene-d8	25.6		μg/L	25.0		102	70-130			
urrogate: 4-Bromofluorobenzene	23.7		μg/L	25.0		94.8	70-130			

Page 23 of 40

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204720 - SW-846 5030B										
LCS (B204720-BS1)				Prepared: 06	6/01/18 Anal	yzed: 06/02/1	18			
Acetone	64.1	50	μg/L	100		64.1 *	70-130			L-04
Benzene	10.1	0.50	μg/L	10.0		101	70-130			
Bromobenzene	9.45	0.50	μg/L	10.0		94.5	70-130			
Bromochloromethane	11.1	0.50	μg/L	10.0		111	70-130			
Bromodichloromethane	9.27	0.50	μg/L	10.0		92.7	70-130			
Bromoform	8.36	0.50	μg/L	10.0		83.6	70-130			
Bromomethane	11.7	1.0	μg/L	10.0		117	60-140			
2-Butanone (MEK)	96.1	5.0	μg/L	100		96.1	70-130			
n-Butylbenzene	9.92	0.50	μg/L	10.0		99.2	70-130			
sec-Butylbenzene	10.1	0.50	μg/L	10.0		101	70-130			
ert-Butylbenzene	9.90	0.50	μg/L	10.0		99.0	70-130			
Carbon Tetrachloride	7.68	0.50	μg/L	10.0		76.8	70-130			
Chlorobenzene	9.56	0.50	μg/L	10.0		95.6	70-130			
Ethanol	85.0	50	μg/L	100		85.0	70-130			
Chlorodibromomethane	8.87	0.50	μg/L	10.0		88.7	70-130			
Chloroethane	9.68	0.50	μg/L	10.0		96.8	60-140			
Chloroform	9.58	0.50	μg/L	10.0		95.8	70-130			
Chloromethane	8.37	0.60	μg/L	10.0		83.7	60-140			
2-Chlorotoluene	8.59	0.50	μg/L	10.0		85.9	70-130			
4-Chlorotoluene	9.09	0.50	μg/L	10.0		90.9	70-130			
1,2-Dibromoethane (EDB)	9.40	0.50	μg/L	10.0		94.0	70-130			
1,2-Dichlorobenzene	9.94	0.50	μg/L	10.0		99.4	70-130			
1,3-Dichlorobenzene	9.77	0.50	μg/L	10.0		97.7	70-130			
1,4-Dichlorobenzene	9.72	0.50	μg/L	10.0		97.2	70-130			
Dichlorodifluoromethane (Freon 12)	6.63	0.50	μg/L	10.0		66.3	60-140			
1,1-Dichloroethane	9.04	0.50	μg/L	10.0		90.4	70-130			
1,2-Dichloroethane	7.25	0.50	μg/L	10.0		72.5	70-130			
1,1-Dichloroethylene	7.37	0.50	μg/L	10.0		73.7	70-130			
cis-1,2-Dichloroethylene	10.5	0.50	μg/L	10.0		105	70-130			
trans-1,2-Dichloroethylene	8.50	0.50	μg/L	10.0		85.0	70-130			
1,2-Dichloropropane	10.2	0.50	μg/L	10.0		102	70-130			
1,3-Dichloropropane	9.51	0.50	μg/L	10.0		95.1	70-130			
2,2-Dichloropropane	5.11	0.50	μg/L	10.0		51.1 *	70-130			L-04
1,1-Dichloropropene	8.98	0.50	μg/L	10.0		89.8	70-130			
cis-1,3-Dichloropropene	8.88	0.50	μg/L	10.0		88.8	70-130			
trans-1,3-Dichloropropene	8.07	0.50	μg/L	10.0		80.7	70-130			
Diisopropyl Ether (DIPE)	10.4	0.50	μg/L	10.0		104	70-130			
Ethylbenzene	9.22	0.50	μg/L	10.0		92.2	70-130			
2-Hexanone (MBK)	90.1	5.0	μg/L	100		90.1	70-130			
sopropylbenzene (Cumene)	8.89	0.50	μg/L	10.0		88.9	70-130			
p-Isopropyltoluene (p-Cymene)	9.77	0.50	μg/L	10.0		97.7	70-130			
Methyl tert-Butyl Ether (MTBE)	9.27	0.50	μg/L	10.0		92.7	70-130			
Methylene Chloride	9.00	5.0	μg/L	10.0		90.0	70-130			
4-Methyl-2-pentanone (MIBK)	96.8	5.0	μg/L	100		96.8	70-130			
Naphthalene	8.38	0.50	μg/L	10.0		83.8	70-130			
-Propylbenzene	9.01	0.50	μg/L	10.0		90.1	70-130			
Styrene	9.63	0.50	μg/L	10.0		96.3	70-130			
,1,2,2-Tetrachloroethane	11.5	0.50	μg/L	10.0		115	70-130			
Fetrachloroethylene	7.54	0.50	μg/L	10.0		75.4	70-130			
Toluene	8.79	0.50	μg/L	10.0		87.9	70-130			
1,2,3-Trichlorobenzene	7.11	0.50	μg/L	10.0		71.1	70-130			
1,2,4-Trichlorobenzene	7.51	0.50	μg/L μg/L	10.0		75.1	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B204720 - SW-846 5030B											
LCS (B204720-BS1)				Prepared: 06	5/01/18 Anal	yzed: 06/02/	18				
1,1,1-Trichloroethane	8.52	0.50	μg/L	10.0		85.2	70-130				
1,1,2-Trichloroethane	9.73	0.50	μg/L	10.0		97.3	70-130				
Trichloroethylene	9.32	0.50	μg/L	10.0		93.2	70-130				
Trichlorofluoromethane (Freon 11)	7.19	0.50	μg/L	10.0		71.9	70-130				
1,2,3-Trichloropropane	10.8	0.50	μg/L	10.0		108	70-130				
1,2,4-Trimethylbenzene	10.1	0.50	μg/L	10.0		101	70-130				
1,3,5-Trimethylbenzene	8.85	0.50	μg/L	10.0		88.5	70-130				
Vinyl Acetate	76.2	5.0	μg/L	100		76.2	70-130				
Vinyl Chloride	8.73	0.50	μg/L	10.0		87.3	60-140				
m+p Xylene	18.2	1.0	μg/L	20.0		91.2	70-130				
o-Xylene	9.38	0.50	μg/L	10.0		93.8	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.6			25.0		94.3	70-130				
Surrogate: T ₁ 2-Dichloroethane-d4 Surrogate: Toluene-d8	23.6 24.6		μg/L μg/I	25.0 25.0		94.3 98.5	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L μg/L	25.0 25.0		98.5 92.6	70-130				
-	23.2		µg/L								
LCS Dup (B204720-BSD1)		50		•	5/01/18 Anal	-		0.041	25	1.04	
Acetone	63.5	50	μg/L	100		63.5 *	70-130	0.941	25	L-04	
Benzene	10.2	0.50	μg/L	10.0		102	70-130	1.28	25		
Bromobenzene	9.33	0.50	μg/L	10.0		93.3	70-130	1.28	25		
Bromochloromethane	10.8	0.50	μg/L	10.0		108	70-130	2.93	25		
Bromodichloromethane	9.11	0.50	μg/L	10.0		91.1	70-130	1.74	25		
Bromoform	8.67	0.50	μg/L	10.0		86.7	70-130	3.64	25		
Bromomethane	12.1	1.0	μg/L	10.0		121	60-140	3.37	25		
2-Butanone (MEK)	95.5	5.0	μg/L	100		95.5	70-130	0.605	25		
n-Butylbenzene	9.83	0.50	μg/L	10.0		98.3	70-130	0.911	25		
sec-Butylbenzene	9.90	0.50	μg/L	10.0		99.0	70-130	1.90	25		
tert-Butylbenzene	9.68	0.50	μg/L	10.0		96.8	70-130	2.25	25		
Carbon Tetrachloride	7.79	0.50	μg/L	10.0		77.9	70-130	1.42	25		
Chlorobenzene	9.74	0.50	μg/L	10.0		97.4	70-130	1.87	25		
Ethanol	96.8	50	μg/L	100		96.8	70-130	12.9	25		
Chlorodibromomethane	9.09	0.50	μg/L	10.0		90.9	70-130	2.45	25		
Chloroethane	9.00	0.50	μg/L	10.0		90.0	60-140	7.28	25		
Chloroform	9.52	0.50	μg/L	10.0		95.2	70-130	0.628	25		
Chloromethane	8.32	0.60	μg/L	10.0		83.2	60-140	0.599	25		
2-Chlorotoluene	8.57	0.50	μg/L	10.0		85.7	70-130	0.233	25		
4-Chlorotoluene	9.25	0.50	μg/L	10.0		92.5	70-130	1.74	25		
1,2-Dibromoethane (EDB)	9.27	0.50	μg/L	10.0		92.7	70-130	1.39	25		
1,2-Dichlorobenzene	9.88	0.50	μg/L	10.0		98.8	70-130	0.605	25		
1,3-Dichlorobenzene	10.1	0.50	μg/L	10.0		101	70-130	3.02	25		
1,4-Dichlorobenzene	9.79	0.50	μg/L	10.0		97.9	70-130	0.718	25		
Dichlorodifluoromethane (Freon 12)	6.10	0.50	μg/L	10.0		61.0	60-140	8.33	25		
1,1-Dichloroethane	8.95	0.50	μg/L	10.0		89.5	70-130	1.00	25		
1,2-Dichloroethane	7.26	0.50	μg/L	10.0		72.6	70-130	0.138	25		
1,1-Dichloroethylene	7.10	0.50	μg/L	10.0		71.0	70-130	3.73	25		
cis-1,2-Dichloroethylene	10.4	0.50	μg/L	10.0		104	70-130	1.25	25		
rans-1,2-Dichloroethylene	8.36	0.50	μg/L	10.0		83.6	70-130	1.66	25		
1,2-Dichloropropane	10.3	0.50	μg/L	10.0		103	70-130	0.880	25		
1,3-Dichloropropane	9.44	0.50	μg/L	10.0		94.4	70-130	0.739	25		
2,2-Dichloropropane	5.38	0.50	μg/L	10.0		53.8 *	70-130	5.15	25	L-04	
I,1-Dichloropropene	8.92	0.50	μg/L	10.0		89.2	70-130	0.670	25		
cis-1,3-Dichloropropene	8.58	0.50	μg/L	10.0		85.8	70-130	3.44	25		
	0.00			•				~ • • •			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204720 - SW-846 5030B										
LCS Dup (B204720-BSD1)				Prepared: 06	5/01/18 Anal	yzed: 06/02/	18			
Diisopropyl Ether (DIPE)	10.7	0.50	μg/L	10.0		107	70-130	2.66	25	
Ethylbenzene	9.03	0.50	μg/L	10.0		90.3	70-130	2.08	25	
2-Hexanone (MBK)	91.6	5.0	μg/L	100		91.6	70-130	1.67	25	
Isopropylbenzene (Cumene)	8.80	0.50	μg/L	10.0		88.0	70-130	1.02	25	
p-Isopropyltoluene (p-Cymene)	9.76	0.50	μg/L	10.0		97.6	70-130	0.102	25	
Methyl tert-Butyl Ether (MTBE)	9.71	0.50	μg/L	10.0		97.1	70-130	4.64	25	
Methylene Chloride	8.99	5.0	μg/L	10.0		89.9	70-130	0.111	25	
4-Methyl-2-pentanone (MIBK)	96.8	5.0	μg/L	100		96.8	70-130	0.0620	25	
Naphthalene	8.90	0.50	μg/L	10.0		89.0	70-130	6.02	25	
n-Propylbenzene	8.97	0.50	μg/L	10.0		89.7	70-130	0.445	25	
Styrene	9.37	0.50	μg/L	10.0		93.7	70-130	2.74	25	
1,1,2,2-Tetrachloroethane	11.7	0.50	μg/L	10.0		117	70-130	1.81	25	
Tetrachloroethylene	7.32	0.50	μg/L	10.0		73.2	70-130	2.96	25	
Toluene	8.69	0.50	μg/L	10.0		86.9	70-130	1.14	25	
1,2,3-Trichlorobenzene	7.57	0.50	μg/L	10.0		75.7	70-130	6.27	25	
1,2,4-Trichlorobenzene	7.64	0.50	μg/L	10.0		76.4	70-130	1.72	25	
1,1,1-Trichloroethane	8.49	0.50	μg/L	10.0		84.9	70-130	0.353	25	
1,1,2-Trichloroethane	9.77	0.50	μg/L	10.0		97.7	70-130	0.410	25	
Trichloroethylene	8.94	0.50	μg/L	10.0		89.4	70-130	4.16	25	
Trichlorofluoromethane (Freon 11)	7.09	0.50	μg/L	10.0		70.9	70-130	1.40	25	
1,2,3-Trichloropropane	10.8	0.50	μg/L	10.0		108	70-130	0.555	25	
1,2,4-Trimethylbenzene	9.88	0.50	μg/L	10.0		98.8	70-130	2.40	25	
1,3,5-Trimethylbenzene	8.85	0.50	μg/L	10.0		88.5	70-130	0.00	25	
Vinyl Acetate	87.0	5.0	μg/L	100		87.0	70-130	13.2	25	
Vinyl Chloride	8.50	0.50	μg/L	10.0		85.0	60-140	2.67	25	
m+p Xylene	18.2	1.0	μg/L	20.0		90.8	70-130	0.440	25	
o-Xylene	9.43	0.50	μg/L	10.0		94.3	70-130	0.532	25	
Surrogate: 1,2-Dichloroethane-d4	23.9		μg/L	25.0		95.6	70-130			
Surrogate: Toluene-d8	24.2		μg/L	25.0		96.6	70-130			
Surrogate: 4-Bromofluorobenzene	23.4		μg/L	25.0		93.5	70-130			

Batch B204809 - SW-846 5030B

Blank (B204809-BLK1)				Prepared: 06/03/18 Analyzed: 06/04/18
Acetone	ND	50	μg/L	
Benzene	ND	0.50	μg/L	
Bromobenzene	ND	0.50	μg/L	
Bromochloromethane	ND	0.50	μg/L	
Bromodichloromethane	ND	0.50	μg/L	
Bromoform	ND	0.50	μg/L	
Bromomethane	ND	1.0	μg/L	
2-Butanone (MEK)	ND	5.0	μg/L	
n-Butylbenzene	ND	0.50	μg/L	
sec-Butylbenzene	ND	0.50	μg/L	
tert-Butylbenzene	ND	0.50	μg/L	
Carbon Tetrachloride	ND	0.50	μg/L	
Chlorobenzene	ND	0.50	μg/L	
Ethanol	ND	50	μg/L	
Chlorodibromomethane	ND	0.50	μg/L	
Chloroethane	ND	0.50	μg/L	
Chloroform	ND	0.50	μg/L	
Chloromethane	ND	0.60	μg/L	
2-Chlorotoluene	ND	0.50	μg/L	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204809 - SW-846 5030B										
Blank (B204809-BLK1)				Prepared: 06	5/03/18 Anal	yzed: 06/04/	18			
4-Chlorotoluene	ND	0.50	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
1,2-Dichlorobenzene	ND	0.50	μg/L							
1,3-Dichlorobenzene	ND	0.50	μg/L							
1,4-Dichlorobenzene	ND	0.50	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	0.50	μg/L							
1,1-Dichloroethane	ND	0.50	μg/L							
1,2-Dichloroethane	ND	0.50	μg/L							
1,1-Dichloroethylene	ND	0.50	μg/L							
cis-1,2-Dichloroethylene	ND	0.50	μg/L							
trans-1,2-Dichloroethylene	ND	0.50	μg/L							
1,2-Dichloropropane	ND	0.50	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	0.50	μg/L							
1,1-Dichloropropene	ND	0.50	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
Ethylbenzene	ND	0.50	μg/L							
2-Hexanone (MBK)	ND	5.0	μg/L							
Isopropylbenzene (Cumene)	ND	0.50	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	0.50	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	0.50	μg/L							
Methylene Chloride	ND	5.0	μg/L							
4-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L							
Naphthalene	ND	0.50	μg/L							
n-Propylbenzene	ND	0.50	μg/L							
Styrene	ND	0.50	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	0.50	μg/L							
Toluene	ND	0.50	μg/L							
1,2,3-Trichlorobenzene	ND	0.50	μg/L							
1,2,4-Trichlorobenzene	ND	0.50	μg/L							
1,1,1-Trichloroethane	ND	0.50	μg/L							
1,1,2-Trichloroethane	ND	0.50	μg/L							
Trichloroethylene	ND	0.50	μg/L							
Trichlorofluoromethane (Freon 11)	ND	0.50	μg/L							
1,2,3-Trichloropropane	ND	0.50	μg/L							
1,2,4-Trimethylbenzene	ND	0.50	μg/L							
1,3,5-Trimethylbenzene	ND	0.50	μg/L							
Vinyl Acetate	ND	5.0	μg/L							
Vinyl Chloride	ND	0.50	μg/L							
m+p Xylene	ND	1.0	μg/L							
o-Xylene	ND	0.50	μg/L							
Surrogate: 1,2-Dichloroethane-d4	24.1		μg/L	25.0		96.5	70-130			
Surrogate: Toluene-d8	25.0		μg/L μg/L	25.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	23.1		μg/L	25.0		92.5	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204809 - SW-846 5030B										
LCS (B204809-BS1)				Prepared: 06	5/03/18 Analy	yzed: 06/04/	18			
Acetone	72.1	50	μg/L	100		72.1	70-130			
Benzene	11.5	0.50	$\mu g/L$	10.0		115	70-130			
Bromobenzene	9.53	0.50	$\mu g/L$	10.0		95.3	70-130			
Bromochloromethane	11.7	0.50	μg/L	10.0		117	70-130			
Bromodichloromethane	9.94	0.50	$\mu g/L$	10.0		99.4	70-130			
Bromoform	8.73	0.50	μg/L	10.0		87.3	70-130			
romomethane	11.8	1.0	μg/L	10.0		118	60-140			
Butanone (MEK)	99.2	5.0	μg/L	100		99.2	70-130			
-Butylbenzene	11.3	0.50	μg/L	10.0		113	70-130			
ec-Butylbenzene	11.4	0.50	μg/L	10.0		114	70-130			
rt-Butylbenzene	10.8	0.50	μg/L	10.0		108	70-130			
arbon Tetrachloride	10.3	0.50	μg/L	10.0		103	70-130			
hlorobenzene	10.2	0.50	μg/L	10.0		102	70-130			
thanol	95.0	50	μg/L	100		95.0	70-130			
hlorodibromomethane	9.77	0.50	μg/L	10.0		97.7	70-130			
hloroethane	11.3	0.50	μg/L	10.0		113	60-140			
hloroform	10.4	0.50	μg/L	10.0		104	70-130			
hloromethane	9.24	0.60	μg/L	10.0		92.4	60-140			
Chlorotoluene	9.43	0.50	μg/L	10.0		94.3	70-130			
Chlorotoluene	9.57	0.50	μg/L	10.0		95.7	70-130			
2-Dibromoethane (EDB)	9.98	0.50	μg/L	10.0		99.8	70-130			
2-Dichlorobenzene	10.4	0.50	μg/L	10.0		104	70-130			
3-Dichlorobenzene	10.4	0.50	μg/L	10.0		101	70-130			
4-Dichlorobenzene	9.96	0.50	μg/L	10.0		99.6	70-130			
ichlorodifluoromethane (Freon 12)	9.96	0.50	μg/L μg/L	10.0		108	60-140			
1-Dichloroethane	9.73	0.50	μg/L μg/L	10.0		97.3	70-130			
2-Dichloroethane		0.50	μg/L μg/L	10.0		97.3 79.5	70-130			
1-Dichloroethylene	7.95 9.96	0.50	μg/L μg/L	10.0		79.5 99.6	70-130			
s-1,2-Dichloroethylene		0.50	μg/L μg/L	10.0		112	70-130			
ans-1,2-Dichloroethylene	11.2	0.50	μg/L μg/L	10.0		93.0	70-130			
2-Dichloropropane	9.30	0.30				93.0 108				
	10.8		μg/L μg/I	10.0			70-130			
3-Dichloropropane	10.1	0.50	μg/L ug/I	10.0		101	70-130			
2-Dichloropropane	10.2	0.50	μg/L α/I	10.0		102	70-130			
1-Dichloropropene	11.8	0.50	μg/L	10.0		118	70-130			
s-1,3-Dichloropropene	10.3	0.50	μg/L	10.0		103	70-130			
ans-1,3-Dichloropropene	9.27	0.50	μg/L	10.0		92.7	70-130			
iisopropyl Ether (DIPE)	10.6	0.50	μg/L	10.0		106	70-130			
thylbenzene	10.0	0.50	μg/L	10.0		100	70-130			
Hexanone (MBK)	90.5	5.0	μg/L	100		90.5	70-130			
opropylbenzene (Cumene)	10.1	0.50	μg/L	10.0		101	70-130			
Isopropyltoluene (p-Cymene)	10.8	0.50	μg/L	10.0		108	70-130			
lethyl tert-Butyl Ether (MTBE)	9.40	0.50	μg/L	10.0		94.0	70-130			
lethylene Chloride	10.0	5.0	μg/L	10.0		100	70-130			
Methyl-2-pentanone (MIBK)	99.4	5.0	μg/L	100		99.4	70-130			
aphthalene	7.07	0.50	μg/L	10.0		70.7	70-130			
Propylbenzene	9.97	0.50	μg/L	10.0		99.7	70-130			
yrene	9.56	0.50	μg/L	10.0		95.6	70-130			
1,2,2-Tetrachloroethane	11.9	0.50	μg/L	10.0		119	70-130			
etrachloroethylene	9.23	0.50	μg/L	10.0		92.3	70-130			
oluene	9.83	0.50	μg/L	10.0		98.3	70-130			
,2,3-Trichlorobenzene	6.45	0.50	μg/L	10.0		64.5 *	70-130			L-07
,2,4-Trichlorobenzene	7.29	0.50	μg/L	10.0		72.9	70-130			

Page 27 of 40

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204809 - SW-846 5030B										
LCS (B204809-BS1)				Prepared: 06	5/03/18 Anal	yzed: 06/04/	18			
1,1,1-Trichloroethane	10.6	0.50	μg/L	10.0		106	70-130			
1,1,2-Trichloroethane	10.4	0.50	μg/L	10.0		104	70-130			
Trichloroethylene	10.4	0.50	μg/L	10.0		104	70-130			
Trichlorofluoromethane (Freon 11)	11.0	0.50	μg/L	10.0		110	70-130			
1,2,3-Trichloropropane	10.5	0.50	μg/L	10.0		105	70-130			
1,2,4-Trimethylbenzene	10.2	0.50	μg/L	10.0		102	70-130			
1,3,5-Trimethylbenzene	9.53	0.50	μg/L	10.0		95.3	70-130			
Vinyl Acetate	92.6	5.0	μg/L	100		92.6	70-130			
Vinyl Chloride	11.8	0.50	μg/L	10.0		118	60-140			
m+p Xylene	20.0	1.0	μg/L	20.0		99.8	70-130			
o-Xylene	9.99	0.50	μg/L	10.0		99.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	25.3		μg/L	25.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	23.5		μg/L	25.0		94.0	70-130			
LCS Dup (B204809-BSD1)			10		5/03/18 Anal					
Acetone	70.0	50	μg/L	100		72.2	70-130	0.0416	25	
Benzene	72.2	0.50	μg/L μg/L	100		112	70-130 70-130	2.73	25 25	
Bromobenzene	11.2	0.50	μg/L μg/L			95.1			23 25	
Bromochloromethane	9.51	0.50	μg/L μg/L	10.0			70-130	0.210	25 25	
Bromodichloromethane	11.6	0.50	μg/L μg/L	10.0		116	70-130	0.858		
	9.68			10.0		96.8	70-130	2.65	25	
Bromoform	8.75	0.50	μg/L	10.0		87.5	70-130	0.229	25	
Bromomethane	11.6	1.0	μg/L	10.0		116	60-140	2.22	25	
2-Butanone (MEK)	101	5.0	μg/L	100		101	70-130	1.39	25	
n-Butylbenzene	11.3	0.50	μg/L	10.0		113	70-130	0.177	25	
sec-Butylbenzene	11.2	0.50	μg/L	10.0		112	70-130	1.77	25	
tert-Butylbenzene	10.6	0.50	μg/L	10.0		106	70-130	1.31	25	
Carbon Tetrachloride	10.2	0.50	μg/L	10.0		102	70-130	0.779	25	
Chlorobenzene	9.78	0.50	μg/L	10.0		97.8	70-130	4.11	25	
Ethanol	95.3	50	μg/L	100		95.3	70-130	0.305	25	
Chlorodibromomethane	9.28	0.50	μg/L α	10.0		92.8	70-130	5.14	25	
Chloroethane	10.9	0.50	μg/L	10.0		109	60-140	3.24	25	
Chloroform	10.3	0.50	μg/L	10.0		103	70-130	0.677	25	
Chloromethane	9.60	0.60	μg/L	10.0		96.0	60-140	3.82	25	
2-Chlorotoluene	8.98	0.50	μg/L	10.0		89.8	70-130	4.89	25	
4-Chlorotoluene	9.34	0.50	μg/L	10.0		93.4	70-130	2.43	25	
1,2-Dibromoethane (EDB)	9.83	0.50	μg/L	10.0		98.3	70-130	1.51	25	
1,2-Dichlorobenzene	9.99	0.50	μg/L	10.0		99.9	70-130	3.83	25	
1,3-Dichlorobenzene	10.4	0.50	μg/L	10.0		104	70-130	2.43	25	
1,4-Dichlorobenzene	10.0	0.50	μg/L α	10.0		100	70-130	0.401	25	
Dichlorodifluoromethane (Freon 12)	10.7	0.50	μg/L π	10.0		107	60-140	0.651	25	
1,1-Dichloroethane	10.5	0.50	μg/L	10.0		105	70-130	7.90	25	
1,2-Dichloroethane	7.56	0.50	μg/L	10.0		75.6	70-130	5.03	25	
1,1-Dichloroethylene	9.97	0.50	μg/L α	10.0		99.7	70-130	0.100	25	
cis-1,2-Dichloroethylene	11.3	0.50	μg/L α	10.0		113	70-130	0.712	25	
trans-1,2-Dichloroethylene	9.95	0.50	μg/L α	10.0		99.5	70-130	6.75	25	
1,2-Dichloropropane	10.1	0.50	μg/L	10.0		101	70-130	6.80	25	
1,3-Dichloropropane	9.77	0.50	μg/L	10.0		97.7	70-130	3.22	25	
2,2-Dichloropropane	10.1	0.50	μg/L	10.0		101	70-130	0.492	25	
1,1-Dichloropropene	11.5	0.50	μg/L	10.0		115	70-130	3.01	25	
cis-1,3-Dichloropropene	9.87	0.50	μg/L	10.0		98.7	70-130	3.97	25	
rans-1,3-Dichloropropene	8.84	0.50	μg/L	10.0		88.4	70-130	4.75	25	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B204809 - SW-846 5030B										
LCS Dup (B204809-BSD1)				Prepared: 06	5/03/18 Anal	yzed: 06/04/	18			
Diisopropyl Ether (DIPE)	10.8	0.50	μg/L	10.0		108	70-130	1.86	25	
Ethylbenzene	9.73	0.50	μg/L	10.0		97.3	70-130	3.24	25	
2-Hexanone (MBK)	94.0	5.0	μg/L	100		94.0	70-130	3.77	25	
Isopropylbenzene (Cumene)	9.61	0.50	μg/L	10.0		96.1	70-130	4.67	25	
p-Isopropyltoluene (p-Cymene)	10.8	0.50	μg/L	10.0		108	70-130	0.278	25	
Methyl tert-Butyl Ether (MTBE)	10.2	0.50	μg/L	10.0		102	70-130	8.55	25	
Methylene Chloride	9.60	5.0	μg/L	10.0		96.0	70-130	4.38	25	
4-Methyl-2-pentanone (MIBK)	101	5.0	μg/L	100		101	70-130	1.56	25	
Naphthalene	8.38	0.50	μg/L	10.0		83.8	70-130	17.0	25	
n-Propylbenzene	9.68	0.50	μg/L	10.0		96.8	70-130	2.95	25	
Styrene	9.59	0.50	μg/L	10.0		95.9	70-130	0.313	25	
1,1,2,2-Tetrachloroethane	11.9	0.50	μg/L	10.0		119	70-130	0.672	25	
Tetrachloroethylene	8.81	0.50	μg/L	10.0		88.1	70-130	4.66	25	
Toluene	9.45	0.50	μg/L	10.0		94.5	70-130	3.94	25	
1,2,3-Trichlorobenzene	7.68	0.50	μg/L	10.0		76.8	70-130	17.4	25	
1,2,4-Trichlorobenzene	7.86	0.50	μg/L	10.0		78.6	70-130	7.52	25	
1,1,1-Trichloroethane	10.4	0.50	μg/L	10.0		104	70-130	1.71	25	
1,1,2-Trichloroethane	10.0	0.50	μg/L	10.0		100	70-130	4.01	25	
Trichloroethylene	10.1	0.50	μg/L	10.0		101	70-130	3.23	25	
Trichlorofluoromethane (Freon 11)	10.6	0.50	μg/L	10.0		106	70-130	3.61	25	
1,2,3-Trichloropropane	10.8	0.50	μg/L	10.0		108	70-130	3.00	25	
1,2,4-Trimethylbenzene	10.2	0.50	μg/L	10.0		102	70-130	0.196	25	
1,3,5-Trimethylbenzene	9.40	0.50	μg/L	10.0		94.0	70-130	1.37	25	
Vinyl Acetate	94.9	5.0	μg/L	100		94.9	70-130	2.43	25	
Vinyl Chloride	11.7	0.50	μg/L	10.0		117	60-140	0.683	25	
m+p Xylene	19.3	1.0	μg/L	20.0		96.4	70-130	3.42	25	
o-Xylene	9.77	0.50	μg/L	10.0		97.7	70-130	2.23	25	
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	25.2		$\mu g/L$	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	23.3		μg/L	25.0		93.1	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B204406 - MA VPH										
Blank (B204406-BLK1)				Prepared & /	Analyzed: 05/	/29/18				
Unadjusted C5-C8 Aliphatics	ND	10	mg/Kg wet							
C5-C8 Aliphatics	ND	10	mg/Kg wet							
Unadjusted C9-C12 Aliphatics C9-C12 Aliphatics	ND	10 10	mg/Kg wet mg/Kg wet							
C9-C10 Aromatics	ND ND	10	mg/Kg wet							
Benzene	ND	0.050	mg/Kg wet							
Butylcyclohexane	ND	0.050	mg/Kg wet							
Decane	ND	0.050	mg/Kg wet							
Ethylbenzene	ND	0.050	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND	0.050	mg/Kg wet							
2-Methylpentane	ND	0.050	mg/Kg wet							
Naphthalene	ND	0.50	mg/Kg wet							
Nonane	ND	0.050	mg/Kg wet							
Pentane	ND	0.050	mg/Kg wet							
Toluene	ND	0.050	mg/Kg wet							
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg wet							
2,2,4-Trimethylpentane	ND	0.050	mg/Kg wet							
m+p Xylene	ND	0.10	mg/Kg wet							
o-Xylene	ND	0.050	mg/Kg wet							
Surrogate: 2,5-Dibromotoluene (FID)	34.2		μg/L	40.0		85.4	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	30.5		μg/L	40.0		76.2	70-130			
LCS (B204406-BS1)				Prepared & A	Analyzed: 05	/29/18				
Benzene	0.0429	0.0010	mg/Kg wet	0.0500		85.7	70-130			
Butylcyclohexane	0.0565	0.0010	mg/Kg wet	0.0500		113	70-130			
Decane	0.0486	0.0010	mg/Kg wet	0.0500		97.3	70-130			
Ethylbenzene	0.0420	0.0010	mg/Kg wet	0.0500		84.0	70-130			
Methyl tert-Butyl Ether (MTBE)	0.0492	0.0010	mg/Kg wet	0.0500		98.3	70-130			
2-Methylpentane	0.0436	0.0010	mg/Kg wet	0.0500		87.1	70-130			
Naphthalene	0.0404	0.010	mg/Kg wet	0.0500		80.8	70-130			
Nonane Pentane	0.0556	0.0010 0.0010	mg/Kg wet	0.0500		111	30-130			
Toluene	0.0443	0.0010	mg/Kg wet mg/Kg wet	0.0500		88.6	70-130			
1,2,4-Trimethylbenzene	0.0428	0.0010	mg/Kg wet	0.0500 0.0500		85.5 80.4	70-130 70-130			
2,2,4-Trimethylpentane	0.0402	0.0010	mg/Kg wet	0.0500		80.4 77.6	70-130			
m+p Xylene	0.0388 0.0836	0.0020	mg/Kg wet	0.100		83.6	70-130			
o-Xylene	0.0412	0.0010	mg/Kg wet	0.0500		82.4	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	33.7	-	μg/L	40.0		84.2	70-130			
Surrogate: 2,5-Dibromotoluene (FID) Surrogate: 2,5-Dibromotoluene (PID)	30.9		μg/L μg/L	40.0 40.0		84.2 77.2	70-130			
LCS Dup (B204406-BSD1)					Analyzed: 05/					
Benzene	0.0437	0.0010	mg/Kg wet	0.0500		87.3	70-130	1.86	25	
Butylcyclohexane	0.0437	0.0010	mg/Kg wet	0.0500		112	70-130	0.663	25	
Decane	0.0487	0.0010	mg/Kg wet	0.0500		97.4	70-130	0.0904	25	
Ethylbenzene	0.0428	0.0010	mg/Kg wet	0.0500		85.6	70-130	1.84	25	
Methyl tert-Butyl Ether (MTBE)	0.0490	0.0010	mg/Kg wet	0.0500		98.1	70-130	0.271	25	
2-Methylpentane	0.0443	0.0010	mg/Kg wet	0.0500		88.5	70-130	1.61	25	
Naphthalene	0.0394	0.010	mg/Kg wet	0.0500		78.7	70-130	2.63	25	
Nonane	0.0556	0.0010	mg/Kg wet	0.0500		111	30-130	0.0539	25	
Pentane	0.0449	0.0010	mg/Kg wet	0.0500		89.8	70-130	1.28	25	
Toluene	0.0437	0.0010	mg/Kg wet	0.0500		87.4	70-130	2.15	25	
1,2,4-Trimethylbenzene	0.0408	0.0010	mg/Kg wet	0.0500		81.7	70-130	1.55	25	
									_	Dege 20 of

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B204406 - MA VPH										
LCS Dup (B204406-BSD1)				Prepared & A	Analyzed: 05	/29/18				
2,2,4-Trimethylpentane	0.0392	0.0010	mg/Kg wet	0.0500		78.4	70-130	1.11	25	
m+p Xylene	0.0854	0.0020	mg/Kg wet	0.100		85.4	70-130	2.12	25	
o-Xylene	0.0416	0.0010	mg/Kg wet	0.0500		83.2	70-130	0.947	25	
Surrogate: 2,5-Dibromotoluene (FID)	33.6		μg/L	40.0		84.1	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	30.0		μg/L	40.0		74.9	70-130			
Batch B204608 - MA VPH										
Blank (B204608-BLK1)				Prepared & A	Analyzed: 05	/31/18				
Unadjusted C5-C8 Aliphatics	ND	100	μg/L							
C5-C8 Alinhatics	ND	100	ug/I							

· ·								
C5-C8 Aliphatics	ND	100	μg/L					
Unadjusted C9-C12 Aliphatics	ND	100	μg/L					
C9-C12 Aliphatics	ND	100	μg/L					
C9-C10 Aromatics	ND	100	μg/L					
Benzene	ND	1.0	μg/L					
Butylcyclohexane	ND	1.0	μg/L					
Decane	ND	1.0	μg/L					
Ethylbenzene	ND	1.0	μg/L					
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L					
2-Methylpentane	ND	1.0	μg/L					
Naphthalene	ND	5.0	μg/L					
Nonane	ND	1.0	μg/L					
Pentane	ND	1.0	μg/L					
Toluene	ND	1.0	μg/L					
1,2,4-Trimethylbenzene	ND	1.0	μg/L					
2,2,4-Trimethylpentane	ND	1.0	μg/L					
m+p Xylene	ND	2.0	μg/L					
o-Xylene	ND	1.0	μg/L					
Surrogate: 2,5-Dibromotoluene (FID)	38.7		μg/L	40.0	96.9	70-130	 	
Surrogate: 2,5-Dibromotoluene (PID)	37.6		μg/L	40.0	94.0	70-130		

LCS (B204608-BS1)				Prepared & Ana	lyzed: 05/31/18		
Benzene	103	1.0	μg/L	100	103	70-130	
Butylcyclohexane	84.4	1.0	μg/L	100	84.4	70-130	
Decane	87.0	1.0	μg/L	100	87.0	70-130	
Ethylbenzene	104	1.0	μg/L	100	104	70-130	
Methyl tert-Butyl Ether (MTBE)	104	1.0	μg/L	100	104	70-130	
2-Methylpentane	103	1.0	μg/L	100	103	70-130	
Naphthalene	100	5.0	μg/L	100	100	70-130	
Nonane	82.9	1.0	μg/L	100	82.9	70-130	
Pentane	103	1.0	μg/L	100	103	70-130	
Toluene	104	1.0	μg/L	100	104	70-130	
1,2,4-Trimethylbenzene	104	1.0	μg/L	100	104	70-130	
2,2,4-Trimethylpentane	95.9	1.0	μg/L	100	95.9	70-130	
m+p Xylene	209	2.0	μg/L	200	105	70-130	
o-Xylene	104	1.0	μg/L	100	104	70-130	
Surrogate: 2,5-Dibromotoluene (FID)	41.0		μg/L	40.0	103	70-130	
Surrogate: 2,5-Dibromotoluene (PID)	38.6		μg/L	40.0	96.5	70-130	

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B204608 - MA VPH										
LCS Dup (B204608-BSD1)				Prepared &	Analyzed: 05	/31/18				
Benzene	103	1.0	μg/L	100		103	70-130	0.452	25	
Butylcyclohexane	83.2	1.0	μg/L	100		83.2	70-130	1.42	25	
Decane	87.0	1.0	μg/L	100		87.0	70-130	0.0115	25	
Ethylbenzene	103	1.0	μg/L	100		103	70-130	0.712	25	
Methyl tert-Butyl Ether (MTBE)	102	1.0	μg/L	100		102	70-130	1.44	25	
2-Methylpentane	101	1.0	μg/L	100		101	70-130	2.64	25	
Naphthalene	98.0	5.0	μg/L	100		98.0	70-130	2.32	25	
Nonane	82.5	1.0	μg/L	100		82.5	70-130	0.457	25	
Pentane	101	1.0	μg/L	100		101	70-130	2.09	25	
Toluene	103	1.0	μg/L	100		103	70-130	0.540	25	
1,2,4-Trimethylbenzene	102	1.0	μg/L	100		102	70-130	1.48	25	
2,2,4-Trimethylpentane	93.8	1.0	μg/L	100		93.8	70-130	2.23	25	
m+p Xylene	208	2.0	μg/L	200		104	70-130	0.847	25	
o-Xylene	103	1.0	μg/L	100		103	70-130	0.864	25	
Surrogate: 2,5-Dibromotoluene (FID)	37.8		μg/L	40.0		94.4	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	37.1		μg/L	40.0		92.8	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- L-02 Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
- L-04 Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

- O-01 Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount.
- R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
- V-34 Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report	
Analyte	Certifications
MADEP-VPH-Feb 2018 Rev 2.1 in Soil	
Unadjusted C5-C8 Aliphatics	CT,NC,ME,NH-P
C5-C8 Aliphatics	CT,NC,ME,NH-P
Unadjusted C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C10 Aromatics	CT,NC,ME,NH-P
Benzene	CT,NC,ME,NH-P
Ethylbenzene	CT,NC,ME,NH-P
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P
Naphthalene	CT,NC,ME,NH-P
Toluene	CT,NC,ME,NH-P
m+p Xylene	CT,NC,ME,NH-P
o-Xylene	CT,NC,ME,NH-P
MADEP-VPH-Feb 2018 Rev 2.1 in Water	
Unadjusted C5-C8 Aliphatics	CT,NC,ME,NH-P
C5-C8 Aliphatics	CT,NC,ME,NH-P
Unadjusted C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C10 Aromatics	CT,NC,ME,NH-P
Benzene	CT,NC,ME,NH-P
Ethylbenzene	CT,NC,ME,NH-P
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P
Naphthalene	CT,NC,ME,NH-P
Toluene	CT,NC,ME,NH-P
m+p Xylene	CT,NC,ME,NH-P
o-Xylene	CT,NC,ME,NH-P
M21-22 6200B in Water	
Acetone	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Ethanol	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
M21-22 6200B in Water	
1,2-Dibromoethane (EDB)	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
Diisopropyl Ether (DIPE)	NC
Ethylbenzene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Acetate	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC
W-846 8260B in Soil	
Acetone	NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Soil	
tert-Amyl Methyl Ether (TAME)	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
tert-Butyl Alcohol (TBA)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
tert-Butyl Ethyl Ether (TBEE)	NC
Carbon Disulfide	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC
4-Chlorotoluene	NC
1,2-Dibromo-3-chloropropane (DBCP)	NC
1,2-Dibromoethane (EDB)	NC
Dibromomethane	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
trans-1,4-Dichloro-2-butene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
Diethyl Ether	NC
Diisopropyl Ether (DIPE)	NC
1,4-Dioxane	NC
Ethylbenzene	NC
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Soil	
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Acetate	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2018
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

CON-test Amalytical Laboratory

http://www.contestlabs.com	GHAIN UF CUSTODY RECORD (North Caro
1	<u> </u>
\sim	2
5	
5	
Ĺ	32
\succ	33

Doc # 379 Rev 1_03242017	10 Snnice
ă	

	080	5
		c

l

	Phone: 413-525-2332	CHAIN UP CUSTODY RECORD (North Carobna)	ov record	(North Ca	rolma)			59 Spru East Loi	su spruce street East Longmeador	39 Spruce Street East Longmeadow, MA 01028	Page of	
	Fax: 413-525-6405	stedneste	and Bunnalize	und Time.								
	Email: info@contestlabs.com	7-Day	10-Day	ب ا							# of Containers	
Company Name		Due Date:			_						² Preservation Code	
Address: 3201 SPRING FOREST	J RD	Rush-7	inbest tevoridy	patrupe							³ Container Code	
Phone: 919-872.2000		1-Day	3-Day				ANAI	ANAL YSIS REQUESTED	QUESTI	0	Dissolved the tails Sample	
Projectioner Annu's S	STORU	2-Day	4-Day								Field Filtered	
Project Location: Prtf5r2000, NC		14	leta Deliver			98	3				Lab to Filter	11.2
Project Number: 4,2-05 - 18 - 110		Format: PDF				11/	64]	1.1
Project Manager: MINE PFEIFER		Other:					1				Orthoghosphate Sample	100
		CLP Like Data Pkg Required:	g Required:		Б	idn IIn	হত				Field Filtered	59100
Invoice Recipient:		Email To:					62				Lab to Filter	1.15
Sampled By: Jim PErur		Fax To #:			Ń		9					<11.1
Con-Test Work Order#	Client Sample ID / Description Beginning Date/Time	g Ending Composite ne Date/Time	osite Grab	¹ Matrix Code	Conc	158 2.6M	WŞ				¹ Matrix Codes: GW = Ground Water	11
55	a	>		S	5						WW = Waste Water	di di
I-MW tree	- sze 8//sz/3	5 (1330)	>	Gil	3	X	>					111
msm S	N-1 5/25/185		>	2	5	/	>				SL = Sludge	114
											0 = Other (please	
											(auria)	
			<u> </u>								² Preservation Codes:	
											M = Mechanol N = Nitric Acid	1.12
											B = Sodium Bisulfate	14.6
	Run VPH on sample -02 per	ple -02 per									T = Sodium Hydroxide	à.
Comments: WGW+1: (2200B oury	Mike P.			Please	use the fo	ollowing o	odes to in	dicate po	ssible sar	Please use the foltowing codes to indicate possible sample concentration	0 = Other (please define)	12.16
	-KKM 5/30/18				H - High;	within t : M - Med	within the Conc Code column above: M - Medium; L - Low; C - Clean; U -	ode colu ow: C - (nn above Rean; U	within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Unknown		8 C 19 C
Relinnuisbed by Kinnat(ire)	Date/Time'						â					$\{i_1, i_2, \dots, i_n\}$
Combines & Communication	5/15/18 1500 N											4 P.C
Received by: (signature)	Date/Time:	GWPC					SWS	SWS Landfill		L REC	V = Vial	16.160
Relinedished by: Asignature)	$\frac{5/4.5/18}{\text{Date/Time}}$	SWSL		<i>6,46.</i> 1				HSB Orphaned Landfill	d Landfill		S = Summa Canister T = Tediar Ban	6 N. 1
· · · ·	5/15/18 1600	MSCC			ANIORA CAROLINA		Dether:				0 = Other (please	116-12
Decived by: (signature)	Date/Time: 01400						MEL	C and A	HA-LAP	NELAC and AVAA LAP, LLC Accredited		1996
B linquished by: (signature)	Date/Time: Project Entity	Entity Government	Winit	Municinality				ō	Other	Chromatooram		1
of ceived by: (signature)	Date/Time:	1		Brownfield][]	AIHA-LAP, LLC		
4]	~ ~ ~	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	5								

linquished ceived by: Page 38 of 40

Table of Contents

-1

EAST GRANEY, CT MEMPHIS, TN

MEMPHIS, TN DURHAM, NC RALEIGH, NC

ÊX.

FedEx [®] Tracking

Ship date: Fri 5/25/2018	@	Q	Actual delivery: Sat 5/26/2018 10:27 am
Raleigh, NC US		Delivered Signed for by: H.BECCA	EAST LONGMEADOW, MA US
2 Piece ship		·	
Travel Histor	γ		
	-		
▲ Date/Time	Activity 8 - Saturday		Location

6:41 am	At destination sort facility
3:28 am	Departed FedEx location
• 5/25/201	8 - Friday
10:27 pm	Arrived at FedEx location
8:49 pm	Left FedEx origin facility
3:31 pm	Picked up
2:14 pm	Shipment information sent to FedEx

Shipment Facts

Tracking Number	772328406237	Service	FedEx Priority Overnight
Master tracking	772328407093	Weight	15 lbs / 6.8 kgs
number	172326407033	Total pieces	2
Delivered To	Shipping/Receiving	Terms	Third Party
Total shipment weight	15 lbs / 6.8 kgs	Packaging	Your Packaging
Shipper reference	80	Standard	
Special handling section	For Saturday Delivery	transit 👘	5/26/2018 by 12:00 pm

OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

				4111		CC		les	5¢°
						ANALY		ABORAT	ORY
Login S	•	ceipt Checklist -			-	ng Acceptan			
		nent will be brou	ght to the a	ttention of t	he Client	t - State True	e or False		
Client		ME							
Receiv	ed By	- KAP		Date	512	6 18	Time	F501_	
How were the	ne samples	In Cooler	T	No Cooler		On Ice		No Ice	
receiv	ved?	Direct from Sam	pling			Ambient		Melted Ice	
Were sam	oles within		By Gun #	557		Actual Tem	p- 2. 9		
Temperatu			By Blank #			Actual Tem	p -		
Was	Custody Se	eal Intact?	$\overline{N^{\gamma}}$	We	re Sample	es Tampered	with?		
	COC Relin		-	u	Ch <u>ai</u> n Ag	gree With Sa	mples?		
		eaking/loose caps	s on any sam	· –	<u></u> ⊢			-	
Is COC in in	-		-		ples rece	ived within h	-		
Did COC i		Client	T	Analysis			er Name		-
pertinent Inf		Project	T	ID's	T	_ Collection	Dates/Times	<u> </u>	****
		d out and legible?	<u> </u>	•					
Are there Lab to Filters? Who was notified? Are there Rushes? Who was notified?									
Are there Ru			<u> </u>	.					
Are there Sh		-		-	Who wa	as notified?			_
Is there enou	-		<u></u>	-		. 0			
	•	ere applicable?	<u> </u>	÷	MS/MSD3			\cap	
Proper Medi			<u> </u>			samples rec	quired? ~		-
Were trip bla			_		On COC?				
Do all sampl	es nave the		N*	4 Acid _			Base		····
Vials	#	Containers:	#			#		<u>.</u>	#
Unp-		1 Liter Amb.	Į	1 Liter I				z Amb.	
HCL-	9	500 mL Amb.		500 mL				nb/Clear	
Meoh-	2	250 mL Amb.	1	250 mL				nb/Clear	<u> </u>
Bisulfate-	2	Col./Bacteria Other Plastic		Flash			1	nb/Clear	·
DI- Thiosulfate-		SOC Kit		Other Plastic			Frozen:	core	
Sulfuric-		Perchlorate		Ziplo			1102611.		
Oundric-		reremonate	L			<u> </u>			
Vials	21	Contellance	#	Unused N	ledia	#	1		#
	#	Containers: 1 Liter Amb.	#	1 itor	Diantia	#	16 0	· Amb	#
Unp- HCL-		500 mL Amb.		1 Liter 500 mL		+		z Amb nb/Clear	+
Meoh-		250 mL Amb.		250 mL		+		nb/Clear	
Bisulfate-		Col./Bacteria		Flash				nb/Clear	
Disuitate-		Other Plastic		Other	the second s		÷	core	+1
Thiosulfate-		SOC Kit		Plastic			Frozen:		· · · · · ·
Sulfuric-		Perchlorate		Ziplo		1			
Comments:			1			1	£		

APPENDIX I

REGULATORY RECORDS DOCUMENTATION

Proposed DG Store

Not Reported Pittsboro, NC 27312

Inquiry Number: 7739974.2s August 19, 2024

The EDR Radius Map[™] Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-LBC-MGA

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	11
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map	A-7
Physical Setting Source Map Findings	A-8
Physical Setting Source Records Searched	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provident professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527 - 21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E2247 - 16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E1528 - 22) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

NOT REPORTED PITTSBORO, NC 27312

COORDINATES

Latitude (North):	35.8048760 - 35° 48' 17.55"
Longitude (West):	79.2501620 - 79° 15' 0.58''
Universal Tranverse Mercator:	Zone 17
UTM X (Meters):	658107.9
UTM Y (Meters):	3963519.5
Elevation:	563 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: Version Date:

2022

Version Date:

50021258 BYNUM, NC 2022

50021414 SILK HOPE, NC

AERIAL PHOTOGRAPHY IN THIS REPORT

East Map:

Portions of Photo from:	20200711
Source:	USDA

Target Property Address: NOT REPORTED PITTSBORO, NC 27312

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
A1	MANN STORE	7070 NC 87 N	UST FINDER RELEASE	Lower	82, 0.016, South
A2	MANN STORE	7070 NC 87 N	LUST	Lower	82, 0.016, South

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	Federal Superfund Liens

Lists of Federal Delisted NPL sites

Delisted NPL_____ National Priority List Deletions

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY______ Federal Facility Site Information listing SEMS______ Superfund Enterprise Management System

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE_____ Superfund Enterprise Management System Archive

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS..... Corrective Action Report

Lists of Federal RCRA TSD facilities

RCRA-TSDF..... RCRA - Treatment, Storage and Disposal

Lists of Federal RCRA generators

RCRA-LQG	. RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-VSQG	RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity
	Generators)

Federal institutional controls / engineering controls registries

LUCIS...... Land Use Control Information System

Engineering Controls Sites List Institutional Controls Sites List

Federal ERNS list

ERNS_____ Emergency Response Notification System

Lists of state- and tribal (Superfund) equivalent sites

NC HSDS_____ Hazardous Substance Disposal Site

Lists of state- and tribal hazardous waste facilities

SHWS_____ Inactive Hazardous Sites Inventory

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF	List of Solid Waste Facilities
DEBRIS	Solid Waste Active Disaster Debris Sites Listing
OLI	Old Landfill Inventory
LCID	Land-Clearing and Inert Debris (LCID) Landfill Notifications

Lists of state and tribal leaking storage tanks

LAST	Leaking Aboveground Storage Tanks
INDIAN LUST	Leaking Underground Storage Tanks on Indian Land
LUST TRUST	State Trust Fund Database

Lists of state and tribal registered storage tanks

FEMA UST	Underground Storage Tank Listing
	Petroleum Underground Storage Tank Database
AST	
INDIAN UST	. Underground Storage Tanks on Indian Land

State and tribal institutional control / engineering control registries

INST CONTROL...... No Further Action Sites With Land Use Restrictions Monitoring

Lists of state and tribal voluntary cleanup sites

Lists of state and tribal brownfield sites

BROWNFIELDS..... Brownfields Projects Inventory

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS_____ A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY..... Recycling Center Listing

DEBRIS REGION 9 ODI	Report on the Status of Open Dumps on Indian Lands Torres Martinez Reservation Illegal Dump Site Locations Open Dump Inventory
IHS OPEN DUMPS	Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL	Delisted National Clandestine Laboratory Register
US CDL	National Clandestine Laboratory Register

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS	Hazardous Materials Information Reporting System
SPILLS	Spills Incident Listing
IMD	Incident Management Database
SPILLS 90	. SPILLS 90 data from FirstSearch
SPILLS 80	. SPILLS 80 data from FirstSearch

Other Ascertainable Records

FUDS. DOD. SCRD DRYCLEANERS. US FIN ASSUR. EPA WATCH LIST. 2020 COR ACTION. TSCA. TRIS. SSTS. ROD. RMP. RAATS. PRP. PADS. ICIS.	2020 Corrective Action Program List Toxic Substances Control Act Toxic Chemical Release Inventory System Section 7 Tracking Systems Records Of Decision
MLTS. COAL ASH DOE. COAL ASH EPA. PCB TRANSFORMER. RADINFO. HIST FTTS. DOT OPS. CONSENT. INDIAN RESERV.	Act)/TSCA (Toxic Substances Control Act) Material Licensing Tracking System Steam-Electric Plant Operation Data Coal Combustion Residues Surface Impoundments List PCB Transformer Registration Database Radiation Information Database FIFRA/TSCA Tracking System Administrative Case Listing Incident and Accident Data Superfund (CERCLA) Consent Decrees Indian Reservations Formerly Utilized Sites Remedial Action Program Uranium Mill Tailings Sites

US MINES. MINES MRDS. ABANDONED MINES. FINDS. UXO. DOCKET HWC. ECHO. FUELS PROGRAM. PFAS NPL. PFAS FEDERAL SITES. PFAS TRIS. PFAS TSCA. PFAS RCRA MANIFEST. PFAS ATSDR. PFAS ATSDR. PFAS WQP. PFAS PROJECT. PFAS PROJECT. PFAS ECHO. PFAS ECHO. PFAS ECHO. PFAS ECHO FIRE TRAIN. PFAS PT 139 AIRPORT. AQUEOUS FOAM NRC. BIOSOLIDS. UST FINDER. E MANIFEST. PFAS. AIRS. ASBESTOS. CCB. COAL ASH. DRYCLEANERS. Financial Assurance. NPDES. PCSRP. SEPT HAULERS. UIC.	 Mineral Resources Data System Abandoned Mines Facility Index System/Facility Registry System Unexploded Ordnance Sites Hazardous Waste Compliance Docket Listing Enforcement & Compliance History Information EPA Fuels Program Registered Listing Superfund Sites with PFAS Detections Information Federal Sites PFAS Information List of PFAS Added to the TRI PFAS Manufacture and Imports Information PFAS Contamination Site Location Listing Ambient Environmental Sampling for PFAS NORTHEASTERN UNIVERSITY PFAS PROJECT Clean Water Act Discharge Monitoring Information Facilities in Industries that May Be Handling PFAS Listing Facilities in Industries that May Be Handling PFAS Listing Aqueous Foam Related Incidents Listing ICIS-NPDES Biosolids Facility Data UST Finder Database Hazardous Waste Electronic Manifest System PFAS Contamination Site Listing Air Quality Permit Listing Asbestos Permits & Notifications Information Coal Ash Structural Fills (CCB) Listing Coal Ash Structural Fills (CCB) Listing Poelaning Sites Financial Assurance Information Listing NPDES Facility Location Listing Petroleum-Contaminated Soil Remediation Permits Permitted Septage Haulers Listing Underground Injection Wells Listing
AOP	Animal Operation Permits Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS	Recovered Government Archive State Hazardous Waste Facilities List
RGA LF	Recovered Government Archive Solid Waste Facilities List
RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Lists of state and tribal leaking storage tanks

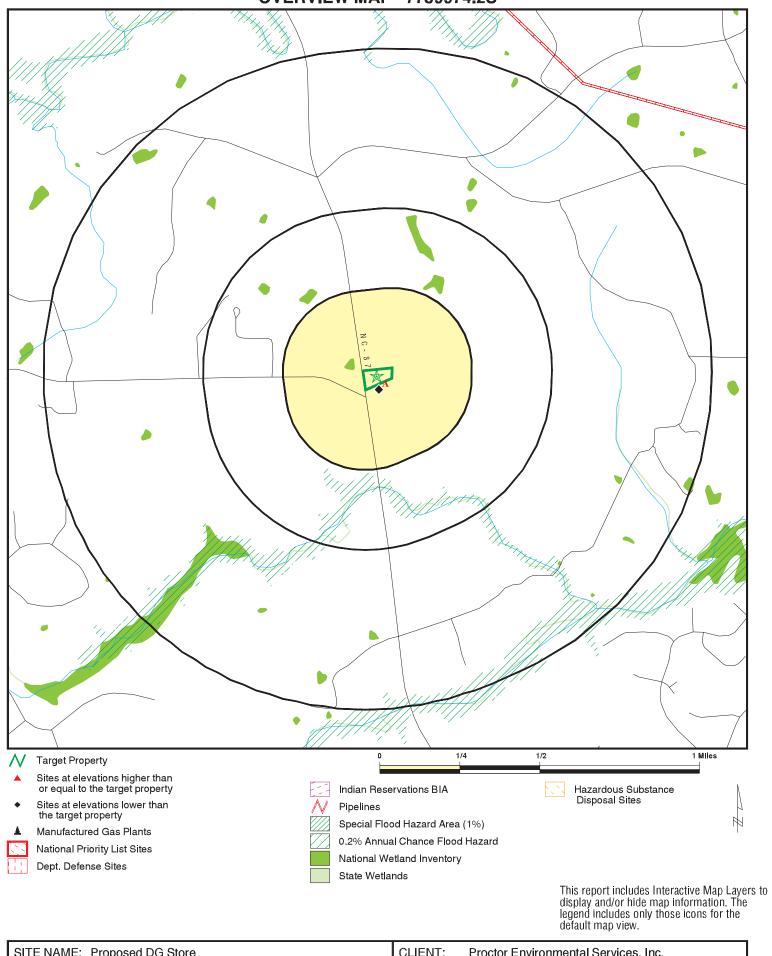
LUST: The Leaking Underground Storage Tank Incidents Management Database contains an inventory of reported leaking underground storage tank incidents. The data come from the Department of Environment, & Natural Resources' Incidents by Address.

A review of the LUST list, as provided by EDR, and dated 04/26/2024 has revealed that there is 1 LUST site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page	
MANN STORE Incident Phase: RE	7070 NC 87 N	S 0 - 1/8 (0.016 mi.)	A2	8	
Incident Number: 6281 Current Status: File Located in House					

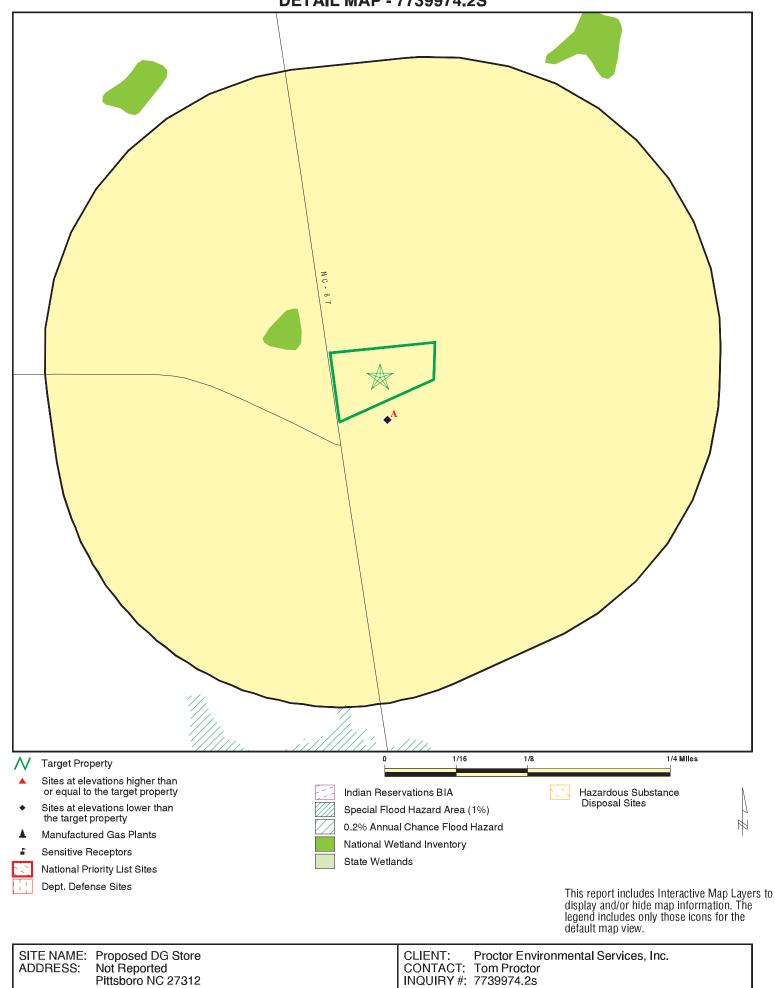
ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records


UST FINDER RELEASE: US EPA's UST Finder data is a national composite of leaking underground storage tanks. This data contains information about, and locations of, leaking underground storage tanks. Data was collected from state sources and standardized into a national profile by EPA's Office of Underground Storage Tanks, Office of Research and Development, and the Association of State and Territorial Solid Waste Management Officials.

A review of the UST FINDER RELEASE list, as provided by EDR, and dated 06/08/2023 has revealed that there is 1 UST FINDER RELEASE site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
MANN STORE	7070 NC 87 N	S 0 - 1/8 (0.016 mi.)	A1	8


There were no unmapped sites in this report.

OVERVIEW MAP - 7739974.2S

		Proctor Environmental Services, Inc. Tom Proctor 7739974.2s
_AT/LONG:	35.804876 / 79.250162	 August 19, 2024 7:06 pm

DETAIL MAP - 7739974.2S

LAT/LONG:

35.804876 / 79.250162

DATE:	August 19, 2024 7:09 pm	
	Copyright © 2024 EDR, Inc. © 2015 TomTom Rel. 2015.	

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Lists of Federal NPL (St	uperfund) site	S						
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Lists of Federal Delisted	d NPL sites							
Delisted NPL	1.000		0	0	0	0	NR	0
Lists of Federal sites su CERCLA removals and		rs						
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of Federal CERCL	A sites with N	FRAP						
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA f undergoing Corrective								
CORRACTS	1.000		0	0	0	0	NR	0
Lists of Federal RCRA 1	SD facilities							
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA g	enerators							
RCRA-LQG	0.250		0	0	NR	NR	NR	0
RCRA-SQG RCRA-VSQG	0.250 0.250		0 0	0 0	NR NR	NR NR	NR NR	0 0
Federal institutional cor engineering controls re								
LUCIS	0.500		0	0	0	NR	NR	0
US ENG CONTROLS US INST CONTROLS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal ERNS list	0.500		0	0	0	INIT	INK	0
ERNS	0.001		0	NR	NR	NR	NR	0
Lists of state- and tribal (Superfund) equivalent	1		0					0
NC HSDS	1.000		0	0	0	0	NR	0
Lists of state- and tribal hazardous waste faciliti	,		-	-	-	-		-
SHWS	1.000		0	0	0	0	NR	0
Lists of state and tribal and solid waste disposa								
SWF/LF	0.500		0	0	0	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
DEBRIS OLI LCID	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Lists of state and tribal	leaking stora	ge tanks						
LAST LUST INDIAN LUST LUST TRUST	0.500 0.500 0.500 0.500		0 1 0 0	0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 1 0 0
Lists of state and tribal	registered sto	orage tanks						
FEMA UST UST AST INDIAN UST	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal institut control / engineering co		es						
INST CONTROL	0.500		0	0	0	NR	NR	0
Lists of state and tribal	voluntary clea	anup sites						
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of state and tribal	brownfield si	tes						
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONME	NTAL RECORD	<u>s</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / Waste Disposal Sites	Solid							
SWRCY HIST LF INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500 0.500		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardou Contaminated Sites	us waste /							
US HIST CDL US CDL	0.001 0.001		0 0	NR NR	NR NR	NR NR	NR NR	0 0
Local Land Records								
LIENS 2	0.001		0	NR	NR	NR	NR	0
Records of Emergency	Release Repo	orts						
HMIRS	0.001		0	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
SPILLS	0.001		0	NR	NR	NR	NR	0
IMD	0.500		0	0	0	NR	NR	0
SPILLS 90	0.001		0	NR	NR	NR	NR	0
SPILLS 80	0.001		0	NR	NR	NR	NR	0
Other Ascertainable Reco	ords							
RCRA NonGen / NLR	0.250		0	0	NR	NR	NR	0
FUDS	1.000		0	0	0	0	NR	0
DOD	1.000		0	0	0	0	NR	0
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
US FIN ASSUR	0.001		0	NR	NR	NR	NR	0
EPA WATCH LIST	0.001		0	NR	NR	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	0.001		0	NR	NR	NR	NR	0
TRIS	0.001		0	NR	NR	NR	NR	0
SSTS	0.001		0	NR	NR	NR	NR	0
ROD	1.000		0	0			NR	0
RMP RAATS	0.001		0	NR	NR	NR	NR	0
PRP	0.001 0.001		0 0	NR NR	NR NR	NR NR	NR NR	0 0
PADS	0.001		0	NR	NR	NR	NR	0
ICIS	0.001		0	NR	NR	NR	NR	0
FTTS	0.001		0	NR	NR	NR	NR	0
MLTS	0.001		0	NR	NR	NR	NR	0
COAL ASH DOE	0.001		Ő	NR	NR	NR	NR	õ
COAL ASH EPA	0.500		Õ	0	0	NR	NR	õ
PCB TRANSFORMER	0.001		0	NR	NR	NR	NR	0
RADINFO	0.001		0	NR	NR	NR	NR	0
HIST FTTS	0.001		0	NR	NR	NR	NR	0
DOT OPS	0.001		0	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	0.001		0	NR	NR	NR	NR	0
USAIRS	0.001		0	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
MINES MRDS	0.250		0	0	NR	NR	NR	0
ABANDONED MINES FINDS	0.250		0 0		NR NR	NR NR	NR NR	0
	0.001		-	NR	-	-		0
UXO DOCKET HWC	1.000 0.001		0	0 NR	0 NR	0 NR	NR NR	0
ECHO	0.001		0	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
PFAS NPL	0.250		0	0	NR	NR	NR	0
PFAS FEDERAL SITES	0.250		0	0	NR	NR	NR	0
PFAS TRIS	0.250		Õ	õ	NR	NR	NR	õ
PFAS TSCA	0.250		õ	Õ	NR	NR	NR	Ő
PFAS RCRA MANIFEST	0.250		õ	Õ	NR	NR	NR	Ő
PFAS ATSDR	0.250		Õ	Õ	NR	NR	NR	Õ
PFAS WQP	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
PFAS PROJECT	0.250		0	0	NR	NR	NR	0
PFAS NPDES	0.250		0	Ő	NR	NR	NR	0
PFAS ECHO	0.250		Ő	Ő	NR	NR	NR	0
PFAS ECHO FIRE TRAIN	0.250		Ő	0 0	NR	NR	NR	0
PFAS PT 139 AIRPORT	0.250		õ	Ő	NR	NR	NR	õ
AQUEOUS FOAM NRC	0.250		Õ	Ő	NR	NR	NR	Õ
BIOSOLIDS	0.001		0	NR	NR	NR	NR	Ō
UST FINDER RELEASE	0.500		1	0	0	NR	NR	1
UST FINDER	0.250		0	0	NR	NR	NR	0
E MANIFEST	0.250		0	0	NR	NR	NR	0
PFAS	0.250		0	0	NR	NR	NR	0
AIRS	0.001		0	NR	NR	NR	NR	0
ASBESTOS	0.001		0	NR	NR	NR	NR	0
CCB	0.500		0	0	0	NR	NR	0
COAL ASH	0.500		0	0	0	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Financial Assurance	0.001		0	NR	NR	NR	NR	0
NPDES	0.001		0	NR	NR	NR	NR	0
PCSRP	0.500		0	0	0	NR	NR	0
SEPT HAULERS	0.001		0	NR	NR	NR	NR	0
UIC	0.001		0	NR	NR	NR	NR	0
AOP	0.001		0	NR	NR	NR	NR	0
EDR HIGH RISK HISTORICA								
EDR Exclusive Records								
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVERN	MENT ARCHIV	ES						
Exclusive Recovered Gov	vt. Archives							
RGA HWS	0.001		0	NR	NR	NR	NR	0
RGALF	0.001		Õ	NR	NR	NR	NR	Õ
RGA LUST	0.001		Ō	NR	NR	NR	NR	0
- Totals		0	2	0	0	0	0	2

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

UST Number:

Source Type:

Date Reported:

Closure Request:

Incident Number:

MAP FINDINGS

EDR ID Number Database(s) EPA ID Number

A1 South < 1/8 0.016 mi.	MANN STORE 7070 NC 87 N PITTSBORO, NC 0		UST FINDER RELEASE	1029018114 N/A
82 ft.	Site 1 of 2 in cluster A			
Relative: Lower Actual: 555 ft.	UST FINDER RELEASE: Object ID: Facility ID: Lust ID: Name: Address: City,State,Zip: Address Match Type: Reported Date: Status: Substance: Population within 1500ft: Domestic Wells within 1500ft: Land Use: Within SPA: SPA PWS Facility ID: SPA Water Type: SPA Facility Type: SPA HUC12: Within WHPA: WHPA PWS Facility ID: WHPA Water Type: WHPA Facility Type: WHPA Facility Type: WHPA Facility Type: WHPA Facility Type: WHPA HUC12: Within 100yr Floodplain: Tribe: EPA Region: NFA Letter 1: NFA Letter 2: NFA Letter 3: NFA Letter 4: Closed With Residual Contaminate: Coordinate Source: X Coord: Latitude: Longitude:	282378 Not reported NC20356 MANN STORE 7070 NC 87 N PITTSBORO, NC 0 Not reported 1991/01/07 15:59:59+00 Open Not reported 23 8 Non-Developed Yes NC0319015_39260 SW - SurRELEASEe Water IN - Intake 30300020702 No Not reported Not reported State -79.25071999999999 35.804100000001 35.80409999999999		
A2 South < 1/8 0.016 mi. 82 ft.	MANN STORE 7070 NC 87 N PITTSBORO, NC 27312 Site 2 of 2 in cluster A		LUST	S122513844 N/A
Relative: Lower Actual: 555 ft.	LUST: Name: Address: City,State,Zip: Facility ID: UST Number:	MANN STORE 7070 NC 87 N PITTSBORO, NC 27312- Not reported RA-940		

RA-940

01/07/1991

Not reported

6281

3

MAP FINDINGS

Not reported

Database(s)

EDR ID Number EPA ID Number

MANN STORE (Continued)

Close Out: Level Of Soil Cleanup Achieved: # Of Supply Wells: Commercial/NonCommercial UST Site: **Risk Classification:** Risk Class Based On Review: Corrective Action Plan Type: NOV Issue Date: Site Priority: Phase Of LSA Req: Site Risk Reason: Land Use: MTBE: MTBE1: Flag: Flag1: LUR Filed: GPS Confirmed: Current Status: RBCA GW: PETOPT: RPL: CD Num: Reel Num: **RPOW:** RPOP: Error Flag: Error Code: Valid: Testlat: Regional Officer Project Mgr: Company: Telephone: 5 Min Quad: LUST: ERR Type: UST Number: Facility Id: Date Occurred: Date Reported: Owner/Operator: Ownership: Operation Type: Type: Location: Priority Update: Wells Affected Y/N: Samples Include: 7#5 Minute Quad: 5 Minute Quad: Pirf/Min Soil: Release Code: Source Code: Err Type: Cause: Source: UST Number:

Not reported 0 С Н н Not reported Not reported 115A Not reported Not reported Not reported 0 U 0 0 Not reported 31 С Not reported 3 False Not reported Not reported False False 0 Ν True Not reported FTF Not reported 919 542-2027 Not reported Not reported RA-940 6281 1991-01-07 00:00:00 1991-01-23 00:00:00 **GLENN MANN** 5 6 3 1 1998-04-16 00:00:00 Ν 0 1 1 Not reported Not reported Pirf Not reported Not reported Not reported Not reported

S122513844

MAP FINDINGS

Database(s) E

EDR ID Number EPA ID Number

MANN STORE (Continued)

LUST:

Incident Number: Last Modified: Incident Phase: NOV Issued: NORR Issued: 45 Day Report: Public Meeting Held: SOC Signed: Reclassification Report: RS Designation: Closure Request Date: Close-out Report: 6281 3/1/2010 RE 6/15/1992 Not reported S122513844

Count: 0 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)

NO SITES FOUND

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/26/2024 Number of Days to Update: 23 Source: EPA Telephone: N/A Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665 EPA Region 6 Telephone: 214-655-6659

EPA Region 7 Telephone: 913-551-7247

EPA Region 8 Telephone: 303-312-6774

EPA Region 9 Telephone: 415-947-4246

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/26/2024 Number of Days to Update: 23 Source: EPA Telephone: N/A Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994 Number of Days to Update: 56 Source: EPA Telephone: 202-564-4267 Last EDR Contact: 08/15/2011 Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Lists of Federal Delisted NPL sites

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/26/2024 Number of Days to Update: 23 Source: EPA Telephone: N/A Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Quarterly

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 03/25/2024	Source: Envir
Date Data Arrived at EDR: 03/26/2024	Telephone: 70
Date Made Active in Reports: 06/24/2024	Last EDR Con
Number of Days to Update: 90	Next Schedule
	Data Poloaco

Source: Environmental Protection Agency Telephone: 703-603-8704 Last EDR Contact: 06/25/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 04/22/2024 Date Data Arrived at EDR: 05/01/2024 Date Made Active in Reports: 05/24/2024 Number of Days to Update: 23 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/21/2024 Data Release Frequency: Quarterly

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 04/22/2024 Date Data Arrived at EDR: 05/01/2024 Date Made Active in Reports: 05/24/2024 Number of Days to Update: 23 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/21/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 06/03/2024	Source: EPA
Date Data Arrived at EDR: 06/07/2024	Telephone: 800-424-9346
Date Made Active in Reports: 06/20/2024	Last EDR Contact: 06/07/2024
Number of Days to Update: 13	Next Scheduled EDR Contact: 09/30/2024
	Data Release Frequency: Quarterly

Lists of Federal RCRA TSD facilities

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 06/03/2024 Date Data Arrived at EDR: 06/07/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 13 Source: Environmental Protection Agency Telephone: (404) 562-8651 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA generators

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 06/03/2024 Date Data Arrived at EDR: 06/07/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 13 Source: Environmental Protection Agency Telephone: (404) 562-8651 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 06/03/2024 Date Data Arrived at EDR: 06/07/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 13 Source: Environmental Protection Agency Telephone: (404) 562-8651 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators) RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 06/03/2024 Date Data Arrived at EDR: 06/07/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 13 Source: Environmental Protection Agency Telephone: (404) 562-8651 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 02/14/2024 Date Data Arrived at EDR: 02/16/2024 Date Made Active in Reports: 04/04/2024 Number of Days to Update: 48

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 07/31/2024 Next Scheduled EDR Contact: 11/18/2024 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 07/24/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 08/08/2024	Telephone: 703-603-0695
Date Made Active in Reports: 08/15/2024	Last EDR Contact: 08/08/2024
Number of Days to Update: 7	Next Scheduled EDR Contact: 12/02/2024
	Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 07/24/2024 Date Data Arrived at EDR: 08/08/2024 Date Made Active in Reports: 08/15/2024 Number of Days to Update: 7 Source: Environmental Protection Agency Telephone: 703-603-0695 Last EDR Contact: 08/08/2024 Next Scheduled EDR Contact: 12/02/2024 Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 03/13/2024	Source: National Response Center, United States Coast Guard
Date Data Arrived at EDR: 03/19/2024	Telephone: 202-267-2180
Date Made Active in Reports: 06/17/2024	Last EDR Contact: 06/17/2024
Number of Days to Update: 90	Next Scheduled EDR Contact: 09/30/2024
	Data Release Frequency: Quarterly

Lists of state- and tribal (Superfund) equivalent sites

HSDS: Hazardous Substance Disposal Site

Locations of uncontrolled and unregulated hazardous waste sites. The file includes sites on the National Priority List as well as those on the state priority list.

Date of Government Version: 08/09/2011	Source: North Carolina Center for Geographic Information and Analysis
Date Data Arrived at EDR: 11/08/2011	Telephone: 919-754-6580
Date Made Active in Reports: 12/05/2011	Last EDR Contact: 07/16/2024
Number of Days to Update: 27	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: No Update Planned

Lists of state- and tribal hazardous waste facilities

SHWS: Inactive Hazardous Sites Inventory

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 02/29/2024	Source: Department of Environment, Health and Natural Resources
Date Data Arrived at EDR: 03/06/2024	Telephone: 919-508-8400
Date Made Active in Reports: 05/29/2024	Last EDR Contact: 06/05/2024
Number of Days to Update: 84	Next Scheduled EDR Contact: 09/16/2024
	Data Release Frequency: Quarterly

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF: List of Solid Waste Facilities

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 01/24/2024	Source: Department of Environment and Natural Resources
Date Data Arrived at EDR: 03/20/2024	Telephone: 919-733-0692
Date Made Active in Reports: 06/13/2024	Last EDR Contact: 06/17/2024
Number of Days to Update: 85	Next Scheduled EDR Contact: 09/30/2024
	Data Release Frequency: Varies

OLI: Old Landfill Inventory

Old landfill inventory location information. (Does not include no further action sites and other agency lead sites).

Date of Government Version: 12/07/2023 Date Data Arrived at EDR: 01/03/2024	Source: Department of Environment & Natural Resources Telephone: 919-733-4996
Date Made Active in Reports: 03/22/2024	Last EDR Contact: 07/02/2024
Number of Days to Update: 79	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Varies

DEBRIS: Solid Waste Active Disaster Debris Sites Listing

NCDEQ Division of Waste Management Solid Waste Section Temporary Disaster Debris Staging Site (TDDSS) Locations which are available to be activated in a disaster or emergency. Disaster Debris Sites can only be used for temporary disaster debris storage if the site's responsible party activates the site for use by notifying the NCDEQ DWM Solid Waste Section staff during an emergency

Date of Government Version: 03/11/2024	Source: Department of Environmental Quality
Date Data Arrived at EDR: 03/12/2024	Telephone: 919-707-8247
Date Made Active in Reports: 06/05/2024	Last EDR Contact: 06/12/2024
Number of Days to Update: 85	Next Scheduled EDR Contact: 09/23/2024
	Data Release Frequency: Varies

LCID: Land-Clearing and Inert Debris (LCID) Landfill Notifications A list all of the Land-Clearing and Inert Debris (LCID) Landfill Notification facilities (under 2 acres in size) in North Carolina.

Date of Government Version: 12/14/2023 Date Data Arrived at EDR: 04/04/2024 Date Made Active in Reports: 07/02/2024 Number of Days to Update: 89 Source: Department of Environmental Quality Telephone: 919-707-8248 Last EDR Contact: 07/02/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

Lists of state and tribal leaking storage tanks

LUST: Regional UST Database

This database contains information obtained from the Regional Offices. It provides a more detailed explanation of current and historic activity for individual sites, as well as what was previously found in the Incident Management Database. Sites in this database with Incident Numbers are considered LUSTs.

Date of Government Version: 04/26/2024SoDate Data Arrived at EDR: 04/30/2024TeDate Made Active in Reports: 07/23/2024LaNumber of Days to Update: 84No

Source: Department of Environment and Natural Resources Telephone: 919-707-8200 Last EDR Contact: 07/25/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: Quarterly

LAST: Leaking Aboveground Storage Tanks

A listing of leaking aboveground storage tank site locations.

Date of Government Version: 04/26/2024	Source: Department of Environment & Natural Resources
Date Data Arrived at EDR: 04/30/2024	Telephone: 877-623-6748
Date Made Active in Reports: 07/23/2024	Last EDR Contact: 07/25/2024
Number of Days to Update: 84	Next Scheduled EDR Contact: 11/11/2024
	Data Release Frequency: Quarterly

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56 Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 10/25/2023	Source: EPA Region 4
Date Data Arrived at EDR: 01/17/2024	Telephone: 404-562-8677
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/10/2024
Number of Days to Update: 56	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage T LUSTs on Indian land in Colorado, Montana, I	anks on Indian Land North Dakota, South Dakota, Utah and Wyoming.
Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
INDIAN LUST R7: Leaking Underground Storage T LUSTs on Indian land in Iowa, Kansas, and N	
Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
INDIAN LUST R9: Leaking Underground Storage T LUSTs on Indian land in Arizona, California, N	
Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
INDIAN LUST R5: Leaking Underground Storage T Leaking underground storage tanks located or	ัanks on Indian Land า Indian Land in Michigan, Minnesota and Wisconsin.
Date of Government Version: 10/04/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
INDIAN LUST R6: Leaking Underground Storage T LUSTs on Indian land in New Mexico and Okl	
Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
INDIAN LUST R10: Leaking Underground Storage LUSTs on Indian land in Alaska, Idaho, Orego	
Date of Government Version: 10/25/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56	Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies
LUST TRUST: State Trust Fund Database This database contains information about clain incurred while remediating Leaking USTs.	ms against the State Trust Funds for reimbursements for expenses
Date of Government Version: 03/22/2024 Date Data Arrived at EDR: 04/04/2024 Date Made Active in Reports: 07/02/2024 Number of Days to Update: 89	Source: Department of Environment and Natural Resources Telephone: 919-733-1315 Last EDR Contact: 07/02/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Quarterly

Lists of state and tribal registered storage tanks

FEMA UST: Underground Storage Tank Listing A listing of all FEMA owned underground storage tanks.

Date of Government Version: 03/15/2024	Source: FEMA
Date Data Arrived at EDR: 03/19/2024	Telephone: 202-646-5797
Date Made Active in Reports: 06/17/2024	Last EDR Contact: 08/01/2024
Number of Days to Update: 90	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Varies

UST: Petroleum Underground Storage Tank Database

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 04/12/2024Source: Department of Environment and Natural ResourcesDate Data Arrived at EDR: 04/19/2024Telephone: 919-733-1308Date Made Active in Reports: 04/22/2024Last EDR Contact: 07/25/2024Number of Days to Update: 3Next Scheduled EDR Contact: 11/11/2024Date Release Frequency: Quarterly

AST: AST Database

Facilities with aboveground storage tanks that have a capacity greater than 21,000 gallons.

Date of Government Version: 11/08/2023	Source: Department of Environment and Natural Resources
Date Data Arrived at EDR: 12/06/2023	Telephone: 919-715-6183
Date Made Active in Reports: 02/27/2024	Last EDR Contact: 06/06/2024
Number of Days to Update: 83	Next Scheduled EDR Contact: 09/23/2024
	Data Release Frequency: Semi-Annually

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 10/24/2023 Date Data Arrived at EDR: 01/17/2024 Date Made Active in Reports: 03/13/2024 Number of Days to Update: 56 Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 10/24/2023Source: EPA Region 4Date Data Arrived at EDR: 01/17/2024Telephone: 404-562-9424Date Made Active in Reports: 03/13/2024Last EDR Contact: 07/10/2024Number of Days to Update: 56Next Scheduled EDR Contact: 10/28/2024Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 10/24/2023	Source: EPA Region 10
Date Data Arrived at EDR: 01/17/2024	Telephone: 206-553-2857
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/10/2024
Number of Days to Update: 56	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 10/24/2023	Source: EPA, Region 1
Date Data Arrived at EDR: 01/17/2024	Telephone: 617-918-1313
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/10/2024
Number of Days to Update: 56	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 10/24/2023	Source: EPA Region 7
Date Data Arrived at EDR: 01/17/2024	Telephone: 913-551-7003
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/10/2024
Number of Days to Update: 56	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 10/24/2023	Source: EPA Region 8
Date Data Arrived at EDR: 01/17/2024	Telephone: 303-312-6137
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/10/2024
Number of Days to Update: 56	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 10/24/2023
Date Data Arrived at EDR: 01/17/2024
Date Made Active in Reports: 03/13/2024
Number of Days to Update: 56

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 10/17/2023SouDate Data Arrived at EDR: 01/17/2024TeleDate Made Active in Reports: 03/13/2024LastNumber of Days to Update: 56Nex

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 07/10/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

INST CONTROL: No Further Action Sites With Land Use Restrictions Monitoring A land use restricted site is a property where there are limits or requirements on future use of the property due to varying levels of cleanup possible, practical, or necessary at the site.

Date of Government Version: 02/29/2024	Source: Department of Environmental Quality
Date Data Arrived at EDR: 03/06/2024	Telephone: 919-508-8400
Date Made Active in Reports: 05/29/2024	Last EDR Contact: 06/05/2024
Number of Days to Update: 84	Next Scheduled EDR Contact: 09/16/2024
	Data Release Frequency: Quarterly

Lists of state and tribal voluntary cleanup sites

INDIAN VCP R1: Voluntary Cleanup Priority Listing A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.	
Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016 Number of Days to Update: 142	Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 06/14/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008	Source: EPA, Region 7
Date Data Arrived at EDR: 04/22/2008	Telephone: 913-551-7365
Date Made Active in Reports: 05/19/2008	Last EDR Contact: 07/08/2021
Number of Days to Update: 27	Next Scheduled EDR Contact: 07/20/2009
	Data Release Frequency: Varies

VCP: Responsible Party Voluntary Action Sites Responsible Party Voluntary Action site locations.

Date of Government Version: 02/29/2024SouDate Data Arrived at EDR: 03/06/2024TeleDate Made Active in Reports: 05/29/2024LasNumber of Days to Update: 84Nex

Source: Department of Environment and Natural Resources Telephone: 919-508-8400 Last EDR Contact: 06/05/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Quarterly

Lists of state and tribal brownfield sites

BROWNFIELDS: Brownfields Projects Inventory

A brownfield site is an abandoned, idled, or underused property where the threat of environmental contamination has hindered its redevelopment. All of the sites in the inventory are working toward a brownfield agreement for cleanup and liabitly control.

Date of Government Version: 03/06/2024Source: IDate Data Arrived at EDR: 03/19/2024TelephoneDate Made Active in Reports: 04/12/2024Last EDRNumber of Days to Update: 24Next Sche

Source: Department of Environment and Natural Resources Telephone: 919-733-4996 Last EDR Contact: 06/25/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Quarterly

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 03/11/2024 Date Data Arrived at EDR: 03/12/2024 Date Made Active in Reports: 05/10/2024 Number of Days to Update: 59 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 06/11/2024 Next Scheduled EDR Contact: 09/23/2024 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY: Recycling Center Listing	
A listing of recycling center locations.	
Date of Government Version: 01/31/2022Source: Department of Environment & Natural ResourcesDate Data Arrived at EDR: 02/02/2022Telephone: 919-707-8137Date Made Active in Reports: 04/29/2022Last EDR Contact: 07/18/2024Number of Days to Update: 86Next Scheduled EDR Contact: 11/04/2024Data Release Frequency: Varies	
HIST LF: Solid Waste Facility Listing A listing of solid waste facilities.	
Date of Government Version: 11/06/2006Source: Department of Environment & Natural ResourcesDate Data Arrived at EDR: 02/13/2007Telephone: 919-733-0692Date Made Active in Reports: 03/02/2007Last EDR Contact: 01/19/2009Number of Days to Update: 17Next Scheduled EDR Contact: N/AData Release Frequency: No Update Planned	
INDIAN ODI: Report on the Status of Open Dumps on Indian Lands Location of open dumps on Indian land.	
Date of Government Version: 12/31/1998Source: Environmental Protection AgencyDate Data Arrived at EDR: 12/03/2007Telephone: 703-308-8245Date Made Active in Reports: 01/24/2008Last EDR Contact: 07/22/2024Number of Days to Update: 52Next Scheduled EDR Contact: 11/04/2024Data Release Frequency: Varies	
ODI: Open Dump Inventory An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.	
Date of Government Version: 06/30/1985Source: Environmental Protection AgencyDate Data Arrived at EDR: 08/09/2004Telephone: 800-424-9346Date Made Active in Reports: 09/17/2004Last EDR Contact: 06/09/2004Number of Days to Update: 39Next Scheduled EDR Contact: N/AData Release Frequency: No Update Planned	
DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.	
Date of Government Version: 01/12/2009Source: EPA, Region 9Date Data Arrived at EDR: 05/07/2009Telephone: 415-947-4219Date Made Active in Reports: 09/21/2009Last EDR Contact: 07/10/2024Number of Days to Update: 137Next Scheduled EDR Contact: 10/28/2024Data Release Frequency: No Update Planned	
IHS OPEN DUMPS: Open Dumps on Indian Land A listing of all open dumps located on Indian Land in the United States.	
Date of Government Version: 04/01/2014 Date Data Arrived at EDR: 08/06/2014Source: Department of Health & Human Serivces, Indian Health Servic Telephone: 301-443-1452 Last EDR Contact: 07/18/2024 Next Scheduled EDR Contact: 11/04/2024 Data Release Frequency: Varies	

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 05/20/2024 Date Data Arrived at EDR: 05/21/2024 Date Made Active in Reports: 08/08/2024 Number of Days to Update: 79 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 05/21/2024 Next Scheduled EDR Contact: 09/02/2024 Data Release Frequency: No Update Planned

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 05/20/2024 Date Data Arrived at EDR: 05/21/2024 Date Made Active in Reports: 08/08/2024 Number of Days to Update: 79 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 05/21/2024 Next Scheduled EDR Contact: 09/02/2024 Data Release Frequency: Quarterly

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/26/2024 Number of Days to Update: 23 Source: Environmental Protection Agency Telephone: 202-564-6023 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 06/14/2024 Date Data Arrived at EDR: 06/17/2024	Source: U.S. Department of Transportation Telephone: 202-366-4555
Date Made Active in Reports: 06/24/2024	Last EDR Contact: 06/17/2024
Number of Days to Update: 7	Next Scheduled EDR Contact: 09/30/2024
	Data Release Frequency: Quarterly

SPILLS: Spills Incident Listing

A listing spills, hazardous material releases, sanitary sewer overflows, wastewater treatment plant bypasses and upsets, citizen complaints, and any other environmental emergency calls reported to the agency.

Date of Government Version: 10/28/2023 Date Data Arrived at EDR: 12/22/2023 Date Made Active in Reports: 01/08/2024 Number of Days to Update: 17

Source: Department of Environment & Natural Resources Telephone: 919-807-6308 Last EDR Contact: 06/26/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Quarterly

IMD: Incident Management Database

Groundwater and/or soil contamination incidents

Date of Government Version: 04/26/2024 Date Data Arrived at EDR: 04/30/2024 Date Made Active in Reports: 07/22/2024 Number of Days to Update: 83 Source: Department of Environment and Natural Resources Telephone: 877-623-6748 Last EDR Contact: 07/25/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: No Update Planned

SPILLS 90: SPILLS90 data from FirstSearch

Spills 90 includes those spill and release records available exclusively from FirstSearch databases. Typically, they may include chemical, oil and/or hazardous substance spills recorded after 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 90.

Date of Government Version: 09/27/2012 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 03/06/2013 Number of Days to Update: 62 Source: FirstSearch Telephone: N/A Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

SPILLS 80: SPILLS80 data from FirstSearch

Spills 80 includes those spill and release records available from FirstSearch databases prior to 1990. Typically, they may include chemical, oil and/or hazardous substance spills recorded before 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 80.

Date of Government Version: 06/14/2001	Source: FirstSearch
Date Data Arrived at EDR: 01/03/2013	Telephone: N/A
Date Made Active in Reports: 03/06/2013	Last EDR Contact: 01/03/2013
Number of Days to Update: 62	Next Scheduled EDR Contact: N/A
	Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 06/03/2024 Date Data Arrived at EDR: 06/07/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 13 Source: Environmental Protection Agency Telephone: (404) 562-8651 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 05/13/2024 Date Data Arrived at EDR: 05/14/2024 Date Made Active in Reports: 08/08/2024 Number of Days to Update: 86 Source: U.S. Army Corps of Engineers Telephone: 202-528-4285 Last EDR Contact: 08/12/2024 Next Scheduled EDR Contact: 11/26/2024 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 06/07/2021 Date Data Arrived at EDR: 07/13/2021 Date Made Active in Reports: 03/09/2022 Number of Days to Update: 239 Source: USGS Telephone: 888-275-8747 Last EDR Contact: 07/11/2024 Next Scheduled EDR Contact: 10/21/2024 Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018	Source: U.S. Geological Survey
Date Data Arrived at EDR: 04/11/2018	Telephone: 888-275-8747
Date Made Active in Reports: 11/06/2019	Last EDR Contact: 07/02/2024
Number of Days to Update: 574	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: N/A
SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.	
Date of Government Version: 07/30/2021	Source: Environmental Protection Agency

Date of Government Version: 07/30/2021 Date Data Arrived at EDR: 02/03/2023 Date Made Active in Reports: 02/10/2023 Number of Days to Update: 7 Source: Environmental Protection Agency Telephone: 615-532-8599 Last EDR Contact: 08/05/2024 Next Scheduled EDR Contact: 11/18/2024 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 03/18/2024 Date Data Arrived at EDR: 03/19/2024 Date Made Active in Reports: 06/20/2024 Number of Days to Update: 93 Source: Environmental Protection Agency Telephone: 202-566-1917 Last EDR Contact: 06/17/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA Watch List

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013 Date Data Arrived at EDR: 03/21/2014 Date Made Active in Reports: 06/17/2014 Number of Days to Update: 88 Source: Environmental Protection Agency Telephone: 617-520-3000 Last EDR Contact: 07/25/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: No Update Planned

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 73 Source: Environmental Protection Agency Telephone: 703-308-4044 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 06/14/2022 Date Made Active in Reports: 03/24/2023 Number of Days to Update: 283 Source: EPA Telephone: 202-260-5521 Last EDR Contact: 06/13/2024 Next Scheduled EDR Contact: 09/23/2024 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2022 Date Data Arrived at EDR: 11/13/2023 Date Made Active in Reports: 02/07/2024 Number of Days to Update: 86 Source: EPA Telephone: 202-566-0250 Last EDR Contact: 08/15/2024 Next Scheduled EDR Contact: 11/26/2024 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 07/11/2024 Date Data Arrived at EDR: 07/11/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 1 Source: EPA Telephone: 202-564-4203 Last EDR Contact: 07/11/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/26/2024 Number of Days to Update: 23 Source: EPA Telephone: 703-416-0223 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 09/09/2024 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 04/01/2024 Date Data Arrived at EDR: 04/17/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 86

Source: Environmental Protection Agency Telephone: 202-564-8600 Last EDR Contact: 07/11/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995 Number of Days to Update: 35

Source: EPA Telephone: 202-564-4104 Last EDR Contact: 06/02/2008 Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 09/19/2023	Source: EPA
Date Data Arrived at EDR: 10/03/2023	Telephone: 202-564-6023
Date Made Active in Reports: 10/19/2023	Last EDR Contact: 08/01/2024
Number of Days to Update: 16	Next Scheduled EDR Contact: 11/11/2024
	Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/20/2023	Source: EPA
Date Data Arrived at EDR: 04/04/2023	Telephone: 202-566-0500
Date Made Active in Reports: 06/09/2023	Last EDR Contact: 07/02/2024
Number of Days to Update: 66	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017 Number of Days to Update: 79

Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 06/26/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009	Source: EPA/Office of Prevention, Pesticides and Toxic Substances
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
	Data Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009	Source: EPA
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
	Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 01/02/2024	Source: Nuclear Regulatory Commission
Date Data Arrived at EDR: 01/16/2024	Telephone: 301-415-0717
Date Made Active in Reports: 03/13/2024	Last EDR Contact: 07/11/2024
Number of Days to Update: 57	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2022	Source: Department of Energy
Date Data Arrived at EDR: 11/27/2023	Telephone: 202-586-8719
Date Made Active in Reports: 02/22/2024	Last EDR Contact: 05/28/2024
Number of Days to Update: 87	Next Scheduled EDR Contact: 09/09/2024
	Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017
Date Data Arrived at EDR: 03/05/2019
Date Made Active in Reports: 11/11/2019
Number of Days to Update: 251

Source: Environmental Protection Agency Telephone: N/A Last EDR Contact: 05/28/2024 Next Scheduled EDR Contact: 09/09/2024 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 09/13/2019	Source: Environmental Protection Agency
Date Data Arrived at EDR: 11/06/2019	Telephone: 202-566-0517
Date Made Active in Reports: 02/10/2020	Last EDR Contact: 08/01/2024
Number of Days to Update: 96	Next Scheduled EDR Contact: 11/11/2024
	Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019 Number of Days to Update: 84 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 06/21/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2007 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2008 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 01/02/2020	Source: Department of Transporation, Office of Pipeline Safety
Date Data Arrived at EDR: 01/28/2020	Telephone: 202-366-4595
Date Made Active in Reports: 04/17/2020	Last EDR Contact: 07/23/2024
Number of Days to Update: 80	Next Scheduled EDR Contact: 11/04/2024
	Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 03/31/2024
Date Data Arrived at EDR: 04/19/2024
Date Made Active in Reports: 06/26/2024
Number of Days to Update: 68

Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 06/26/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 03/09/2023 Date Made Active in Reports: 03/20/2023 Number of Days to Update: 11 Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014	Source: USGS
Date Data Arrived at EDR: 07/14/2015	Telephone: 202-208-3710
Date Made Active in Reports: 01/10/2017	Last EDR Contact: 07/02/2024
Number of Days to Update: 546	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 03/03/2023	Source: De
Date Data Arrived at EDR: 03/03/2023	Telephone:
Date Made Active in Reports: 06/09/2023	Last EDR C
Number of Days to Update: 98	Next Sched

epartment of Energy 202-586-3559 Contact: 07/24/2024 duled EDR Contact: 11/11/2024 Data Release Frequency: Varies

10/14/2024

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 08/30/2019 Date Data Arrived at EDR: 11/15/2019 Date Made Active in Reports: 01/28/2020 Number of Days to Update: 74

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 08/08/2024 Next Scheduled EDR Contact: 11/26/2024 Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 05/22/2024 Date Data Arrived at EDR: 06/03/2024 Date Made Active in Reports: 06/24/2024 Number of Days to Update: 21

Source: Environmental Protection Agency Telephone: 703-603-8787 Last EDR Contact: 08/01/2024 Next Scheduled EDR Contact: 10/07/2024 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 36

Source: American Journal of Public Health Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100	Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually
US AIRS MINOR: Air Facility System Data A listing of minor source facilities.	
Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100	Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually
MINES VIOLATIONS: MSHA Violation Assessment Data Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.	
Date of Government Version: 04/01/2024 Date Data Arrived at EDR: 04/04/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 99	Source: DOL, Mine Safety & Health Admi Telephone: 202-693-9424 Last EDR Contact: 07/02/2024 Next Scheduled EDR Contact: 12/02/2024 Data Release Frequency: Quarterly
US MINES: Mines Master Index File Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.	
Date of Government Version: 08/06/2024 Date Data Arrived at EDR: 08/14/2024 Date Made Active in Reports: 08/15/2024 Number of Days to Update: 1	Source: Department of Labor, Mine Safety and Health Administration Telephone: 303-231-5959 Last EDR Contact: 08/14/2024 Next Scheduled EDR Contact: 12/02/2024 Data Release Frequency: Semi-Annually
US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.	
Date of Government Version: 04/15/2024 Date Data Arrived at EDR: 05/22/2024 Date Made Active in Reports: 08/15/2024 Number of Days to Update: 85	Source: USGS Telephone: 703-648-7709 Last EDR Contact: 05/22/2024 Next Scheduled EDR Contact: 09/02/2024 Data Release Frequency: Varies
US MINES 3: Active Mines & Mineral Plants Database Listing Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.	
Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011 Number of Days to Update: 97	Source: USGS Telephone: 703-648-7709 Last EDR Contact: 05/23/2024 Next Scheduled EDR Contact: 09/02/2024 Data Release Frequency: Varies
MINES MRDS: Mineral Resources Data System Mineral Resources Data System	
Date of Government Version: 08/23/2022 Date Data Arrived at EDR: 11/22/2022 Date Made Active in Reports: 02/28/2023 Number of Days to Update: 98	Source: USGS Telephone: 703-648-6533 Last EDR Contact: 05/22/2024 Next Scheduled EDR Contact: 09/02/2024 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 03/18/2024 Date Data Arrived at EDR: 03/19/2024 Date Made Active in Reports: 06/06/2024 Number of Days to Update: 79 Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 06/13/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 02/09/2024	Source: EPA
Date Data Arrived at EDR: 02/27/2024	Telephone: (404) 562-9900
Date Made Active in Reports: 05/24/2024	Last EDR Contact: 05/29/2024
Number of Days to Update: 87	Next Scheduled EDR Contact: 09/09/2024 Data Release Frequency: Quarterly
	Data Nelease Frequency. Quarterly

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/06/2023	Source: Department of Defense
Date Data Arrived at EDR: 09/13/2023	Telephone: 703-704-1564
Date Made Active in Reports: 12/11/2023	Last EDR Contact: 07/08/2024
Number of Days to Update: 89	Next Scheduled EDR Contact: 10/21/2024
	Data Release Frequency: Varies

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/06/2021 Date Data Arrived at EDR: 05/21/2021 Date Made Active in Reports: 08/11/2021 Number of Days to Update: 82 Source: Environmental Protection Agency Telephone: 202-564-0527 Last EDR Contact: 08/13/2024 Next Scheduled EDR Contact: 12/02/2024 Data Release Frequency: Varies

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 06/23/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 06/28/2024	Telephone: 202-564-2280
Date Made Active in Reports: 07/12/2024	Last EDR Contact: 06/28/2024
Number of Days to Update: 14	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Quarterly

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 05/13/2024 Date Data Arrived at EDR: 05/14/2024 Date Made Active in Reports: 08/08/2024 Number of Days to Update: 86 Source: EPA Telephone: 800-385-6164 Last EDR Contact: 08/13/2024 Next Scheduled EDR Contact: 11/26/2024 Data Release Frequency: Quarterly

PFAS NPL: Superfund Sites with PFAS Detections Information

EPA's Office of Land and Emergency Management and EPA Regional Offices maintain data describing what is known about site investigations, contamination, and remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) where PFAS is present in the environment.

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 703-603-8895 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PFAS FEDERAL SITES: Federal Sites PFAS Information

Several federal entities, such as the federal Superfund program, Department of Defense, National Aeronautics and Space Administration, Department of Transportation, and Department of Energy provided information for sites with known or suspected detections at federal facilities.

Source: Environmental Protection Agency
Telephone: 202-272-0167
Last EDR Contact: 07/01/2024
Next Scheduled EDR Contact: 10/14/2024
Data Release Frequency: Varies

PFAS TRIS: List of PFAS Added to the TRI

Section 7321 of the National Defense Authorization Act for Fiscal Year 2020 (NDAA) immediately added certain per- and polyfluoroalkyl substances (PFAS) to the list of chemicals covered by the Toxics Release Inventory (TRI) under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) and provided a framework for additional PFAS to be added to TRI on an annual basis.

Date of Government Version: 07/01/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/01/2024	Telephone: 202-566-0250
Date Made Active in Reports: 07/12/2024	Last EDR Contact: 07/01/2024
Number of Days to Update: 11	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Varies

PFAS TSCA: PFAS Manufacture and Imports Information

EPA issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. EPA publishes non-confidential business information (non-CBI) and includes descriptive information about each site, corporate parent, production volume, other manufacturing information, and processing and use information.

Date of Government Version: 07/01/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/01/2024	Telephone: 202-272-0167
Date Made Active in Reports: 07/12/2024	Last EDR Contact: 07/01/2024
Number of Days to Update: 11	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Varies

PFAS RCRA MANIFEST: PFAS Transfers Identified In the RCRA Database Listing

To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: PFAS, PFOA, PFOS, PERFL, AFFF, GENX, GEN-X (plus the VT waste codes). These keywords were searched for in the following text fields: Manifest handling instructions (MANIFEST_HANDLING_INSTR), Non-hazardous waste description (NON_HAZ_WASTE_DESCRIPTION), DOT printed information (DOT_PRINTED_INFORMATION), Waste line handling instructions (WASTE_LINE_HANDLING_INSTR), Waste residue comments (WASTE_RESIDUE_COMMENTS).

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PFAS ATSDR: PFAS Contamination Site Location Listing

PFAS contamination site locations from the Department of Health & Human Services, Center for Disease Control & Prevention. ATSDR is involved at a number of PFAS-related sites, either directly or through assisting state and federal partners. As of now, most sites are related to drinking water contamination connected with PFAS production facilities or fire training areas where aqueous film-forming firefighting foam (AFFF) was regularly used.

Date of Government Version: 06/24/2020 Date Data Arrived at EDR: 03/17/2021 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 601 Source: Department of Health & Human Services Telephone: 202-741-5770 Last EDR Contact: 07/18/2024 Next Scheduled EDR Contact: 11/04/2024 Data Release Frequency: Varies

PFAS WQP: Ambient Environmental Sampling for PFAS

The Water Quality Portal (WQP) is a part of a modernized repository storing ambient sampling data for all environmental media and tissue samples. A wide range of federal, state, tribal and local governments, academic and non-governmental organizations and individuals submit project details and sampling results to this public repository. The information is commonly used for research and assessments of environmental quality.

Date of Government Version: 07/01/2024SDate Data Arrived at EDR: 07/01/2024TDate Made Active in Reports: 07/12/2024LaNumber of Days to Update: 11N

Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PFAS NPDES: Clean Water Act Discharge Monitoring Information

Any discharger of pollutants to waters of the United States from a point source must have a National Pollutant Discharge Elimination System (NPDES) permit. The process for obtaining limits involves the regulated entity (permittee) disclosing releases in a NPDES permit application and the permitting authority (typically the state but sometimes EPA) deciding whether to require monitoring or monitoring with limits. Caveats and Limitations: Less than half of states have required PFAS monitoring for at least one of their permittees and fewer states have established PFAS effluent limits for permittees. New rulemakings have been initiated that may increase the number of facilities monitoring for PFAS in the future.

Date of Government Version: 07/01/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/01/2024	Telephone: 202-272-0167
Date Made Active in Reports: 07/12/2024	Last EDR Contact: 07/01/2024
Number of Days to Update: 11	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: Varies

PFAS PROJECT: NORTHEASTERN UNIVERSITY PFAS PROJECT

The PFAS Contamination Site Tracker records qualitative and quantitative data from each site in a chart, specifically examining discovery, contamination levels, government response, litigation, health impacts, media coverage, and community characteristics. All data presented in the chart were extracted from government websites, such as state health departments or the Environmental Protection Agency, and news articles.

Date of Government Version: 05/19/2023	Source: Social Science Environmental Health Research Institute
Date Data Arrived at EDR: 04/05/2024	Telephone: N/A
Date Made Active in Reports: 06/06/2024	Last EDR Contact: 06/04/2024
Number of Days to Update: 62	Next Scheduled EDR Contact: 09/16/2024
	Data Release Frequency: Varies

PFAS ECHO: Facilities in Industries that May Be Handling PFAS Listing

Regulators and the public have expressed interest in knowing which regulated entities may be using PFAS. EPA has developed a dataset from various sources that show which industries may be handling PFAS. Approximately 120,000 facilities subject to federal environmental programs have operated or currently operate in industry sectors with processes that may involve handling and/or release of PFAS.

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PFAS ECHO FIRE TRAIN: Facilities in Industries that May Be Handling PFAS Listing

A list of fire training sites was added to the Industry Sectors dataset using a keyword search on the permitted facilitys name to identify sites where fire-fighting foam may have been used in training exercises. Additionally, you may view an example spreadsheet of the subset of fire training facility data, as well as the keywords used in selecting or deselecting a facility for the subset. as well as the keywords used in selecting facilities that may use fire-fighting foam in training exercises, however, due to the lack of a required reporting field in the data systems for designating fire training sites, this methodology may not identify all fire training sites or may potentially misidentify them.

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PFAS PT 139 AIRPORT: All Certified Part 139 Airports PFAS Information Listing

Since July 1, 2006, all certified part 139 airports are required to have fire-fighting foam onsite that meet military specifications (MIL-F-24385) (14 CFR 139.317). To date, these military specification fire-fighting foams are fluorinated and have been historically used for training and extinguishing. The 2018 FAA Reauthorization Act has a provision stating that no later than October 2021, FAA shall not require the use of fluorinated AFFF. This provision does not prohibit the use of fluorinated AFFF at Part 139 civilian airports; it only prohibits FAA from mandating its use. The Federal Aviation Administration?s document AC 150/5210-6D - Aircraft Fire Extinguishing Agents, which includes Aqueous Film Forming Foam (AFFF).

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

AQUEOUS FOAM NRC: Aqueous Foam Related Incidents Listing

The National Response Center (NRC) serves as an emergency call center that fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. The spreadsheets posted to the NRC website contain initial incident data that has not been validated or investigated by a federal/state response agency. Response center calls from 1990 to the most recent complete calendar year where there was indication of Aqueous Film Forming Foam (AFFF) usage are included in this dataset. NRC calls may reference AFFF usage in the ?Material Involved? or ?Incident Description? fields.

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 07/01/2024 Date Made Active in Reports: 07/12/2024 Number of Days to Update: 11 Source: Environmental Protection Agency Telephone: 202-267-2675 Last EDR Contact: 07/01/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PCS ENF: Enforcement data

No description is available for this data

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 02/05/2015 Date Made Active in Reports: 03/06/2015 Number of Days to Update: 29 Source: EPA Telephone: 202-564-2497 Last EDR Contact: 06/27/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies

PCS: Permit Compliance System

PCS is a computerized management information system that contains data on National Pollutant Discharge Elimination System (NPDES) permit holding facilities. PCS tracks the permit, compliance, and enforcement status of NPDES facilities.

Date of Government Version: 12/16/2016	Source: EPA, Office of Water
Date Data Arrived at EDR: 01/06/2017	Telephone: 202-564-2496
Date Made Active in Reports: 03/10/2017	Last EDR Contact: 06/27/2024
Number of Days to Update: 63	Next Scheduled EDR Contact: 10/14/2024
	Data Release Frequency: No Update Planned

BIOSOLIDS: ICIS-NPDES Biosolids Facility Data

The data reflects compliance information about facilities in the biosolids program.

Date of Government Version: 04/14/2024	Source: Environmental Protection Agency
Date Data Arrived at EDR: 04/16/2024	Telephone: 202-564-4700
Date Made Active in Reports: 07/12/2024	Last EDR Contact: 07/16/2024
Number of Days to Update: 87	Next Scheduled EDR Contact: 10/28/2024
	Data Release Frequency: Varies

UST FINDER: UST Finder Database

EPA developed UST Finder, a web map application containing a comprehensive, state-sourced national map of underground storage tank (UST) and leaking UST (LUST) data. It provides the attributes and locations of active and closed USTs, UST facilities, and LUST sites from states and from Tribal lands and US territories. UST Finder contains information about proximity of UST facilities and LUST sites to: surface and groundwater public drinking water protection areas; estimated number of private domestic wells and number of people living nearby; and flooding and wildfires.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 01/18/2024 Number of Days to Update: 106 Source: Environmental Protection Agency Telephone: 202-564-0394 Last EDR Contact: 08/08/2024 Next Scheduled EDR Contact: 11/18/2024 Data Release Frequency: Varies

UST FINDER RELEASE: UST Finder Releases Database

US EPA's UST Finder data is a national composite of leaking underground storage tanks. This data contains information about, and locations of, leaking underground storage tanks. Data was collected from state sources and standardized into a national profile by EPA's Office of Underground Storage Tanks, Office of Research and Development, and the Association of State and Territorial Solid Waste Management Officials.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/31/2023 Date Made Active in Reports: 01/18/2024 Number of Days to Update: 79 Source: Environmental Protecton Agency Telephone: 202-564-0394 Last EDR Contact: 08/08/2024 Next Scheduled EDR Contact: 11/18/2024 Data Release Frequency: Semi-Annually

E MANIFEST: Hazardous Waste Electronic Manifest System

EPA established a national system for tracking hazardous waste shipments electronically. This system, known as ?e-Manifest,? will modernize the nation?s cradle-to-grave hazardous waste tracking process while saving valuable time, resources, and dollars for industry and states.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 04/18/2024 Date Made Active in Reports: 06/06/2024 Number of Days to Update: 49 Source: Environmental Protection Agency Telephone: 833-501-6826 Last EDR Contact: 06/07/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Varies

PFAS: PFAS Contamination Site Listing List of PFAS facilities

Date of Government Version: 05/18/2022 Date Data Arrived at EDR: 05/18/2022 Date Made Active in Reports: 08/08/2022 Number of Days to Update: 82	Source: Department of Environmental Quality Telephone: 919-707-8233 Last EDR Contact: 08/07/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: Varies	
AIRS: Air Quality Permit Listing A listing of facilities with air quality permits.		
Date of Government Version: 03/04/2024 Date Data Arrived at EDR: 03/06/2024 Date Made Active in Reports: 05/29/2024 Number of Days to Update: 84	Source: Department of Environmental Quality Telephone: 919-707-8726 Last EDR Contact: 06/05/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Varies	
ASBESTOS: Asbestos Permits & Notifications Information Asbestos notification sites		
Date of Government Version: 05/10/2024 Date Data Arrived at EDR: 05/14/2024 Date Made Active in Reports: 08/12/2024 Number of Days to Update: 90	Source: Department of Health & Human Services Telephone: 919-707-5973 Last EDR Contact: 08/07/2024 Next Scheduled EDR Contact: 10/28/2024 Data Release Frequency: Varies	
CCB: Coal Ash Structural Fills (CCB) Listing These are not permitted Coal Ash landfills A list all of the now closed Coal Ash Structural Fills (CCB) in North Carolina, in point data form. The purpose is to provide the public and other government entities a visual overview of coal ash structural fills throughout the state and increase public awareness of their current locations.		
Date of Government Version: 05/10/2021 Date Data Arrived at EDR: 07/02/2021 Date Made Active in Reports: 09/27/2021 Number of Days to Update: 87	Source: Department of Environmental Quality Telephone: 919-707-8248 Last EDR Contact: 07/03/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies	
COAL ASH: Coal Ash Disposal Sites A listing of coal combustion products distribution permits issued by the Division for the treatment, storage, transportation, use and disposal of coal combustion products.		
Date of Government Version: 01/24/2024 Date Data Arrived at EDR: 03/20/2024 Date Made Active in Reports: 06/13/2024 Number of Days to Update: 85	Source: Department of Environment & Natural Resources Telephone: 919-807-6359 Last EDR Contact: 06/17/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Varies	
DRYCLEANERS: Drycleaning Sites Potential and known drycleaning sites, active and abandoned, that the Drycleaning Solvent Cleanup Program has knowledge of and entered into this database.		
Date of Government Version: 01/08/2024 Date Data Arrived at EDR: 03/12/2024 Date Made Active in Reports: 06/05/2024 Number of Days to Update: 85	Source: Department of Environment & Natural Resources Telephone: 919-508-8400 Last EDR Contact: 06/13/2024 Next Scheduled EDR Contact: 09/23/2024 Data Release Frequency: Varies	
FIN ASSURANCE 1: Financial Assurance Informati	ion Listing	

A listing of financial assurance information for underground storage tank facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

	Date of Government Version: 04/12/2024 Date Data Arrived at EDR: 04/19/2024 Date Made Active in Reports: 04/22/2024 Number of Days to Update: 3	Source: Department of Environment & Natural Resources Telephone: 919-733-1322 Last EDR Contact: 07/25/2024 Next Scheduled EDR Contact: 11/11/2024 Data Release Frequency: Quarterly
FIN		ion Listing assurance is intended to ensure that resources are available e, and corrective measures if the owner or operator of a regulated
	Date of Government Version: 10/02/2012 Date Data Arrived at EDR: 10/03/2012 Date Made Active in Reports: 10/26/2012 Number of Days to Update: 23	Source: Department of Environmental & Natural Resources Telephone: 919-508-8496 Last EDR Contact: 06/14/2024 Next Scheduled EDR Contact: 09/30/2024 Data Release Frequency: Varies
FIN	ASSURANCE 3: Financial Assurance Informati Hazardous waste financial assurance informat	
	Date of Government Version: 02/05/2024 Date Data Arrived at EDR: 02/06/2024 Date Made Active in Reports: 04/29/2024 Number of Days to Update: 83	Source: Department of Environment & Natural Resources Telephone: 919-707-8222 Last EDR Contact: 05/31/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Varies
NP	DES: NPDES Facility Location Listing General information regarding NPDES(Nation	al Pollutant Discharge Elimination System) permits.
	Date of Government Version: 04/02/2024 Date Data Arrived at EDR: 04/24/2024 Date Made Active in Reports: 07/19/2024 Number of Days to Update: 86	Source: Department of Environment & Natural Resources Telephone: 919-733-7015 Last EDR Contact: 07/23/2024 Next Scheduled EDR Contact: 11/04/2024 Data Release Frequency: Varies
PC	SRP: Petroleum-Contaminated Soil Remediation To treat petroleum-contaminated soil in order to citizens of North Carolina.	n Permits to protect North Carolinaa??s environment and the health of the
	Date of Government Version: 08/18/2022 Date Data Arrived at EDR: 10/03/2022 Date Made Active in Reports: 12/16/2022 Number of Days to Update: 74	Source: Department of Environmental Quality Telephone: 919-707-8248 Last EDR Contact: 07/02/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies
SEI	Facility (SDTF) sites in North Carolina. The pu	ng Ind Application Site (SLAS) and Septage Detention and Treatment Irpose of this map is to provide the public and government entities ge septage and septage facilities throughout the state.
	Date of Government Version: 12/14/2023 Date Data Arrived at EDR: 04/04/2024 Date Made Active in Reports: 07/02/2024 Number of Days to Update: 89	Source: Department of Environmental Quality Telephone: 919-707-8248 Last EDR Contact: 07/02/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Varies
UIC	: Underground Injection Wells Listing	

UIC: Underground Injection Wells Listing A listing of uncerground injection wells locations.

Date of Government Version: 09/25/2023 Date Data Arrived at EDR: 11/27/2023 Date Made Active in Reports: 02/21/2024 Number of Days to Update: 86 Source: Department of Environment & Natural Resources Telephone: 919-807-6412 Last EDR Contact: 05/30/2024 Next Scheduled EDR Contact: 09/09/2024 Data Release Frequency: Quarterly

AOP: Animal Operation Permits Listing

This listing includes animal operations that are required to be permitted by the state.

Date of Government Version: 08/29/2023 Date Data Arrived at EDR: 08/31/2023 Date Made Active in Reports: 11/21/2023 Number of Days to Update: 82 Source: Department of Environmental Quality Telephone: 919-707-9129 Last EDR Contact: 06/06/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List

The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environment, Health and Natural Resources in North Carolina.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176 Source: Department of Environment, Health and Natural Resources Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environment, Health and Natural Resources in North Carolina.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 01/13/2014 Number of Days to Update: 196 Source: Department of Environment, Health and Natural Resources Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environment, Health and Natural Resources in North Carolina.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/20/2013 Number of Days to Update: 172 Source: Department of Environment, Health and Natural Resources Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 05/05/2024 Date Data Arrived at EDR: 05/07/2024	Source: Department of Energy & Environmental Protection Telephone: 860-424-3375
Date Made Active in Reports: 08/01/2024	Last EDR Contact: 08/06/2024
Number of Days to Update: 86	Next Scheduled EDR Contact: 11/18/2024
	Data Release Frequency: No Update Planned

NJ MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 04/10/2019 Date Made Active in Reports: 05/16/2019 Number of Days to Update: 36	Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 06/26/2024 Next Scheduled EDR Contact: 10/14/2024 Data Release Frequency: Annually
NY MANIFEST: Facility and Manifest Data Manifest is a document that lists and tracks ha facility.	zardous waste from the generator through transporters to a TSD
Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 12/01/2023 Number of Days to Update: 1	Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 07/25/2024 Next Scheduled EDR Contact: 11/04/2024 Data Release Frequency: Quarterly
PA MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/19/2019 Date Made Active in Reports: 09/10/2019 Number of Days to Update: 53	Source: Department of Environmental Protection Telephone: 717-783-8990 Last EDR Contact: 07/03/2024 Next Scheduled EDR Contact: 10/21/2024 Data Release Frequency: Annually
RI MANIFEST: Manifest information Hazardous waste manifest information	
Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 11/30/2021 Date Made Active in Reports: 02/18/2022 Number of Days to Update: 80	Source: Department of Environmental Management Telephone: 401-222-2797 Last EDR Contact: 08/08/2024 Next Scheduled EDR Contact: 11/26/2024 Data Release Frequency: Annually
WI MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 09/03/2019 Number of Days to Update: 76	Source: Department of Natural Resources Telephone: N/A Last EDR Contact: 06/03/2024 Next Scheduled EDR Contact: 09/16/2024 Data Release Frequency: Annually
	Petrochemicals, Gas Liquids (LPG/NGL), and Specialty (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases

Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals: Source: American Hospital Association, Inc. Telephone: 312-280-5991 The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals. Medical Centers: Provider of Services Listing Source: Centers for Medicare & Medicaid Services Telephone: 410-786-3000 A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services, a federal agency within the U.S. Department of Health and Human Services. Nursing Homes Source: National Institutes of Health Telephone: 301-594-6248 Information on Medicare and Medicaid certified nursing homes in the United States. **Public Schools** Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on elementary and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states. **Private Schools** Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on private school locations in the United States. Daycare Centers: Child Care Facility List Source: Department of Health & Human Services Telephone: 919-662-4499

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: US Fish & Wildlife Service Telephone: 703-358-2171

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

PROPOSED DG STORE NOT REPORTED PITTSBORO, NC 27312

TARGET PROPERTY COORDINATES

Latitude (North):	35.804876 - 35° 48' 17.55"
Longitude (West):	79.250162 - 79° 15' 0.58''
Universal Tranverse Mercator:	Zone 17
UTM X (Meters):	658107.9
UTM Y (Meters):	3963519.5
Elevation:	563 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: Version Date:	50021414 SILK HOPE, NC 2022
East Map:	50021258 BYNUM, NC
Version Date:	2022

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

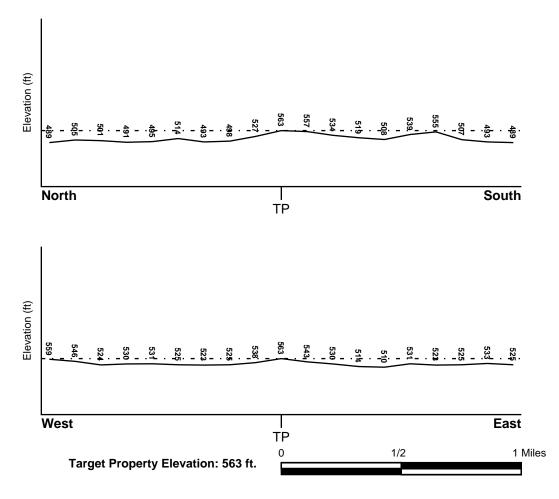
Assessment of the impact of contaminant migration generally has two principle investigative components:

- Groundwater flow direction, and
 Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General NNE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
3710972400J	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
3710973500J 3710972500J 3710973400J	FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data
NATIONAL WETLAND INVENTORY	
NWI Quad at Target Property SILK HOPE	NWI Electronic <u>Data Coverage</u> YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Paleozoic	Category:	Eugeosynclinal Deposits
System:	Cambrian		
Series:	Cambrian		
Code:	Ce (decoded above as Era, System &	Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name:	HERNDON	
Soil Surface Texture:	silt loam	
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.	
Soil Drainage Class:	Well drained. Soils have intermediate water holding capacity. Depth to water table is more than 6 feet.	
Hydric Status: Soil does not meet the requirements for a hydric soil.		
Corrosion Potential - Uncoated Steel: HIGH		

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

Soil Layer Information							
Boundary				Classification			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	9 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 2.00 Min: 0.60	Max: 6.50 Min: 4.50
2	9 inches	48 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Elastic silt.	Max: 2.00 Min: 0.60	Max: 5.50 Min: 3.60
3	48 inches	68 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Elastic silt.	Max: 2.00 Min: 0.60	Max: 5.50 Min: 3.60

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures:	sandy loam gravelly - silt loam stony - silt loam clay loam channery - silt loam loam
Surficial Soil Types:	sandy loam gravelly - silt loam stony - silt loam clay loam channery - silt loam loam
Shallow Soil Types:	silty clay loam sandy clay silt loam loam clay loam very channery - silt loam
Deeper Soil Types:	silty clay loam weathered bedrock unweathered bedrock sandy clay loam clay

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

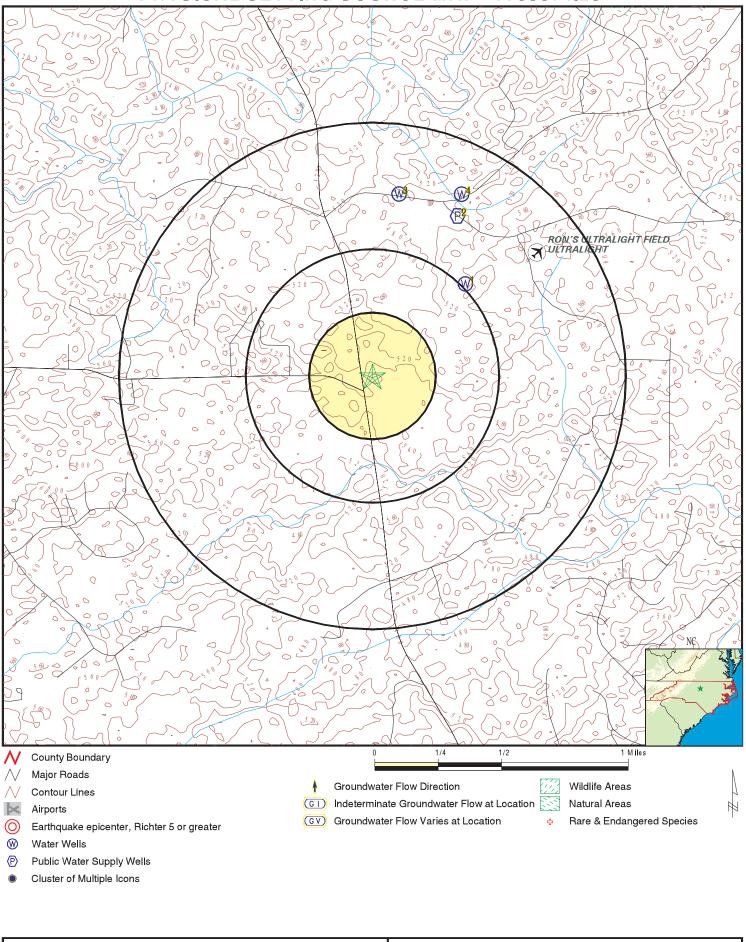
DATABASE	SEARCH DISTANCE (miles)
Federal USGS	1.000
Federal FRDS PWS	Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	USGS40000890889	1/2 - 1 Mile NE
4	USGS40000890923	1/2 - 1 Mile NNE

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	NC0319405	1/2 - 1 Mile NNE


Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
3	NC400000014578	1/2 - 1 Mile North

OTHER STATE DATABASE INFORMATION

PHYSICAL SETTING SOURCE MAP - 7739974.2s

Direction				
Distance Elevation		Dat	abase	EDR ID Number
IE /2 - 1 Mile .ower		FED	USGS	USGS40000890889
Organization ID:	USGS-NC			
Organization Name:	USGS North Carolina Water Science			
Monitor Location:	CH-041	Type:	Well	
Description:	Not Reported	HUC:		Reported
Drainage Area:	Not Reported	Drainage Area Units:		Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not F	Reported
Aquifer:	Piedmont and Blue Ridge crystalline-r	•		
Formation Type:	Felsic Metaigneous Rock	Aquifer Type:		Reported
Construction Date:	Not Reported	Well Depth:	95 Not 5	
Well Depth Units:	ft Not Demonto d	Well Hole Depth:	NOT F	Reported
Well Hole Depth Units:	Not Reported			
Ground water levels,Number	of Measurements: 1	Level reading date:	1966	
Feet below surface:	22	Feet to sea level:	Not F	Reported
Note:	Not Reported			
INE /2 - 1 Mile .ower		FRD	os pws	NC0319405
Epa region:	04	State:	NC	
Epa region: Pwsid:	04 NC0319405	State: Pwsname:		WN'S CHAPEL UMC
	•			WN'S CHAPEL UMC
Pwsid:	NC0319405	Pwsname:	BRO	
Pwsid: Cityserved:	NC0319405 Not Reported	Pwsname: Stateserved:	BRO' NC	
Pwsid: Cityserved: Zipserved:	NC0319405 Not Reported Not Reported	Pwsname: Stateserved: Fipscounty:	BRO NC 3703 75	
Pwsid: Cityserved: Zipserved: Status:	NC0319405 Not Reported Not Reported Active	Pwsname: Stateserved: Fipscounty: Retpopsrvd:	BRO NC 3703 75	7 ndwater
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn:	NC0319405 Not Reported Not Reported Active 1	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname:	BRO' NC 3703 75 Grou Priva	7 ndwater
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1:	BRO' NC 3703 75 Grou Priva ALVC	7 ndwater te
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactoddress1: Contactcity:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT	7 te DRD, LEX EMERSON COOK RD SBORO
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1:	BRO' NC 3703 75 Grou Priva ALVC 2501	7 te DRD, LEX EMERSON COOK RD SBORO
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactoddress1: Contactcity:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT	7 te DRD, LEX EMERSON COOK RD SBORO
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactoddress1: Contactcity:	BRO ¹ NC 3703 75 Grou Priva ALVC 2501 PITT 2731	7 te DRD, LEX EMERSON COOK RD SBORO
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactorgname: Contactaddress1: Contactcity: Contactzip:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactorgname: Contactaddress1: Contactcity: Contactzip: PWS type:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactoddress1: Contactcity: Contactcity: Contactzip: PWS type: PWS address:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactorgname: Contactaddress1: Contactcity: Contactcity: Contactzip: PWS type: PWS stype: PWS address: PWS state: PWS ID:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactorgname: Contactaddress1: Contactcity: Contactcity: Contactzip: PWS type: PWS stype: PWS address: PWS ID: PWS address:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC NC03	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactcity: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS state:	BRO NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC NC03 Not F NC	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 819405 Reported
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city: PWS name: PWS city: PWS sip:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS state: PWS state: PWS name:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC SRO	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 819405
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city: PWS name: PWS city: PWS sip: PWS name: PWS city: PWS sip: PWS sip: PWS city: PWS zip: PWS city: PWS zip: PWS city: PWS city:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS state: PWS state: PWS state: PWS name: Retail population served:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC SRO' 75	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 819405 Reported WN'S CHAPEL UMC
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city: PWS sip: PWS sip: PUS	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS state: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC SRO' 75 PO B	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 819405 Reported
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city: PWS sip: PWS name: PWS city: PWS sip: PWS sip: PWS type code: Contact: Contact address:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM GRAHAM	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS address: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address: Contact city:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC SRO' 75 PO B NC	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 319405 Reported WN'S CHAPEL UMC OX 1111
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS name: PWS city: PWS zip: PWS type: PWS name: PWS city: PWS sip: PWS sip: PUS	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS state: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC SRO' 75 PO B NC	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 819405 Reported WN'S CHAPEL UMC
Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode: PWS ID: PWS ID: PWS ID: PWS rame: PWS city: PWS zip: PWS zip: PWS zip: PWS zip: PWS zip: PWS zip: PWS zip: PWS zip: Contact address: Contact state: Contact state: Contact telephone:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM GRAHAM 27 Not Reported	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS address: PWS state: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address: Contact city: Contact zip:	BROU NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 2731 2731 2731 2731 2731 2731	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 319405 Reported WN'S CHAPEL UMC OX 1111 376-81
Pwsid:Cityserved:Zipserved:Status:Pwssvcconn:Pwstype:Contact:Contactphone:Contactaddress2:Contactstate:Pwsactivitycode:PWS ID:PWS ID:PWS rame:PWS zip:PWS city:PWS zip:PWS zip:PWS zip:PWS type code:Contact address:Contact state:Contact state:Contact telephone:PWS ID:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM GRAHAM 27 Not Reported NC0319405	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS address: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address: Contact city: Contact zip: Activity status:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 2731 Syste Not F NC NC03 Not F NC BRO' 75 PO B NC 336-3 Active	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 319405 Reported WN'S CHAPEL UMC OX 1111 376-81 e
Pwsid:Cityserved:Zipserved:Status:Pwssvcconn:Pwstype:Contact:Contactphone:Contactaddress2:Contactaddress2:Contactstate:Pwsactivitycode:PWS ID:PWS rame:PWS zip:PWS type:PWS city:PWS zip:PWS zip:PWS zip:PWS type:PWS type:Contact address:Contact state:Contact state:Contact telephone:PWS ID:Date system activated:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM GRAHAM 27 Not Reported NC0319405 7706	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS address: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address: Contact city: Contact zip: Activity status: Date system deactivated:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC NC03 Not F NC BRO' 75 PO B NC 336-3 Active	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 319405 Reported WN'S CHAPEL UMC OX 1111 376-81 e Reported
Pwsid:Cityserved:Zipserved:Status:Pwssvcconn:Pwstype:Contact:Contactphone:Contactaddress2:Contactatate:Pwsactivitycode:PWS ID:PWS ID:PWS rame:PWS zip:PWS city:PWS zip:PWS zip:PWS type:PWS zip:PWS type code:Contact:Contact state:Contact state:Contact telephone:PWS ID:	NC0319405 Not Reported Not Reported Active 1 TNCWS ALVORD, LEX 919-548-3725 Not Reported NC A NC0319405 LEE NORRIS MANN OR PASTOR PITTSBORO 27312 System Owner/Responsible Party BROWNS CHAPEL METH CHURCH PITTSBORO 27312 NC SLOANE, WILLIAM GRAHAM 27 Not Reported NC0319405	Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactaddress1: Contactcity: Contactzip: PWS type: PWS address: PWS state: PWS ID: PWS address: PWS state: PWS state: PWS state: PWS name: Retail population served: Contact address: Contact city: Contact zip: Activity status:	BRO' NC 3703 75 Grou Priva ALVC 2501 PITT 2731 Syste Not F NC NC S BRO' 75 PO B NC 336-3 Active Not F BRO'	7 ndwater te DRD, LEX EMERSON COOK RD SBORO 2 em Owner/Responsible Party Reported 319405 Reported WN'S CHAPEL UMC OX 1111 376-81 e

County FIPS:
Population served:
Latitude:
Latitude:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

019
101 - 500 Persons
354312
354850
2831403 NC 3100 23 110 Not Reported Not Reported 06/30/2007
2831404 NC 3100 23 110 Not Reported Not Reported 01/31/2008
2831405 NC 3100 23 110 Not Reported Not Reported 03/31/2009
2831406 NC 3100 23 110 Not Reported Not Reported 06/30/2009
2831407 NC 3100 23 110 Not Reported Not Reported 09/30/2009
2831408 NC 3100 23 110 Not Reported Not Reported 12/31/2009

019

City served:	PITTSBORO
Treatment:	Untreated
Longitude:	0791039
Longitude:	0791440
Orig code:	S
Violation Year:	2007
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Ro
Rule name:	TCR
Unit of measure:	Not Reported
Cmp bdt:	04/01/2007
Orig code:	S
Violation Year:	2008
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Re
Rule name:	TCR
Unit of measure:	Not Reported
Cmp bdt:	01/01/2008
Orig code:	S
Violation Year:	2009
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Re
Rule name:	TCR
Unit of measure:	Not Reported
Cmp bdt:	01/01/2009
Orig code:	S
Violation Year:	2009
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Re
Rule name:	TCR
Unit of measure:	Not Reported
Cmp bdt:	04/01/2009
Orig code:	S
Violation Year:	2009
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Re
Rule name:	TCR
Unit of measure:	Not Reported
Cmp bdt:	07/01/2009
Orig code:	S
Violation Year:	2009
Contamination Name:	Coliform (TCF
Violation name:	Monitoring, Re

Rule name:

Unit of measure: Cmp bdt: 791039 791440 007 oliform (TCR) Ionitoring, Routine Major (TCR) CR ot Reported 4/01/2007 008 oliform (TCR) Ionitoring, Routine Major (TCR) CR ot Reported 1/01/2008

2009 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 01/01/2009

S 2009 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 04/01/2009

S 2009 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 07/01/2009

S 2009 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 10/01/2009

- Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:
- Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

2831409 NC 1040 03 331 Not Reported Not Reported 12/31/2009 2831410 NC 7500 75 410 Not Reported Not Reported Not Reported 2831411 NC 7500 75 410 Not Reported Not Reported Not Reported 2831412 NC 3100 23 110 Not Reported Not Reported 12/31/2010 2831413 NC 3100 23 110 Not Reported Not Reported 03/31/2011 2831414 NC 7500 75 410 Not Reported Not Reported Not Reported 2831415 NC 7500 75 410 Not Reported Not Reported

Not Reported

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt: S 2009 Nitrate Monitoring, Regular Nitrates Not Reported 01/01/2009

S 2010 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 08/07/2010

S 2010 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 10/23/2010

S 2010 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 10/01/2010

S 2011 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 01/01/2011

S 2011 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 01/08/2011

S 2011 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 03/31/2011

- Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt: Violation id:
- State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

2831416 NC 3100 23 110 Not Reported Not Reported 09/30/2011 2831417 NC 3100 23 110 Not Reported Not Reported 12/31/2011 2831418 NC 1040 03 331 Not Reported Not Reported 12/31/2011 2831419 NC 7500 75 410 Not Reported Not Reported Not Reported 2831420 NC 3100 21 110 Not Reported Not Reported 12/31/2013 2831421 NC 3100 25 110 Not Reported Not Reported 09/30/2013 2831422 NC 3100 23 110 Not Reported Not Reported 10/31/2013

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt: S 2011 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 07/01/2011

S 2011 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 10/01/2011

S 2011 Nitrate Monitoring, Regular Nitrates Not Reported 01/01/2011

S 2012 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 06/03/2012

S 2013 Coliform (TCR) MCL, Acute (TCR) TCR Not Reported 10/01/2013

S 2013 Coliform (TCR) Monitoring, Repeat Major (TCR) TCR Not Reported 07/01/2013

S 2013 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 10/01/2013

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt: Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt: Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt: Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt: Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

2831423 NC 3014 34 140 Not Reported Not Reported Not Reported 2831424 NC 3100 23 110 Not Reported Not Reported 01/31/2014 2831425 NC 7500 75 410 Not Reported Not Reported Not Reported 501 NC 3100 23 110 Not Reported Not Reported 03/31/2001 603 NC 3100 25 110 Not Reported Not Reported 06/30/2003 703 NC 3100 23 110 Not Reported Not Reported 07/31/2003 2831403 2008 St Formal NOV issued 2831403

2010 St AO (w/penalty) issued Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category: S 2013 E. COLI Monitoring, Source Water (GWR) GWR Not Reported 10/13/2013

S 2014 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 01/01/2014

S 2014 Public Notice PN Violation for NPDWR Violation PN rule Not Reported 01/04/2014

S 2001 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 01/01/2001

S 2003 Coliform (TCR) Monitoring, Repeat Major (TCR) TCR Not Reported 06/01/2003

S 2003 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 07/01/2003

S 10/15/2007 Informal

S 01/22/2010 Formal

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: 2831403 2010 St Compliance achieved

2831403 2008 St Public Notif requested

2831404 2008 St Formal NOV issued

2831404 2008 St Public Notif requested

2831404 2008 St Public Notif received

2831404 2010 St AO (w/penalty) issued

2831404 2010 St Compliance achieved

2831405 2010 St AO (w/penalty) issued

2831405 2011 St Other

2831405 2009 St Public Notif requested

2831405 2009 St Formal NOV issued

2831405 2010 St Compliance achieved

2831406 2010 St Formal NOV issued

2831406 2010 St Public Notif requested

2831406 2010 St AO (w/penalty) issued

2831406 2010 Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: S 09/30/2010 Resolving

S 10/15/2007 Informal

S 04/30/2008 Informal

S 04/30/2008 Informal

S 07/30/2008 Informal

S 01/22/2010 Formal

S 09/30/2010 Resolving

S 01/22/2010 Formal

S 01/28/2011 Informal

S 08/06/2009 Informal

S 08/06/2009 Informal

S 07/09/2010 Resolving

S 10/22/2009 Informal

S 10/22/2009 Informal

S 01/22/2010 Formal

S 07/09/2010

Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: 2831406 2011 St Other

2831407 2010 St Formal NOV issued

St Compliance achieved

2831407 2010 St AO (w/penalty) issued

2831407 2010 St Public Notif requested

2831407 2010 St Compliance achieved

2831407 2011 St Other

2831408 2010 St Compliance achieved

2831408 2010 St Formal NOV issued

2831408 2010 St Public Notif requested

2831408 2010 St AO (w/penalty) issued

2831408 2011 St Other

2831409 2010 St Public Notif requested

2831409 2010 St Formal NOV issued

2831409 2011 St Other

2831409 2010 St Compliance achieved Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category: Resolving

S 01/28/2011 Informal

S 01/07/2010 Informal

S 03/19/2010 Formal

S 01/07/2010 Informal

S 07/09/2010 Resolving

S 01/28/2011 Informal

S 07/09/2010 Resolving

S 03/30/2010 Informal

S 03/30/2010 Informal

S 06/11/2010 Formal

S 01/28/2011 Informal

S 06/04/2010 Informal

S 06/04/2010 Informal

S 04/29/2011 Informal

S 06/30/2010 Resolving

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: 2831409 2010 St AO (w/penalty) issued

2831410 2011 St AO (w/o penalty) issued Formal

2831410 2011 St Compliance achieved

2831410 2011 St Formal NOV issued

2831411 2011 St Compliance achieved

2831411 2011 St Formal NOV issued

2831411 2011 St AO (w/o penalty) issued Formal

2831412 2011 St Formal NOV issued

2831412 2011 St Public Notif received

2831412 2012 St Compliance achieved

2831412 2011 St AO (w/penalty) issued

2831412 2011 St AO (w/o penalty) issued Formal

2831412 2011 St Public Notif requested

2831413 2013 St Public Notif received

2831413 2011 St Formal NOV issued Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category: S 07/02/2010 Formal

S 02/03/2011

S 05/10/2011 Resolving

S 02/03/2011 Informal

S 05/10/2011 Resolving

S 02/25/2011 Informal

S 02/25/2011

S 03/10/2011 Informal

S 05/10/2011 Informal

S 03/31/2012 Resolving

S 04/18/2011 Formal

S 03/10/2011

S 03/10/2011 Informal

S 12/05/2012 Informal

S 06/03/2011 Informal

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: 2831413 2011 St AO (w/o penalty) issued Formal

2831413 2012 St Compliance achieved

2831413 2011 St Public Notif requested

2831414 2011 St Compliance achieved

2831415 2011 St Compliance achieved

2831416 2012 St Compliance achieved

2831416 2013 St Public Notif received

2831416 2012 St Public Notif requested

2831416 2012 St Formal NOV issued

2831416 2012 St AO (w/o penalty) issued Formal

2831416 2012 St AO (w/penalty) issued

2831417 2012 St AO (w/o penalty) issued Formal

2831417 2013 St Public Notif received

2831417 2012 St Formal NOV issued

2831417 2012 St Public Notif requested Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category: 06/03/2011

S

S 03/31/2012 Resolving

S 06/03/2011 Informal

S 05/10/2011 Resolving

S 05/10/2011 Resolving

S 03/31/2012 Resolving

S 12/05/2012 Informal

S 02/15/2012 Informal

S 02/15/2012 Informal

S 02/15/2012

S 03/15/2012 Formal

S 04/24/2012

S 12/05/2012 Informal

S 04/24/2012 Informal

S 04/24/2012 Informal

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Orig Code: Enforcement Action: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: 2831417 2012 St Compliance achieved

2831417 2012 St AO (w/penalty) issued

2831418 2012 St Compliance achieved

2831418 2012 St AO (w/penalty) issued

2831418 2013 St Public Notif received

2831418 2012 St Public Notif requested

2831418 2012 St AO (w/o penalty) issued Formal

2831418 2012 St Formal NOV issued

2831419 2013 St Formal NOV issued

2831419 2013 St AO (w/o penalty) issued Formal

2831419 S 05/02/2012 Resolving

2831420 2014 St Compliance achieved

2831420 2014 St Public Notif requested

2831420 2014 St AO (w/o penalty) issued Formal

2831420 2014 Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Enforcemnt FY: Enforcement Detail:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: S 03/31/2012 Resolving

S 06/20/2012 Formal

S 03/29/2012 Resolving

S 06/06/2012 Formal

S 12/05/2012 Informal

S 05/01/2012 Informal

S 05/01/2012

S 05/01/2012 Informal

S 11/22/2012 Informal

S 11/22/2012

2012 St Compliance achieved

S 12/31/2013 Resolving

S 01/03/2014 Informal

S 01/03/2014

S 01/03/2014

Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID:

St Formal NOV issued 2831420

2014 St Tech Assistance Visit

2831420 2014 St Boil Water Order

2831421 2014 St AO (w/o penalty) issued Formal

2831421 2014 St Public Notif requested

2831421 2014 St Compliance achieved

2831421 2014 St AO (w/penalty) issued

2831421 2014 St Formal NOV issued

2831422 2014 St Public Notif requested

2831422 2014 St Formal NOV issued

2831422 2014 St AO (w/penalty) issued

2831422 2014 St AO (w/o penalty) issued Formal

2831422 2014 St Compliance achieved

2831423 2014 St Public Notif requested

2831423 2014 St AO (w/o penalty) issued Formal

2831423

Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code:

Informal

S 01/03/2014 Informal

S 01/03/2014 Informal

S 01/14/2014

S 01/14/2014 Informal

S 12/31/2013 Resolving

S 02/25/2014 Formal

S 01/14/2014 Informal

S 02/19/2014 Informal

S 02/19/2014 Informal

S 04/02/2014 Formal

S 02/19/2014

S 12/31/2013 Resolving

S 02/19/2014 Informal

S 02/19/2014

Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:

Violation ID: Enforcemnt FY: Enforcement Detail:

Violation ID:

2014 St Formal NOV issued

2831424 2014 St AO (w/o penalty) issued Formal

2831424 2014 St Formal NOV issued

2831424 2014 St AO (w/penalty) issued

2831424 2014 St Public Notif requested

2831425 2014 St AO (w/o penalty) issued Formal

2831425 2014 St Formal NOV issued

299 2004 St Compliance achieved

399 2004 St Compliance achieved

400 2004 St Compliance achieved

501 2001 St Public Notif requested

501 2004 St Compliance achieved

501 2001 St Formal NOV issued

603 2003 St Formal NOV issued

603 2003 St Public Notif requested

603

Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action:

Orig Code: Enforcement Action: Enforcement Category:

Orig Code:

02/19/2014 Informal

S 05/13/2014

S 05/13/2014 Informal

S 06/02/2014 Formal

S 05/13/2014 Informal

S 06/13/2014

S 06/13/2014 Informal

S 02/29/2004 Resolving

S 02/29/2004 Resolving

S 02/29/2004 Resolving

S 05/01/2001 Informal

S 02/29/2004 Resolving

S 05/01/2001 Informal

S 07/31/2003 Informal

S 07/31/2003 Informal

S

Enforcemnt FY: Enforcement Detail:

Violation ID: Enforcemnt FY: Enforcement Detail:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name:

2004 St Compliance achieved

603 2003 St Public Notif received

703 2003 St Public Notif requested

703 2004 St Compliance achieved

703 2003 St Formal NOV issued

BROWN'S CHAPEL UMC NC Coliform (Tcr) 4/1/2007 0:00:00 10/15/2007 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 4/1/2007 0:00:00 10/15/2007 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 1/1/2008 0:00:00 4/30/2008 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 1/1/2008 0:00:00 4/30/2008 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 1/1/2008 0:00:00 7/30/2008 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 1/1/2001 0:00:00 2/29/2004 0:00:00 Not Reported

BROWN'S CHAPEL UMC

Enforcement Action: Enforcement Category:

Orig Code: Enforcement Action: Enforcement Category:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served:

02/29/2004 Resolving

S 08/15/2003 Informal

S 08/29/2003 Informal

S 02/29/2004 Resolving

S 08/29/2003 Informal

75 2831403 Monitoring, Routine Major (TCR) 6/30/2007 0:00:00 State Formal NOV Issued

75 2831403 Monitoring, Routine Major (TCR) 6/30/2007 0:00:00 State Public Notif Requested

75 2831404 Monitoring, Routine Major (TCR) 1/31/2008 0:00:00 State Formal NOV Issued

75 2831404 Monitoring, Routine Major (TCR) 1/31/2008 0:00:00 State Public Notif Requested

75 2831404 Monitoring, Routine Major (TCR) 1/31/2008 0:00:00 State Public Notif Received

75 501 Monitoring, Routine Major (TCR) 3/31/2001 0:00:00 State Compliance Achieved

75

PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement:

PWS name: PWS type code: Contaminant: Compliance start date: Enforcement date: Violation measurement: NC Coliform (Tcr) 1/1/2001 0:00:00 5/1/2001 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 1/1/2001 0:00:00 5/1/2001 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 6/1/2003 0:00:00 2/29/2004 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 6/1/2003 0:00:00 7/31/2003 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 6/1/2003 0:00:00 7/31/2003 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 6/1/2003 0:00:00 8/15/2003 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 7/1/2003 0:00:00 2/29/2004 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 7/1/2003 0:00:00 8/29/2003 0:00:00 Not Reported

BROWN'S CHAPEL UMC NC Coliform (Tcr) 7/1/2003 0:00:00 8/29/2003 0:00:00 Not Reported Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action:

Population served: Violation ID: Violation type: Compliance end date: Enforcement action: 501 Monitoring, Routine Major (TCR) 3/31/2001 0:00:00 State Formal NOV Issued

75 501 Monitoring, Routine Major (TCR) 3/31/2001 0:00:00 State Public Notif Requested

75 603 Monitoring, Repeat Major (TCR) 6/30/2003 0:00:00 State Compliance Achieved

75 603 Monitoring, Repeat Major (TCR) 6/30/2003 0:00:00 State Formal NOV Issued

75 603 Monitoring, Repeat Major (TCR) 6/30/2003 0:00:00 State Public Notif Requested

75 603 Monitoring, Repeat Major (TCR) 6/30/2003 0:00:00 State Public Notif Received

75 703 Monitoring, Routine Major (TCR) 7/31/2003 0:00:00 State Compliance Achieved

75 703 Monitoring, Routine Major (TCR) 7/31/2003 0:00:00 State Formal NOV Issued

75 703 Monitoring, Routine Major (TCR) 7/31/2003 0:00:00 State Public Notif Requested

Map ID Direction				
Distance Elevation		Γ	Database	EDR ID Number
3 North 1/2 - 1 Mile Lower		٦	NC WELLS	NC400000014578
WELLS:				
Water System ID: WS Activity Status: Primary Source: Facility Status: Facility Water Type: Well Depth: Owner:	NC0319405 Active Ground Water Active Ground Water 125 BROWN'S CHAPEL UMC_0319405	Water System Name: WS Federal Type: Facility ID: Facility Name: Facility Availability: Units:	Non (S01 WEL	WN'S CHAPEL UMC Community Transient L #2 anent
4 NNE 1/2 - 1 Mile Lower		F	FED USGS	USGS40000890923
Organization ID:	USGS-NC	Oraclas		
Organization Name: Monitor Location:	USGS North Carolina Water Science CH-040	Type:	Well	
Description:	Not Reported	HUC:	0303	0002
Drainage Area:	Not Reported	Drainage Area Units: Not Reported		
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts: Not Reported		Reported
Aquifer:	Not Reported	Formation Type: Not Reported		Reported
Aquifer Type:	Not Reported	Construction Date:		Reported
Well Depth:	26	Well Depth Units:	ft	
Well Hole Depth:	Not Reported	Well Hole Depth Units:	Not F	Reported

Map ID Direction Distance

Database EDR ID Number

Acres: Quality type: Site id: 78.49 Not Reported 2071 Sitename: Sig: Edr id: NC_SNHA NC10002071 TERRELLS CREEK GALAX BLUFFS D NC10002071

AREA RADON INFORMATION

State Database: NC Radon

Radon Test Results

Num Results	Avg pCi/L	Min pCi/L	Max pCi/L
3	0.53	0.5	0.6
1	2.80	2.8	2.8

Federal EPA Radon Zone for CHATHAM County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

- : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.
- : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 27312

Number of sites tested: 1

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	0.300 pCi/L	100%	0%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	Not Reported	Not Reported	Not Reported	Not Reported

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: US Fish & Wildlife Service Telephone: 703-358-2171

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS) This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

North Carolina Public Water Supply Wells Source: Department of Environmental Health Telephone: 919-715-3243

OTHER STATE DATABASE INFORMATION

North Carolina Wildlife Resources/Game Lands

Source: Center for Geographic Information and Analysis

Telephone: 919-733-2090

All publicly owned game lands managed by the North Carolina Wildlife Resources Commission and as listed in Hunting and Fishing Maps.

NC Natural Heritage Sites: Natural Heritage Element Occurrence Sites

Source: Natural Heritage Occurrence Sites Center for Geographic Information and Analysis Telephone: 919-733-2090

A point coverage identifying locations of rare and endangered species, occurrences of exemplary or unique natural ecosystems (terrestrial or aquatic), and special animal habitats (e.g., colonial waterbird nesting sites).

NC Natural Areas: Significant Natural Heritage Areas

Source: Center for Geographic Information and Analysis

Telephone: 919-733-2090

A polygon converage identifying sites (terrestrial or aquatic) that have particular biodiversity significance. A site's significance may be due to the presence of rare species, rare or high quality natural communities, or other important ecological features.

RADON

State Database: NC Radon Source: Department of Environment & Natural Resources Telephone: 919-733-4984 Radon Statistical and Non Statiscal Data

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

EPA Radon Zones Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United State Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX J

QUALIFICATIONS OF ASSESSOR

Thomas A. Proctor, PG, RSM

President, Principal Environmental Geologist

EDUCATION

UNC at Chapel Hill B.S., Geology, 1982

Graduate School: ECU Geology

REGISTRATIONS

Professional Geologist: North Carolina and Virginia

Registered Site Manager (RSM): NC Inactive Sites Program

OSHA 40-hour Health and Safety Training

MEMBERSHIPS

American Institute of Professional Geologists

Groundwater Professionals of North Carolina

Association of Ground Water Scientists and Engineers

YEARS IN PROFESSION

30<u>+</u>

CAREER SUMMARY

In 2012, Mr. Proctor divested his share of Mid-Atlantic Associates, Inc., an environmental consulting firm he started in 1993. In 2014 he started **Proctor Environmental Services, Inc.**, a smaller, more nimble, client-focused environmental consulting service. He has almost 30 years of experience in assigning project work, scheduling operational tasks, performing geologic and hydrologic work, and managing project administration associated with environmental consulting businesses. He specializes in soil and groundwater assessment and cleanup at petroleum and hazardous substance sites and has performed and directed assessment/remedial work at numerous contamination sites, including DNAPL, involving a variety of technical approaches.

Mr. Proctor has managed and provided technical review for numerous Comprehensive Site Assessments (CSAs) in North Carolina, South Carolina and Virginia. These site assessments have been conducted at petroleum and hazardous substance sites regulated by the states' respective UST and RCRA regulatory programs and have included soil gas surveys, groundwater monitoring wells, GeoProbes, and soil borings. Additional site assessment expertise involves Phase II activities including reconnaissance level sampling to Phase III activities involving comprehensive remedial investigations and remedial feasibility studies.

In addition, Mr. Proctor is experienced in the preparation and implementation of Corrective Action Plans (CAPs). These CAPs have been prepared for and implemented at petroleum and hazardous numerous substance contamination sites in NC and VA and have included the remediation of soil via excavation and disposal, vapor extraction and injection of chemical and biological agents degrade petroleum and chlorinated solvents. to Groundwater remediation has been effectively accomplished via air sparging, extraction, air-stripping and NPDES discharge.

Mr. Proctor is approved by North Carolina's Inactive Sites Program to manage site remedial action activities and to certify regulatory compliance of assessment and remedial actions at sites where responsible parties have entered into consent agreements with the Inactive Hazardous Sites Branch for conducting voluntary remedial actions.

SUB-SPECIALTY EXPERIENCE

Project Management

Mr. Proctor has managed projects ranging up to \$4,000,000 in fees. Mr. Proctor's experience includes managing numerous multi-task projects simultaneously for commercial, industrial and governmental clients. His management experience has included scheduling and sequencing work elements for remedial projects associated with petroleum, solvent and metals contamination. He is experienced in cost-plus, lump sum, and time and material fee based projects. In addition, he is familiar with subcontractor pre-qualification and selection processes, managing subcontractors, as well as processing and approving subcontractor payment requests. His experience includes managing assessment, corrective action planning, design, and equipment maintenance and operation projects associated with environmental remediation.

Remedial Action and Remedial Design

Mr. Proctor has managed and provided technical review for over 25 remediation projects. His experience includes the remediation of solvents, metals and petroleum contaminants in both soil and ground water. Mr. Proctor has developed remedial action plans as well as design plans and specifications for the construction of free product and ground water recovery and treatment systems. He has field experience with the installation, operation and troubleshooting of remedial equipment. He is also experienced as a liaison between the regulatory community and the client from the remedial system design phase to permitting and through system operations. Mr. Proctor has management and field experience with petroleum contaminated soil treatment by soil vapor extraction, bioventilation, land farming and off-site brick incorporation. Similarly, he has management and field experience with groundwater pump and treat, air sparging and biosparging systems as well as natural attenuation. He has successfully applied for non-discharge, POTW and NPDES discharge permits for remedial projects and has provided design and construction of the discharge systems.

Contamination Assessments

Mr. Proctor has managed and provided technical review on numerous site contamination assessments including soil and groundwater contamination assessments resulting from leaking underground storage tanks, aboveground storage tanks, and mishandling of drummed materials. He has performed and directed fieldwork involving soil gas surveys, the installation and development of groundwater monitoring wells, Hydropunches, GeoProbes and the collection of soil and ground-water samples. Project management responsibilities include project budgets, completion dates, coordination and supervision of field personnel, consultation with regulatory personnel and report preparation.

Phase I Environmental Site Assessments

Mr. Proctor has performed and managed more than 300 Phase I Environmental Audits for a variety of properties ranging from rural and undeveloped to urban industrial. His responsibilities included proposal development, contracting, budget development and successful project completion. Mr. Project has experience coordinating a project team to meet demanding project timetables often associated with Phase I Audits.

Pilot Studies

Mr. Proctor has performed numerous soil vapor extraction and air sparging pilot tests in association with solvent and petroleum-fuel releases.

Pollution Prevention

Mr. Proctor has executed regulatory-driven projects involving upgrading underground and aboveground storage tanks and spill prevention control and counter-measure (SPCC) plans.