

**P.O. Box 548 Pittsboro, NC 27312** PHONE: (919) 545-8394

Phone: (919) 548-6715 • E-mail: drew.blake@chathamcountync.gov

April 9, 2024

| Mr. AJ Kamal<br>Soil & Environmental Cor<br>8412 Falls of Neuse Road,<br>Raleigh, NC 27615 | nsultants, PA<br>, Suite 105              |
|--------------------------------------------------------------------------------------------|-------------------------------------------|
| Project Name:                                                                              | Parcel # 2035, 1806, 95989                |
| Location:                                                                                  | Hamlets Chapel Road/Pleasant Springs Road |

WP-24-17

Subject Features: Three (3) ephemeral segments, three (3) intermittent segments, one (1) perennial segment, six (6) potential wetlands, and one (1) beaver impoundment

Dear Mr. Kamal,

Project Number

#### **Explanation:**

The site visit was completed on March 31, 2024, by AJ Kamal of Soil & Environmental Consultants, PA (S&EC), and Drew Blake and Phillip Cox of the Chatham County Watershed Protection Department, on properties identified as Chatham County Parcel # 2035, 1806, and 95989 that are located within the Jordan Lake watershed. S&EC personnel completed a previous site visit in October 2023, and identified four (4) ephemeral segments, three (3) intermittent segments, one (1) perennial segment, and seven (7) potential wetlands within the review area that are potentially subject to riparian buffers through the Chatham County Watershed Protection Ordinance. S&EC submitted a request for Chatham County to complete a formal review to determine if the features would be subject to riparian buffers according to Section 304 of the Chatham County Watershed Protection Ordinance.

#### Summary of Findings

During the site visit, Chatham County staff determined that one identified ephemeral stream (SF8) did not meet the definition of an ephemeral stream as defined in Section 109 of the Chatham County Watershed Protection Ordinance. The start and end points of two ephemeral segments (E2-SF11 and G-SF10) were relocated in during the site visit. Wetland (W5) was determined to be a beaver impoundment during the site visit.

#### **Required Buffers Required**

The required riparian buffers provided below are in accordance with Section 304(D) of the Chatham County Watershed Protection Ordinance.

#### Section 304 (D)(1) - Perennial Streams

The riparian buffer shall be one hundred (100') feet landward, measured horizontally on a line perpendicular from top of bank; this distance shall be measured on all sides of perennial streams, or shall be the full horizontal extent of the Area of Special Flood Hazard as most recently mapped by the North Carolina Floodplain Mapping Program, NC Division of Emergency Management, whichever is the greater horizontal distance.



**P.O.** Box 548 **Pittsboro, NC 27312** PHONE: (919) 545-8394

Phone: (919) 548-6715 • E-mail: drew.blake@chathamcountync.gov

## Section 304(D)(2) – Intermittent Streams

The riparian buffer shall be fifty (50') feet landward, measured horizontally on a line perpendicular from top of bank; this distance shall be measured on all sides of intermittent streams.

### Section 304(D)(3) – Ephemeral Streams

The riparian buffer shall be thirty (30') feet landward, measured horizontally on a line perpendicular from top of bank; this distance shall be measured on all sides along all ephemeral streams.

#### Section 304(D)(4) – Jurisdictional and Non-Jurisdictional Wetlands

The riparian buffer shall be fifty (50') feet landward, measured horizontally on a line perpendicular from the delineated boundary, surrounding all features classified as wetlands and linear wetlands. The potential wetlands identified by S&EC have not been confirmed by the US Army Corps of Engineers. Once the USACE confirmation is received the 50-ft riparian buffers will be required from the flagged confirmed wetland boundaries.

#### Beaver Impoundments - DWQ Clarification Memo 2007-005

Beaver impoundments are streams dammed up by beaver activity. Therefore, if the stream that is now a beaver impoundment shows on wither the USGS Topo or the most recent version of the soil survey map, the beaver impoundment should be treated as an open water since it is a pond in the intent of the rules and must have a 50-ft protected riparian buffer around its perimeter measured from the elevation of the beaver. Streams coming into or out of a beaver pond also have a 50-ft protected riparian buffer.

#### Impacts to Riparian Buffers:

Impacts to the riparian buffers may require a Riparian Buffer Authorization depending on the size and scope of the impacts. Please refer to Section 304 (J)(3) of the Chatham County Watershed Protection Ordinance to determine if your impacts will require a Riparian Buffer Authorization. If you determine that a Riparian Buffer Authorization is required, please contact Drew Blake to receive the required application and submittal instructions.

This on-site determination shall expire five (5) years from the date of this letter. Landowners or affected parties that dispute a determination made by Chatham County, on parcels outside of the Jordan Lake watershed, may submit a request for appeal in writing to the Watershed Review Board. A request for a determination by the Watershed Review Board shall be made in accordance with Section 304 of the Chatham County Watershed Protection Ordinance. Landowners or affected parties that dispute a determination made by Chatham County, on parcels inside the Jordan Lake watershed, shall submit a request for appeal in writing to NC DWR, 401 & Buffer Permitting Unit, 1650 Mail Service Center, Raleigh, NC 27669-1650 attention of the Director of the NC Division of Water Quality.

Should this project result in any direct impacts to surface water features (i.e., crossing and/or filling streams or wetlands) additional reviews may be necessary. Additionally, a Section 404/401 Permit may be required. Any inquiries regarding Section 404/401 permitting should be directed to the Division of Water Resources (Central Office) at (919)-807-6364 and the US Army Corp of Engineers (Raleigh Regulatory Field Office) at (919)-554-4884.



**P.O. Box 548 Pittsboro, NC 27312** PHONE: (919) 545-8394

Phone: (919) 548-6715 • E-mail: drew.blake@chathamcountync.gov

Respectfully,

Blake

Drew Blake Assistant Director, CESSWI Chatham County Watershed Protection Department

Enclosures:

Wetland Sketch Map Post Chatham County Visit – Completed by S&EC Surface Water & Riparian Buffer Spreadsheet – Completed by S&EC October 2023 Stream ID & Wetland Data Forms – Completed by S&EC March 2023 (Site Visit) Stream ID Forms – Completed by S&EC Major Subdivision Riparian Buffer Application Authorized Agent Form Authorization to Enter Property Form

 cc: Taylor Burton, Sr. Watershed Specialist, Chatham County Watershed Protection Department Phillip Cox, Sr. Watershed Specialist, Chatham County Watershed Protection Department Justin Hasenfus, Erosion Control Program Manager, Chatham County Watershed Protection Dept Rachael Thorn, Director, Chatham County Watershed Protection Department Kimberly Tyson, Planner II/Subdivision Administrator, Chatham County Planning Department Angela Plummer, Planner II/Zoning Administrator, Chatham County Planning Department Jason Sullivan, Director, Chatham County Planning Department Rachel Capito, Regulatory Project Manager, US Army Corps of Engineers, Raleigh Field Office Zachary Thomas, Environmental Program Consultant, NCDEQ - Division of Water Resources



| B SF6              |                                                                         |                                     | SF5                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          | Att 41B                                                                                                                               |
|--------------------|-------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                         |                                     |                                                                                                        | Detailed<br>Sur<br>S&EC reserves the<br>and any other additional<br>topographic maps, air pr<br>to be disturbed, S&EC's<br>permitted by the U.S. An<br>this work desires an acc<br>S&EC, they should retail<br>locate S&EC's flagging. | <b>Delineation of Waters of</b><br>itable for Preliminary Planning Only<br>e right to modify this map based on<br>1 information. Approximations were<br>hotos and ground truthing. If the si<br>detailed delineation should be appr<br>rmy Corps of Engineers as required<br>curate map of the regulated features<br>in a NC Registered Professional Lan | f the US<br>y<br>more fieldwork,<br>e mapped using<br>ite is going<br>roved and<br>. If the user of<br>s flagged by<br>ad Surveyor to |
| Wetland Sketch Map | Project No.Hamlets15842.W1Scale:<br>1 =150'Project Mgr.:<br>SB3/21/2024 | Chapel Road<br>boro, NC<br>d by: AJ | Soil & Environmental C<br>8412 Falls of Neuse Road, Suite 104, Raleigh, NC 27615 • Phone<br>sandec.com | <b>Consultants, PA</b><br>e: (919) 846-5900 • Fax: (919) 846-9467                                                                                                                                                                      | 0 150 300<br>Feet                                                                                                                                                                                                                                                                                                                                        | 600<br>                                                                                                                               |

|            |                                        |                                | Project Nar                       | ne          |            |                                        |                                                     |
|------------|----------------------------------------|--------------------------------|-----------------------------------|-------------|------------|----------------------------------------|-----------------------------------------------------|
|            |                                        | Surface Wa                     | ater & Riparian Bu                | ffer Spread | dsheet     |                                        |                                                     |
|            |                                        |                                | Completed By:                     | T           |            |                                        |                                                     |
| Feature ID | Feature Type                           | Stream/Wetland Data<br>Form ID | Stream Length or<br>Wetland Acres | Latitude    | Longitude  | Buffer Required                        | Buffer Jurisdiction<br>(Jordan, County +<br>Jordan) |
| W1         | Jurisdictional<br>Wetland              | N/A                            | .02 ac                            | 35.794118   | -79.140037 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W2         | Jurisdictional<br>Wetland              | N/A                            | .01 ac                            | 35.794132   | -79.139721 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W3         | Jurisdictional<br>Wetland              | N/A                            | .02 ac                            | 35.793918   | -79.139685 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W4         | Jurisdictional<br>Wetland              | N/A                            | .04 ac                            | 35.789644   | -79.135287 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W5         | Jurisdictional<br>Wetland              | N/A                            | 1.23 ac                           | 35.790461   | -79.134498 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W6         | Jurisdictional<br>Wetland              | N/A                            | .09 ac                            | 35.794537   | -79.136472 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| W7         | Jurisdictional<br>Wetland              | DP2                            | .91 ac                            | 35.795866   | -79.137458 | 50' Jurisdictional<br>Wetland          | County+Jordan                                       |
| А          | Intermittent                           | SF1                            | 3186 ft                           | 35.793103   | -79.138735 | 50' (Intermittent)                     | County+Jordan                                       |
| В          | Intermittent                           | SF6                            | 95 ft                             | 35.788477   | -79.142205 | 50' (Intermittent)                     | County+Jordan                                       |
| С          | Perennial                              | SF5                            | 1288 ft                           | 35.789557   | -79.136657 | 100' (Perennial)                       | County+Jordan                                       |
| D          | Intermittent                           | SF7                            | 515 ft                            | 35.789415   | -79.135515 | 50' (Intermittent)                     | County+Jordan                                       |
| E1         | Ephemeral                              | SF4                            | 82 ft                             | 35.794989   | -79.136565 | 30' (Ephemeral)                        | County+Jordan                                       |
| E2         | Intermittent                           | SF3 + SF11                     | 430 ft                            | 35.794408   | -79.136275 | 50' (Intermittent)                     | County+Jordan                                       |
| E3         | Ephemeral                              | SF2                            | 132 ft                            | 35.791086   | -79.134634 | 30' (Ephemeral)                        | County+Jordan                                       |
| G          | Intermittent                           | SF10                           | 114 ft                            | 35.795714   | -79.136172 | 50' (Intermittent)                     | County+Jordan                                       |
| G          | Ephemeral                              | SF9                            | 72 ft                             | 35.795132   | -79.140136 | 30' (Ephemeral)                        | County+Jordan                                       |
|            | 30000000000000000000000000000000000000 |                                |                                   |             |            | 90010000000000000000000000000000000000 |                                                     |
|            | 30000000000000000000000000000000000000 |                                |                                   |             |            | 90010000000000000000000000000000000000 |                                                     |
|            |                                        |                                |                                   |             |            |                                        |                                                     |

| Date: 10/12/23                                                                                        | Project/Site: Ha                   | mlets chopel<br>Rd.                      | Latitude:35              | 793926 |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|--------------------------|--------|--|
| Evaluator: STEC-AJK+KM                                                                                | County: Chatham                    |                                          | Longitude: 79.13943      |        |  |
| Total Points:<br>Stream is at least intermittent<br>if ≥ 19 or perennial if ≥ 30*                     | Stream Determin<br>Ephemeral Inter | nation (circle one)<br>mittent Perennial | Other<br>e.g. Quad Name: |        |  |
| A. Geomorphology (Subtotal = 12)                                                                      | Absent                             | Weak                                     | Moderate                 | Strong |  |
| 1 <sup>a</sup> Continuity of channel bed and bank                                                     | 0                                  | 1                                        | 2                        | 3      |  |
| 2. Sinuosity of channel along thalweg                                                                 | 0                                  | 1                                        | (2)                      | 3      |  |
| 3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence                             | 0                                  | 1                                        | 2                        | 3      |  |
| 4. Particle size of stream substrate                                                                  | 0                                  | 1                                        | (2)                      | 3      |  |
| 5. Active/relict floodplain                                                                           | (0)                                | 1                                        | 2                        | 3      |  |
| 6. Depositional bars or benches                                                                       | 0                                  | $\bigcirc$                               | 2                        | 3      |  |
| 7. Recent alluvial deposits                                                                           | Q                                  |                                          | 2                        | 3      |  |
| 8. Headcuts                                                                                           | $\bigcirc$                         | 1                                        | 2                        | 3      |  |
| 9. Grade control                                                                                      | 0                                  | 0.5                                      | 1                        | 1.5    |  |
| 10. Natural vallev                                                                                    | 0                                  | 0.5                                      | (1)                      | 1.5    |  |
| 11. Second or greater order channel                                                                   | No                                 |                                          | Yes                      | = 3    |  |
| <sup>a</sup> artificial ditches are not rated; see discussions in manual<br>B. Hydrology (Subtotal =) |                                    | -                                        |                          | -      |  |
| 12. Presence of Baseflow                                                                              | 0                                  | 0                                        | 2                        | 3      |  |
| 13. Iron oxidizing bacteria                                                                           | 0                                  | 0                                        | 2                        | 3      |  |
| 14. Leaf litter                                                                                       | 1.5                                | 0                                        | 0.5                      | 0      |  |
| 15. Sediment on plants or debris                                                                      | 0                                  | (0.5)                                    | 1                        | 1.5    |  |
| 16. Organic debris lines or piles                                                                     | 0                                  | 0.5                                      | 1                        | 1.5    |  |
| 17. Soil-based evidence of high water table?                                                          | No                                 | o = 0                                    | Yes                      | (= 3)  |  |
| C. Biology (Subtotal =)                                                                               |                                    |                                          |                          |        |  |
| 18. Fibrous roots in streambed                                                                        | (3)                                | 2                                        | 1                        | 0      |  |
| 19. Rooted upland plants in streambed                                                                 | (3)                                | 2                                        | 1                        | 0      |  |
| 20. Macrobenthos (note diversity and abundance)                                                       | (0)                                | 1                                        | 2                        | 3      |  |
| 21. Aquatic Mollusks                                                                                  | 0                                  | 1                                        | 2                        | 3      |  |
| 22. Fish                                                                                              | 0                                  | 0.5                                      | 1                        | 1.5    |  |
| 23. Crayfish                                                                                          | (0)                                | 0.5                                      | 1                        | 1.5    |  |
| 24. Amphibians                                                                                        | (0)                                | 0.5                                      | 1                        | 1.5    |  |
| 25. Algae                                                                                             | (0)                                | 0.5                                      | 1                        | 1.5    |  |
| 26. Wetland plants in streambed                                                                       |                                    | FACW = 0.75; OI                          | BL = 1.5 Other =         | 0)     |  |
| *perennial streams may also be identified using other metho                                           | ods. See p. 35 of manua            | al.                                      |                          |        |  |
|                                                                                                       |                                    |                                          |                          |        |  |

| Project/Site:                      | mlets Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Latitude:35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 791079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| County: Chat                       | ham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Longitude: -79./3462<br>Other<br>e.g. Quad Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Stream Determin<br>Ephemeral Inter | ation (circle one)<br>mittent Perennial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Absent                             | Weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (0)                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| No                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| (0)                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1.5                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0                                  | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0                                  | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| No                                 | 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | €3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Allowed P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 3                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (0)                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (0)                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (0)                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 10                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0                                  | FACW = 0.75; OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3L = 1.5 Other =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| nods. See p. 35 of manua           | FACW = 0.75; OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3L = 1.5 Other =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                    | County:         Chi           Stream Determin         Ephemeral Inter           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | County: Che, the Gam         Stream Determination (circle one)         Ephemeral Intermittent Perennial         Absent       Weak         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       0.5         0       1         0       1         0       1         0       1         0       1         0       1         0       1         0       1 <tr< td=""><td>County: Che. Th Gan         Longitude: -7           Stream Determination (circle one)<br/>Ephemeral Intermittent Perennial         Other<br/>e.g. Quad Name:           Absent         Weak         Moderate           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         0.5         1           0         0.5         1           0         1         2           1.5         1         0.5           0         1         2           0         1         2           1.5         1         0.5           1         <td< td=""></td<></td></tr<> | County: Che. Th Gan         Longitude: -7           Stream Determination (circle one)<br>Ephemeral Intermittent Perennial         Other<br>e.g. Quad Name:           Absent         Weak         Moderate           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         1         2           0         0.5         1           0         0.5         1           0         1         2           1.5         1         0.5           0         1         2           0         1         2           1.5         1         0.5           1 <td< td=""></td<> |  |

| Date: 10/12/23                                                                                      | Project/Site: HG                   | mlets<br>hepel Rd.                       | Latitude: 35. 779369<br>Longitude: -79.13620<br>Other<br>e.g. Quad Name: |        |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|--------------------------------------------------------------------------|--------|--|
| Evaluator: SHEC - AJK+KM                                                                            | County: Cha                        | tham                                     |                                                                          |        |  |
| Total Points:<br>Stream is at least intermittent $20.5$<br>if $\geq 19$ or perennial if $\geq 30^*$ | Stream Determin<br>Ephemeral Inter | nation (circle one)<br>mittent Perennial |                                                                          |        |  |
| A Geomorphology (Subtotal = 10.5)                                                                   | Absent                             | Weak                                     | Moderate                                                                 | Strong |  |
| 1 <sup>a</sup> Continuity of channel bed and bank                                                   | 0                                  | 1                                        | 2                                                                        | 3      |  |
| 2. Sinuosity of channel along thalweg                                                               | 0                                  | 1                                        | (2)                                                                      | 3      |  |
| 3. In-channel structure: ex. riffle-pool, step-pool,<br>ripple-pool sequence                        | 0                                  | 0                                        | 2                                                                        | 3      |  |
| 4. Particle size of stream substrate                                                                | 0                                  |                                          | 2                                                                        | 3      |  |
| 5. Active/relict floodplain                                                                         | 0                                  | (1)                                      | 2                                                                        | 3      |  |
| 6. Depositional bars or benches                                                                     | 0                                  |                                          | 2                                                                        | 3      |  |
| 7. Recent alluvial deposits                                                                         | 0                                  | 0                                        | 2                                                                        | 3      |  |
| 8. Headcuts                                                                                         | 0                                  | 1                                        | 2                                                                        | 3      |  |
| 9. Grade control                                                                                    | 0                                  | 0.5                                      | 1                                                                        | 1.5    |  |
| 10. Natural valley                                                                                  | 0                                  | 0.5                                      |                                                                          | 1.5    |  |
| 11. Second or greater order channel                                                                 | No                                 | 0€0)                                     | Yes = 3                                                                  |        |  |
| 12. Presence of Baseflow                                                                            | 0                                  | 1                                        | 2                                                                        | 3      |  |
| 13. Iron oxidizing bacteria                                                                         | 10                                 | 1                                        | 2                                                                        | 3      |  |
| 14. Leaf litter                                                                                     | 1.5                                |                                          | 0.5                                                                      | 15     |  |
| 15. Sediment on plants or debris                                                                    | 0                                  | (0.5)                                    | 1                                                                        | 1.0    |  |
| 16. Organic debris lines or piles                                                                   | 0                                  | 0.5                                      | Vos                                                                      | 1.5    |  |
| 17. Soil-based evidence of high water table?                                                        | N                                  | 0 = 0                                    | 163                                                                      | 0      |  |
| C. Biology (Subtotal =)                                                                             |                                    | 6                                        | 4                                                                        | 0      |  |
| 18. Fibrous roots in streambed                                                                      | 3                                  | 2                                        | 1                                                                        | 0      |  |
| 19. Rooted upland plants in streambed                                                               |                                    | 2                                        | 2                                                                        | 3      |  |
| 20. Macrobenthos (note diversity and abundance)                                                     |                                    | 1                                        | 2                                                                        | 3      |  |
| 21. Aquatic Moliusks                                                                                |                                    | 0.5                                      | 1                                                                        | 1.5    |  |
| 22. FISH                                                                                            |                                    | 0.5                                      | 1                                                                        | 1.5    |  |
| 23. Craynsh                                                                                         |                                    | 0.5                                      | 1                                                                        | 1.5    |  |
| 24. Amphibians                                                                                      | 10                                 | 0.5                                      | 1                                                                        | 1.0    |  |
| 25. Algae                                                                                           | 10                                 | EACW = 0.75                              | BI = 1.5 Other =                                                         | 0)     |  |
| 26. Weband plants in streambed                                                                      | ada Saa n 35 of manu               | FACW - 0.75, O                           |                                                                          |        |  |
| -perennial streams may also be identified using other mean                                          | ods. See p. 35 of manu             |                                          |                                                                          |        |  |
|                                                                                                     |                                    |                                          |                                                                          |        |  |
|                                                                                                     |                                    |                                          |                                                                          |        |  |

| ALT. AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project/Site:                                                                                                    | hepel Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Latitude: 55, 79494                                                                     |                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Evaluator: SFEC - ADK+KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | County: Cha                                                                                                      | than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Longitude: -79,13657<br>Other<br>e.g. Quad Name:                                        |                                                                                                                 |  |
| Fotal Points: $\Box$ Stream is at least intermittent $\Box$ $f \ge 19$ or perennial if $\ge 30^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stream Determin<br>Ephemeral Inter                                                                               | nation (circle one)<br>mittent Perennial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                                                                                                                 |  |
| Geomorphology (Subtotal = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Absent                                                                                                           | Weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Moderate                                                                                | Strong                                                                                                          |  |
| <sup>a</sup> Continuity of channel bed and bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                       | 3                                                                                                               |  |
| 2 Sinuosity of channel along thatweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                | $\widehat{\mathbf{D}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                       | 3                                                                                                               |  |
| In-channel structure: ex. riffle-pool, step-pool,     ripple-pool sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                       | 3                                                                                                               |  |
| 4. Particle size of stream substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                       | 3                                                                                                               |  |
| 5. Active/relict floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                       | 3                                                                                                               |  |
| 6. Depositional bars or benches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                       | 3                                                                                                               |  |
| 7. Recent alluvial deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0)                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                       | 3                                                                                                               |  |
| B. Headcuts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0)                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                       | 3                                                                                                               |  |
| 9. Grade control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                       | 1.5                                                                                                             |  |
| 10. Natural valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         | 1.5                                                                                                             |  |
| 11. Second or greater order channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                               | 0€0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes = 3                                                                                 |                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6)                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                       | 3                                                                                                               |  |
| 13. Iron oxidizing bacteria<br>14. Leaf litter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                              | (Ť)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                     | 0                                                                                                               |  |
| 13. Iron oxidizing bacteria<br>14. Leaf litter<br>15. Sediment on plants or debris                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5<br>0                                                                                                         | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                     | 0                                                                                                               |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5<br>0<br>0                                                                                                    | (1)<br>(0.5)<br>(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5<br>1<br>1                                                                           | 0<br>1.5<br>1.5                                                                                                 |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> </ul>                                                                                                                                                                                                                                                                                                                                            | 1.5<br>0<br>0<br>N                                                                                               | (1)<br>(0.5)<br>(0.5)<br>o = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5<br>1<br>1<br>Yes                                                                    | 0<br>1.5<br>1.5<br>€3                                                                                           |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> </ul>                                                                                                                                                                                                                                                                                                           | 1.5<br>0<br>0<br>No                                                                                              | (0.5)<br>(0.5)<br>(0.5)<br>(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5<br>1<br>1<br>Yes                                                                    | 0<br>1.5<br>1.5<br>€3                                                                                           |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> </ul>                                                                                                                                                                                                                                                                   | 1.5<br>0<br>0<br>No                                                                                              | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br>1<br>1<br>Yes                                                                    | 0<br>1.5<br>1.5<br>€3)                                                                                          |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> </ul>                                                                                                                                                                                                                    | 1.5<br>0<br>0<br>No                                                                                              | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br>1<br>1<br>Yes<br>(1)<br>1<br>2                                                   | 0<br>1.5<br>1.5<br>€3)<br>0<br>0<br>0                                                                           |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> </ul>                                                                                                                                                           | 1.5<br>0<br>0<br>No<br>3<br>3                                                                                    | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br>1<br>1<br>Yes<br>(1)<br>1<br>2<br>2                                              | 0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>3<br>3                                                                   |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> </ul>                                                                                                                             | 1.5<br>0<br>0<br>0<br>No<br>3<br>3<br>3<br>0<br>(0)                                                              | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br>1<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1                                         | 0<br>1.5<br>1.5<br>€3)<br>0<br>0<br>0<br>3<br>3<br>3<br>15                                                      |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> </ul>                                                                                                           | 1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                  | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1<br>1<br>1                                    | 0<br>1.5<br>1.5<br>€3)<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5                                            |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amaphibiano</li> </ul>                                                            | 1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                              | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $ $ \begin{array}{c} 2 \\ (2) \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0$ | 0.5<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1                     | 0<br>1.5<br>1.5<br>€3)<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                       |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Alappa</li> </ul>                                         | 1.5<br>0<br>0<br>No<br>3<br>3<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0    | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $ $ \begin{array}{c} 2 \\ (2) \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\$ | 0.5<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> </ul> | 1.5<br>0<br>0<br>0<br>No<br>3<br>3<br>3<br>0<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>( | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $ $ \begin{array}{c} 2 \\ (2) \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\$ | 0.5<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>Bl = 1.5 Other = | 0<br>1.5<br>1.5<br>€3<br>0<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>0                     |  |
| <ul> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> </ul> | 1.5<br>0<br>0<br>No<br>3<br>3<br>3<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                       | $ \begin{array}{c} (1) \\ (0.5) \\ (0.5) \\ (0.5) \\ 0 = 0 \end{array} $ $ \begin{array}{c} 2 \\ (2) \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ FACW = 0.75; O \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5<br>1<br>Yes<br>(1)<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>BL = 1.5 Other =           | 0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>0                           |  |

| Date: 0 12 23                                                                                  | Project/Site: H                    | nedel Rd.                                | Latitude: 35.789566                             |        |  |
|------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|-------------------------------------------------|--------|--|
| Evaluator: STEC - AJK + KM                                                                     | County: Che                        | than                                     | Longitude:-79.13637<br>Other<br>e.g. Quad Name: |        |  |
| Total Points:<br>Stream is at least intermittent<br>if ≥ 19 or perennial if ≥ 30* 35           | Stream Determin<br>Ephemeral Inter | nation (circle one)<br>mittent Perennial |                                                 |        |  |
| A. Geomorphology (Subtotal = 16)                                                               | Absent                             | Weak                                     | Moderate                                        | Strong |  |
| 1 <sup>ª</sup> Continuity of channel bed and bank                                              | 0                                  | 1                                        | 2                                               | (3)    |  |
| 2. Sinuosity of channel along thalweg                                                          | 0                                  | 1                                        | (2)                                             | 3      |  |
| <ol> <li>In-channel structure: ex. riffle-pool, step-pool,<br/>ripple-pool sequence</li> </ol> | 0                                  | 1                                        | 2                                               | 3      |  |
| 4. Particle size of stream substrate                                                           | 0                                  | 1                                        | (2)                                             | 3      |  |
| 5. Active/relict floodplain                                                                    | 0                                  | 1                                        | 2                                               | 3      |  |
| <ol><li>Depositional bars or benches</li></ol>                                                 | 0                                  | 1                                        | 2                                               | 3      |  |
| 7. Recent alluvial deposits                                                                    | 0                                  | 0                                        | 2                                               | 3      |  |
| 8. Headcuts                                                                                    | 0                                  |                                          | 2                                               | 3      |  |
| 9. Grade control                                                                               | 0                                  | 0.5)                                     | 1                                               | 1.5    |  |
| 10. Natural valley                                                                             | 0                                  | 0.5                                      | 1                                               | (1.5)  |  |
| 11. Second or greater order channel                                                            | No                                 | 0(0)                                     | Yes                                             | = 3    |  |
| artificial ditches are not rated; see discussions in manual                                    |                                    |                                          |                                                 |        |  |
| B. Hydrology (Subtotal = 10)                                                                   |                                    |                                          |                                                 |        |  |
| 12. Presence of Baseflow                                                                       | 0                                  | 1                                        | 2                                               | 3      |  |
| 13. Iron oxidizing bacteria                                                                    | ( <b>0</b> )                       | 1                                        | 2                                               | 3      |  |
| 14. Leaf litter                                                                                | (1.5)                              | 1                                        | 0.5                                             | 0      |  |
| 15. Sediment on plants or debris                                                               | 0                                  | 0.5                                      | (1)                                             | 1.5    |  |
| 16. Organic debris lines or piles                                                              | 0                                  | 0.5                                      | 1                                               | (1.5)  |  |
| 17. Soil-based evidence of high water table?                                                   | N                                  | o = 0                                    | Yes                                             | ₹3)    |  |
| C. Biology (Subtotal =)                                                                        |                                    |                                          |                                                 |        |  |
| 18. Fibrous roots in streambed                                                                 | 3                                  | 2                                        | 1                                               | 0      |  |
| 19. Rooted upland plants in streambed                                                          | (3)                                | 2                                        | 1                                               | 0      |  |
| 20. Macrobenthos (note diversity and abundance)                                                | 0                                  |                                          | 2                                               | 3      |  |
| 21. Aquatic Mollusks                                                                           | ()                                 | 1                                        | 2                                               | 3      |  |
| 22. Fish                                                                                       | 0                                  | (0.5)                                    | 1                                               | 1.5    |  |
| 23. Crayfish                                                                                   | (0)                                | 0.5                                      | 1                                               | 1.5    |  |
| 24. Amphibians                                                                                 | 0                                  | 0.5                                      | 0                                               | 1.5    |  |
| 25. Algae                                                                                      | 0                                  | 0.5                                      | 1                                               | 1.5    |  |
| 26. Wetland plants in streambed                                                                |                                    | FACW = 0.75; OB                          | SL = 1.5 Other =                                | 0)     |  |
| *perennial streams may also be identified using other me                                       | thods. See p. 35 of manua          | al.                                      |                                                 |        |  |
| Notes:                                                                                         |                                    |                                          |                                                 |        |  |
| Sketch:<br>- Caddisfly<br>- Sms 11 fr                                                          | casings<br>ish                     |                                          |                                                 |        |  |

| County: Che            | ithan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Longitude: -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 147704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Stroam Dotormin        | athan Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | jitude: -79 <b>.142</b> 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Ephemeral Inter        | nation (circle one)<br>mittent Perennial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other<br>e.g. Quad Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Absent                 | Weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (0)                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | <b>()</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (0)                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ō                      | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Nc                     | 0€0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.5                    | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                      | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0                      | (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| No                     | 0 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3                      | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (3)                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Q                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\bigcirc$             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\bigcirc$             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (0)                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (0)                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (0)                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                        | FACW = 0.75; OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BL = 1.5 Other =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ds. See p. 35 of manua | al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                        | Absent           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 <td>Absent         Weak           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         0           0         0           0         0           0         1           0         0           0         1           0         1           0         0           0         0           0         0           0         0           0         0           0         0           3         2           3         2           0         0           1         0           0         0           1         0           0         0           1         0           0         0           0</td> <td>Absent         Weak         Moderate           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         2           0         1         2           0         1         2           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1</td> | Absent         Weak           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         0           0         0           0         0           0         1           0         0           0         1           0         1           0         0           0         0           0         0           0         0           0         0           0         0           3         2           3         2           0         0           1         0           0         0           1         0           0         0           1         0           0         0           0 | Absent         Weak         Moderate           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         (2)           0         1         2           0         1         2           0         1         2           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1           0         0.5         1 |  |

| Date: 10/12/23                                                                              | Project/Site: Ha                   | hapel Rd                                  | Latitude: 35,7                                    | 289348 |  |
|---------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------------------|--------|--|
| Evaluator: StFC - AJK + KM                                                                  | County: Cha-                       | tham                                      | Longitude: -79.135339<br>Other<br>e.g. Quad Name: |        |  |
| Total Points:         Stream is at least intermittent         if ≥ 19 or perennial if ≥ 30* | Stream Determin<br>Ephemeral Inter | nation (circle one)<br>mittent) Perennial |                                                   |        |  |
| A Geomorphology (Subtotal = $13$ )                                                          | Absent                             | Weak                                      | Moderate                                          | Strong |  |
| 1 <sup>a</sup> Continuity of channel bed and bank                                           | 0                                  | 1                                         | (2)                                               | 3      |  |
| 2. Sinuosity of channel along thalweg                                                       | 0                                  | 1                                         | 2                                                 | 3      |  |
| 3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence                   | 0                                  | 1                                         | 2                                                 | 3      |  |
| 4. Particle size of stream substrate                                                        | 0                                  | 1                                         | (2)                                               | 3      |  |
| 5. Active/relict floodplain                                                                 | (0)                                | 1                                         | 2                                                 | 3      |  |
| 6. Depositional bars or benches                                                             | V                                  | 1                                         | (2)                                               | 3      |  |
| 7. Recent alluvial deposits                                                                 | 0                                  | (1)                                       | 2                                                 | 3      |  |
| 8. Headcuts                                                                                 | (0)                                | 1                                         | 2                                                 | 3      |  |
| 9. Grade control                                                                            | 0                                  | 0.5                                       | (1)                                               | 1.5    |  |
| 10. Natural valley                                                                          | 0                                  | 0.5                                       | (1)                                               | 1.5    |  |
| 11. Second or greater order channel                                                         | No                                 | (0)                                       | Yes                                               | = 3    |  |
| B. Hydrology (Subtotal = <u>6</u> )                                                         | 0                                  |                                           | 2                                                 | 3      |  |
| 12. Presence of Basenow                                                                     |                                    | 0                                         | 2                                                 | 3      |  |
| 13. Iron oxidizing bacteria                                                                 | 1.5                                |                                           | 0.5                                               | 0      |  |
| 14. Leat litter                                                                             | 1.5                                | (0.5)                                     | 1                                                 | 15     |  |
| 15. Sediment on plants of debris                                                            | 0                                  | (0.5)                                     | 1                                                 | 1.5    |  |
| 16. Organic deprisitines of piles                                                           | N                                  | n = 0                                     | Yes                                               | =3)    |  |
| C Biology (Subtotal - 5 )                                                                   |                                    |                                           |                                                   | 0      |  |
| 19. Eibrous roots in streambed                                                              | 3                                  | (2)                                       | 1                                                 | 0      |  |
| 10. Pooted upland plants in streambed                                                       | (3)                                | 2                                         | 1                                                 | 0      |  |
| 20 Macrobenthos (note diversity and abundance)                                              |                                    | 1                                         | 2                                                 | 3      |  |
| 21. Aquatic Mollusks                                                                        | (0)                                | 1                                         | 2                                                 | 3      |  |
| 22. Fish                                                                                    | (0)                                | 0.5                                       | 1                                                 | 1.5    |  |
| 23. Crayfish                                                                                | (0)                                | 0.5                                       | 1                                                 | 1.5    |  |
| 24. Amphibians                                                                              | [0]                                | 0.5                                       | 1                                                 | 1.5    |  |
| 25. Algae                                                                                   | (0)                                | 0.5                                       | 1                                                 | 1.5    |  |
| 26. Wetland plants in streambed                                                             |                                    | FACW = 0.75; O                            | BL = 1.5 Other =                                  | 0      |  |
| *perennial streams may also be identified using other me                                    | thods. See p. 35 of manua          | al.                                       |                                                   |        |  |
| Notes:                                                                                      |                                    |                                           |                                                   |        |  |
|                                                                                             |                                    |                                           |                                                   |        |  |

| Date: 10/12/23                                                                              | Project/Site: Ho                   | hapel Rd.                                | Latitude: 35, 793697<br>Longitude: - 79, 136203<br>Other<br>e.g. Quad Name: |        |  |
|---------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|--------|--|
| Evaluator: St Ec - AJK + KM                                                                 | County: Cha                        | than                                     |                                                                             |        |  |
| Total Points:         Stream is at least intermittent         if ≥ 19 or perennial if ≥ 30* | Stream Determin<br>Ephemeral Inter | nation (circle one)<br>mittent Perennial |                                                                             |        |  |
| A Geomorphology (Subtotal = 5)                                                              | Absent                             | Weak                                     | Moderate                                                                    | Strong |  |
| 1 <sup>a</sup> Continuity of channel bed and bank                                           | 0                                  | (1)                                      | 2                                                                           | 3      |  |
| 2. Sinuosity of channel along thalweg                                                       | 0                                  |                                          | 2                                                                           | 3      |  |
| 3. In-channel structure: ex. riffle-pool, step-pool,<br>ripple-pool sequence                | 0                                  | 1                                        | 2                                                                           | 3      |  |
| 4. Particle size of stream substrate                                                        | 0                                  | (1)                                      | 2                                                                           | 3      |  |
| 5. Active/relict floodplain                                                                 | (0)                                | 1                                        | 2                                                                           | 3      |  |
| 6. Depositional bars or benches                                                             | (0)                                | 1                                        | 2                                                                           | 3      |  |
| 7. Recent alluvial deposits                                                                 | (0)                                | 1                                        | 2                                                                           | 3      |  |
| 8. Headcuts                                                                                 | 0                                  | 1                                        | 2                                                                           | 3      |  |
| 9. Grade control                                                                            | 0                                  | (0.5)                                    | 1                                                                           | 1.5    |  |
| 10. Natural valley                                                                          | 0                                  | 0.5)                                     | 1                                                                           | 1.5    |  |
| 11. Second or greater order channel                                                         | No                                 | (= 0 )                                   | Yes                                                                         | = 3    |  |
| 12. Presence of Baseflow                                                                    | ٢                                  | 1                                        | 2                                                                           | 3      |  |
| 13. Iron oxidizing bacteria                                                                 | (0)                                | 1                                        | 2                                                                           | 3      |  |
| 14. Leaf litter                                                                             | 1.5                                | D                                        | 0.5                                                                         | 0      |  |
| 15. Sediment on plants or debris                                                            | 0                                  | 0.5                                      | 1                                                                           | 1.5    |  |
| 16. Organic debris lines or piles                                                           | 0                                  | (0.5)                                    | 1                                                                           | 1.5    |  |
| 17. Soil-based evidence of high water table?                                                | No                                 | <b>b</b> = 0                             | Yes                                                                         | E3)    |  |
| C. Biology (Subtotal =)                                                                     |                                    |                                          |                                                                             | -      |  |
| 18. Fibrous roots in streambed                                                              | 3                                  | 2                                        | (1)                                                                         | 0      |  |
| 19. Rooted upland plants in streambed                                                       | 3                                  | 2                                        | 0                                                                           | 0      |  |
| 20. Macrobenthos (note diversity and abundance)                                             | (0)                                | 1                                        | 2                                                                           | 3      |  |
| 21. Aquatic Mollusks                                                                        | 50                                 | 1                                        | 2                                                                           | 1 5    |  |
| 22. Fish                                                                                    | 00                                 | 0.5                                      | 1                                                                           | 1.5    |  |
| 23. Crayfish                                                                                | 0                                  | 0.5                                      | 1                                                                           | 1.0    |  |
| 24. Amphibians                                                                              |                                    | 0.5                                      | 1                                                                           | 1.5    |  |
| 25. Algae                                                                                   | 01                                 |                                          |                                                                             | 1.5    |  |
| 26. Wetland plants in streambed                                                             |                                    | FACVV = 0.75; U                          | BL = 1.5 Other                                                              | 0      |  |
| *perennial streams may also be identified using other metho                                 | ods. See p. 35 of manua            | al.                                      |                                                                             |        |  |
| Notes:                                                                                      |                                    |                                          |                                                                             |        |  |
|                                                                                             |                                    |                                          |                                                                             |        |  |

| Date: 10/12/23                                                                       | Project/Site: H                    | inlets the Rel.                         | Latitude: 35.795/20                             |        |  |
|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-------------------------------------------------|--------|--|
| Evaluator: StEC _ AJK + KM                                                           | County: Che                        | them                                    | Longitude:-79./40/8<br>Other<br>e.g. Quad Name: |        |  |
| Total Points:Stream is at least intermittentif $\geq 19$ or perennial if $\geq 30^*$ | Stream Determin<br>Ephemeral Inter | ation (circle one)<br>mittent Perennial |                                                 |        |  |
| A Geomorphology (Subtotal = $4.5$ )                                                  | Absent                             | Weak                                    | Moderate                                        | Strong |  |
| 1 <sup>ª</sup> Continuity of channel bed and bank                                    | 0                                  | (1)                                     | 2                                               | 3      |  |
| 2. Sinuosity of channel along thalweg                                                | 0                                  | (T)                                     | 2                                               | 3      |  |
| 3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence            | 0                                  | 1                                       | 2                                               | 3      |  |
| 4. Particle size of stream substrate                                                 | 0                                  | (1)                                     | 2                                               | 3      |  |
| 5. Active/relict floodplain                                                          | (0)                                | 1                                       | 2                                               | 3      |  |
| 6. Depositional bars or benches                                                      | (0)                                | 1                                       | 2                                               | 3      |  |
| 7. Recent alluvial deposits                                                          | (0)                                | 1                                       | 2                                               | 3      |  |
| 8. Headcuts                                                                          |                                    | 1                                       | 2                                               | 3      |  |
| 9. Grade control                                                                     | (0)                                | 0.5                                     | 1                                               | 1.5    |  |
| 10. Natural vallev                                                                   | 0                                  | (0.5)                                   | 1                                               | 1.5    |  |
| 11. Second or greater order channel                                                  | No F 0 )                           |                                         | Yes = 3                                         |        |  |
| <sup>a</sup> artificial ditches are not rated; see discussions in manual             |                                    | 0                                       |                                                 |        |  |
| B. Hydrology (Subtotal = 5)                                                          |                                    |                                         |                                                 |        |  |
| 12. Presence of Baseflow                                                             | $(\overline{0})$                   | 1                                       | 2                                               | 3      |  |
| 13 Iron oxidizing bacteria                                                           | (0)                                | 1                                       | 2                                               | 3      |  |
| 14 Leaf litter                                                                       | 1.5                                | (1)                                     | 0.5                                             | 0      |  |
| 15. Sediment on plants or debris                                                     | 0                                  | (0.5)                                   | 1                                               | 1.5    |  |
| 16. Organic debris lines or piles                                                    | 0                                  | (0.5)                                   | 1                                               | 1.5    |  |
| 17. Soil-based evidence of high water table?                                         | No = 0                             |                                         | Yes = 3)                                        |        |  |
| C. Biology (Subtotal = $\mathcal{U}$ )                                               |                                    |                                         |                                                 |        |  |
| 18 Fibrous roots in streambed                                                        | 3                                  | (2)                                     | 1                                               | 0      |  |
| 19. Rooted upland plants in streambed                                                | 3                                  | (2)                                     | 1                                               | 0      |  |
| 20. Macrobenthos (note diversity and abundance)                                      | (0)                                | 1                                       | 2                                               | 3      |  |
| 21. Aquatic Mollusks                                                                 | (0)                                | 1                                       | 2                                               | 3      |  |
| 22. Fish                                                                             | (0)                                | 0.5                                     | 1                                               | 1.5    |  |
| 23. Crayfish                                                                         | (0)                                | 0.5                                     | 1                                               | 1.5    |  |
| 24. Amphibians                                                                       | (0)                                | 0.5                                     | 1                                               | 1.5    |  |
| 25. Algae                                                                            | (0)                                | 0.5                                     | 1                                               | 1.5    |  |
| 26. Wetland plants in streambed                                                      |                                    | FACW = 0.75; O                          | BL = 1.5 Other =                                | 0      |  |
| *perennial streams may also be identified using other met                            | hods. See p. 35 of manua           | al.                                     |                                                 |        |  |
| Notes:                                                                               |                                    |                                         |                                                 |        |  |
| Notes.                                                                               |                                    |                                         |                                                 |        |  |

| U.S. Army Corps of Engineers                                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|--|
| WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region |  |  |  |  |  |  |
| See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R                  |  |  |  |  |  |  |

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

| Project/Site: Hamlets Chapel Road                                               | City/County: Pittsboro / Chatham Sampling Date: 10/12/2023        |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Applicant/Owner: Moore Family Partnership                                       | State: NC Sampling Point: DP1                                     |
| Investigator(s): S&EC - AJ Kamal + Kevin Murphrey Se                            | ection, Township, Range: Pittsboro                                |
| Landform (hillside, terrace, etc.): Hillslope Local                             | relief (concave, convex, none): <u>None</u> Slope (%): <u>2-4</u> |
| Subregion (LRR or MLRA): LRR P, MLRA 136 Lat: 35.796903                         | Long: -79.138472 Datum: NAD 83                                    |
| Soil Map Unit Name: WeC                                                         | NWI classification: N/A                                           |
| Are climatic / hydrologic conditions on the site typical for this time of year? | Yes x No (If no, explain in Remarks.)                             |
| Are Vegetation, Soil, or Hydrologysignificantly distur                          | rbed? Are "Normal Circumstances" present? Yes x No                |
| Are Vegetation, Soil, or Hydrologynaturally problems                            | atic? (If needed, explain any answers in Remarks.)                |
| SUMMARY OF FINDINGS – Attach site map showing sam                               | npling point locations, transects, important features, etc.       |
| Hydrophytic Vegetation Present? Yes 0 No X                                      | s the Sampled Area                                                |

| Hydrophylic Vegetation Present? | Yes U | NO X        | is the Sampled Area |           |
|---------------------------------|-------|-------------|---------------------|-----------|
| Hydric Soil Present?            | Yes   | <u>No X</u> | within a Wetland?   | Yes No_X_ |
| Wetland Hydrology Present?      | Yes   | No X        |                     |           |
| Remarks:                        |       |             |                     |           |
|                                 |       |             |                     |           |
|                                 |       |             |                     |           |
|                                 |       |             |                     |           |
|                                 |       |             |                     |           |

#### HYDROLOGY

| Wetland Hydrology Indicators:             |                                               | 5                | Secondary Indicators (m              | inimum of two required) |  |  |
|-------------------------------------------|-----------------------------------------------|------------------|--------------------------------------|-------------------------|--|--|
| Primary Indicators (minimum of one is rec | quired; check all that apply)                 |                  | Surface Soil Cracks                  | (B6)                    |  |  |
| Surface Water (A1)                        | True Aquatic Plants (B14)                     |                  | Sparsely Vegetated Concave Surface ( |                         |  |  |
| High Water Table (A2)                     | Hydrogen Sulfide Odor (C1)                    |                  | x Drainage Patterns (E               | 310)                    |  |  |
| Saturation (A3)                           | Oxidized Rhizospheres on Living R             | oots (C3)        | Moss Trim Lines (B1                  | 16)                     |  |  |
| Water Marks (B1)                          | Presence of Reduced Iron (C4)                 |                  | Dry-Season Water T                   | able (C2)               |  |  |
| Sediment Deposits (B2)                    | Recent Iron Reduction in Tilled Soil          | s (C6)           | Crayfish Burrows (C8)                |                         |  |  |
| Drift Deposits (B3)                       | Thin Muck Surface (C7)                        |                  | Saturation Visible or                | n Aerial Imagery (C9)   |  |  |
| Algal Mat or Crust (B4)                   | Other (Explain in Remarks)                    |                  | Stunted or Stressed                  | Plants (D1)             |  |  |
| Iron Deposits (B5)                        |                                               |                  | Geomorphic Positior                  | n (D2)                  |  |  |
| Inundation Visible on Aerial Imagery      | (B7)                                          |                  | Shallow Aquitard (D3                 | 3)                      |  |  |
| Water-Stained Leaves (B9)                 |                                               |                  | Microtopographic Re                  | elief (D4)              |  |  |
| Aquatic Fauna (B13)                       |                                               |                  | FAC-Neutral Test (D                  | 05)                     |  |  |
| Field Observations:                       |                                               |                  |                                      |                         |  |  |
| Surface Water Present? Yes                | No X Depth (inches):                          |                  |                                      |                         |  |  |
| Water Table Present? Yes                  | No X Depth (inches):                          |                  |                                      |                         |  |  |
| Saturation Present? Yes                   | No X Depth (inches):                          | Wetland Hy       | drology Present?                     | Yes No X                |  |  |
| (includes capillary fringe)               |                                               |                  |                                      |                         |  |  |
| Describe Recorded Data (stream gauge,     | monitoring well, aerial photos, previous insp | ections), if ava | ilable:                              |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
| Remarks:                                  |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |
|                                           |                                               |                  |                                      |                         |  |  |

## VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP1

|                                                   | Absolute     | Dominant          | Indicator |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------|--------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: <u>3011 A 3011</u> )     | % Cover      | Species :         | Status    | Dominance Test worksneet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Acer rubrum                                    | 10           | Yes               |           | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Pinus taeda                                    | 20           | Vee               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | 10           | res               | FAG       | Total Number of Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                                                 |              |                   |           | Species Across Air Strata.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.<br>                                            |              |                   |           | Percent of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| o                                                 |              |                   |           | Browslopes Index workshoet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /·                                                | 40           | -Total Cover      |           | Total % Cover of Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50% of total cover: 20                            |              |                   | R         | OPL encise 0 	 x1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sapling/Shrub Stratum (Plot size: 15ft X 15ft )   |              | ) 01 10101 00701. |           | $FACW \text{ species } 0 \qquad x^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 Acer rubrum                                     | 10           | Yes               | FAC       | FAC species $80 \times 3 = 240$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Pinus taeda                                     | 10           | Yes               | FAC       | FACU species $15 \times 4 = 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Liquidambar styraciflua                         | 10           | Yes               | FAC       | $\frac{1}{10} x 5 = 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A                                                 |              | 100               |           | Column Totals: 105 (A) 350 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| т.<br>5                                           |              |                   |           | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| 6                                                 |              |                   |           | Hydronhytic Vegetation Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                                 |              |                   |           | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ω                                                 |              |                   |           | Y 2 - Dominance Test is >50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a                                                 |              |                   |           | $3$ - Prevalence Index is $< 3.0^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   | 30           | =Total Cover      |           | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50% of total cover: 1/                            | <u> </u>     | - fotal cover     | 6         | data in Remarks or on a separate sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Herb Stratum (Plot size: 5ft X 5ft )              | <u> </u>     | ) 01 10101 0010   |           | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Lonicera japonica                               | 10           | Yes               | FACU      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Polystichum acrostichoides                      | 5            | Yes               | FACU      | 'Indicators of hydric soil and wetland hydrology must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3                                                 |              | 100               | 17.00     | Definitions of Four Vegetation Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u>                                          |              |                   |           | Tree Woody plants excluding vines 3 in (7.6 cm) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                 |              |                   |           | more in diameter at breast height (DBH), regardless of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6                                                 |              |                   |           | height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7                                                 |              |                   |           | Sanling/Shrub - Woody plants, excluding vines, less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8                                                 |              |                   |           | than 3 in. DBH and greater than or equal to 3.28 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9                                                 |              |                   |           | (1 m) tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.                                               |              |                   |           | Herb – All herbaceous (non-woody) plants, regardless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.                                               |              |                   |           | of size, and woody plants less than 3.28 ft tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | 15           | =Total Cover      |           | Woody Vine – All woody vines greater than 3.28 ft in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50% of total cover: 8                             | 20%          | 6 of total cover: | 3         | height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Woody Vine Stratum (Plot size: 30ft X 30ft )      |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Smilax rotundifolia                            | 10           | Yes               | FAC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Vitis vinifera                                 | 10           | Yes               | UPL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.                                                |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.                                                |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.                                                |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | 20           | =Total Cover      |           | Hydrophytic<br>Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50% of total cover: 10                            | 0 20%        | of total cover:   | 4         | Present? Yes No X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pomerke: (Include photo numbers here et en e cons |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks. (include photo numbers here of on a sepa | rate sneet.) |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |              |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## VEGETATION (Five Strata) - Use scientific names of plants.

Sampling Point: DP1

| Tree Stratum (Plot size: )                       | Absolute Dominant Indicator<br>% Cover Species? Status | Dominance Test worksheet:                                            |
|--------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|
| 1.                                               |                                                        | Number of Dominant Species                                           |
| 2.                                               |                                                        | That Are OBL, FACW, or FAC:(A)                                       |
| 3                                                | · · ·                                                  | Total Number of Dominant                                             |
| 4                                                |                                                        | Species Across All Strata: (B)                                       |
| 5                                                |                                                        | Percent of Dominant Species                                          |
| 6                                                |                                                        | That Are OBL, FACW, or FAC: (A/B)                                    |
|                                                  |                                                        | Prevalence Index worksheet:                                          |
| Sopling Stratum (Dist size:                      |                                                        |                                                                      |
|                                                  |                                                        |                                                                      |
| 2                                                |                                                        | FAC species x3 =                                                     |
| 2.                                               |                                                        |                                                                      |
| 3                                                |                                                        | 1 A00 species         x + -           1 IPI species         x 5 =    |
| 5                                                |                                                        | Column Totals: (A) (B)                                               |
| 6                                                |                                                        | Prevalence Index = B/A =                                             |
| · ·                                              | =Total Cover                                           | Hydrophytic Vegetation Indicators:                                   |
| 50% of total cover <sup>.</sup>                  | 20% of total cover:                                    | 1 - Rapid Test for Hvdrophvtic Vegetation                            |
| Shrub Stratum (Plot size: )                      |                                                        | 2 - Dominance Test is >50%                                           |
| <u> </u>                                         |                                                        | $3 - \text{Prevalence Index is } \le 3.0^1$                          |
| 2.                                               |                                                        | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting       |
| 3.                                               |                                                        | data in Remarks or on a separate sheet)                              |
| 4.                                               |                                                        | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)            |
| 5                                                |                                                        | <sup>1</sup> Indicators of hydric soil and wetland hydrology must be |
| 6                                                |                                                        | present, unless disturbed or problematic.                            |
|                                                  | =Total Cover                                           | Definitions of Five Vegetation Strata:                               |
| 50% of total cover:                              | 20% of total cover:                                    | <b>Tree</b> – Woody plants, excluding woody vines,                   |
| Herb Stratum (Plot size:)                        |                                                        | (7.6 cm) or larger in diameter at breast height (DBH).               |
| 2                                                |                                                        | - Conting Massivelants such diagons du vines                         |
| 3                                                |                                                        | approximately 20 ft (6 m) or more in height and less                 |
| 4.                                               |                                                        | than 3 in. (7.6 cm) DBH.                                             |
| 5.                                               |                                                        | - Shrub - Woody Plants, excluding woody vines.                       |
| 6.                                               |                                                        | approximately 3 to 20 ft (1 to 6 m) in height.                       |
| 7.                                               |                                                        | Herb – All herbaceous (non-woody) plants, including                  |
| 8.                                               |                                                        | herbaceous vines, regardless of size, and woody                      |
| 9                                                |                                                        | plants, except woody vines, less than approximately                  |
| 10                                               |                                                        |                                                                      |
| 11                                               |                                                        | <b>Woody Vine</b> – All woody vines, regardless of height.           |
|                                                  | =Total Cover                                           |                                                                      |
| 50% of total cover:                              | 20% of total cover:                                    | -                                                                    |
| Woody Vine Stratum (Plot size:)                  |                                                        |                                                                      |
| 1                                                |                                                        | -                                                                    |
| 2.                                               |                                                        |                                                                      |
| 3.                                               |                                                        | -                                                                    |
| 4.                                               |                                                        | -                                                                    |
| 5                                                |                                                        | - Hydrophytic                                                        |
|                                                  |                                                        | Vegetation                                                           |
| 50% of total cover:                              |                                                        | Present? Yes No                                                      |
| Remarks: (include photo numbers here or on a sep | arate sneet.)                                          |                                                                      |

SOIL

| Profile Descr            | iption: (Describe f    | to the dep | oth needed to docu                                                                     | ument t        | he indica         | tor or co        | onfirm the abse  | nce of ind | icators.)   |                      |                           |
|--------------------------|------------------------|------------|----------------------------------------------------------------------------------------|----------------|-------------------|------------------|------------------|------------|-------------|----------------------|---------------------------|
| Depth                    | Matrix                 |            | Redo                                                                                   | Redox Features |                   |                  |                  |            |             |                      |                           |
| (inches)                 | Color (moist)          | %          | Color (moist)                                                                          | %              | Type <sup>1</sup> | Loc <sup>2</sup> | Texture          |            | F           | Remarks              |                           |
| 0-20                     | 7 5YR 4/4              | 100        |                                                                                        |                |                   |                  | Loamy/Clave      | v          |             |                      |                           |
| 0.20                     | 1.011(4)4              | 100        |                                                                                        |                |                   |                  | Louny/olayo      | <u>y</u>   |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
|                          |                        |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
| <sup>1</sup> Type: C=Cor | ncentration, D=Depl    | etion, RM  | =Reduced Matrix, N                                                                     | /IS=Mas        | ked Sand          | d Grains.        | <sup>2</sup> Loc | ation: PL= | Pore Linin  | g, M=Mat             | rix.                      |
| Hydric Soil In           | dicators:              | ,          |                                                                                        |                |                   |                  |                  | Indicators | for Proble  | ematic Hy            | dric Soils <sup>3</sup> : |
| Histosol (/              | A1)                    |            | Polyvalue Be                                                                           | elow Su        | face (S8)         | (MLRA            | 147, 148)        | 2 cm I     | /luck (A10) | (MLRA 1              | 47)                       |
| Histic Epi               | pedon (A2)             |            | Thin Dark Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A1                         |                |                   |                  | dox (A16)        |            |             |                      |                           |
| Black Hist               | tic (A3)               |            | Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148)                                    |                |                   |                  |                  |            |             |                      |                           |
| Hydrogen                 | Sulfide (A4)           |            | Loamy Gleye                                                                            | ed Matri       | x (F2)            |                  |                  | Piedm      | ont Floodp  | lain Soils           | (F19)                     |
| Stratified               | Layers (A5)            |            | Depleted Ma                                                                            | trix (F3)      | )                 |                  | -                | (ML        | RA 136, 14  | 7)                   |                           |
| 2 cm Muc                 | k (A10) <b>(LRR N)</b> |            | Redox Dark                                                                             | Surface        | (F6)              |                  |                  | Red P      | arent Mate  | rial (F21)           |                           |
| Depleted                 | Below Dark Surface     | e (A11)    | Depleted Da                                                                            | rk Surfa       | ce (F7)           |                  | -                | (out       | side MLRA   | 127, 14 <sup>-</sup> | 7, 148)                   |
| Thick Dar                | k Surface (A12)        |            | Redox Depre                                                                            | essions        | (F8)              |                  |                  | Very S     | Shallow Dai | k Surface            | e (F22)                   |
| Sandy Mu                 | icky Mineral (S1)      |            | Iron-Mangan                                                                            | ese Ma         | sses (F12         | 2) (LRR N        | I,               | Other      | (Explain in | Remarks              | )                         |
| Sandy Gle                | eyed Matrix (S4)       |            | MLRA 136                                                                               | 5)             |                   |                  | -                |            |             |                      |                           |
| Sandy Re                 | dox (S5)               |            | Umbric Surface (F13) (MLRA 122, 136) <sup>3</sup> Indicators of hydrophytic vegetation |                |                   |                  |                  | tation and |             |                      |                           |
| Stripped N               | Matrix (S6)            |            | Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be prese             |                |                   |                  |                  | e present, |             |                      |                           |
| Dark Surf                | ace (S7)               |            | Red Parent I                                                                           | Material       | (F21) <b>(M</b>   | LRA 127          | , 147, 148)      | unless     | disturbed   | or problei           | natic.                    |
| Restrictive La           | ayer (if observed):    |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
| Type:                    | ,                      |            |                                                                                        |                |                   |                  |                  |            |             |                      |                           |
| Depth (inc               | ches):                 |            |                                                                                        |                |                   |                  | Hydric Soil F    | Present?   | Yes         | Ν                    | lo X                      |
| Remarks:                 |                        |            |                                                                                        |                |                   |                  |                  |            | -           |                      |                           |

| U.S. Army Corps of Engineers                                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|--|
| WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region |  |  |  |  |  |  |
| See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R                  |  |  |  |  |  |  |

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

| Project/Site: Hamlets Chapel Road City/County: Pittsboro / Chatham Sampling Date: 10/1 |                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| Applicant/Owner: Moore Family Partnership                                              | State: NC Sampling Point: DP2                               |  |  |  |  |
| Investigator(s): S&EC - AJ Kamal + Kevin Murphrey Se                                   | ection, Township, Range: <u>Pittsboro</u>                   |  |  |  |  |
| Landform (hillside, terrace, etc.): Depression Local                                   | relief (concave, convex, none): concave Slope (%): 0-2      |  |  |  |  |
| Subregion (LRR or MLRA): LRR P, MLRA 136 Lat: 35.796009                                | Long: -79.137163 Datum: NAD 83                              |  |  |  |  |
| Soil Map Unit Name: WeB                                                                | NWI classification: N/A                                     |  |  |  |  |
| Are climatic / hydrologic conditions on the site typical for this time of year?        | Yes x No (If no, explain in Remarks.)                       |  |  |  |  |
| Are Vegetation, Soil, or Hydrologysignificantly distur                                 | rbed? Are "Normal Circumstances" present? Yes x No          |  |  |  |  |
| Are Vegetation, Soil, or Hydrologynaturally problem                                    | atic? (If needed, explain any answers in Remarks.)          |  |  |  |  |
| SUMMARY OF FINDINGS – Attach site map showing sar                                      | npling point locations, transects, important features, etc. |  |  |  |  |
| Hydrophytic Vegetation Present? Yes X No I                                             | s the Sampled Area                                          |  |  |  |  |

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes <u>X</u><br>Yes <u>X</u><br>Yes <u>X</u> | No<br>No<br>No | Is the Sampled Area<br>within a Wetland? | Yes <u>X</u> No |
|---------------------------------------------------------------------------------------|----------------------------------------------|----------------|------------------------------------------|-----------------|
| Remarks:                                                                              |                                              |                | •                                        |                 |
|                                                                                       |                                              |                |                                          |                 |
|                                                                                       |                                              |                |                                          |                 |

## HYDROLOGY

| Wetland Hydrology Indicators:               |                                              | Se                  | econdary Indicators (minimum of two required) |
|---------------------------------------------|----------------------------------------------|---------------------|-----------------------------------------------|
| Primary Indicators (minimum of one is requi | red; check all that apply)                   |                     | Surface Soil Cracks (B6)                      |
| Surface Water (A1)                          | True Aquatic Plants (B14)                    |                     | Sparsely Vegetated Concave Surface (B8)       |
| High Water Table (A2)                       | Hydrogen Sulfide Odor (C1)                   | x                   | Drainage Patterns (B10)                       |
| Saturation (A3)                             | Oxidized Rhizospheres on Living Ro           | oots (C3)           | Moss Trim Lines (B16)                         |
| Water Marks (B1)                            | Presence of Reduced Iron (C4)                |                     | Dry-Season Water Table (C2)                   |
| Sediment Deposits (B2)                      | Recent Iron Reduction in Tilled Soils        | s (C6) x            | Crayfish Burrows (C8)                         |
| Drift Deposits (B3)                         | Thin Muck Surface (C7)                       |                     | Saturation Visible on Aerial Imagery (C9)     |
| Algal Mat or Crust (B4)                     | Other (Explain in Remarks)                   |                     | Stunted or Stressed Plants (D1)               |
| Iron Deposits (B5)                          | _                                            |                     | Geomorphic Position (D2)                      |
| Inundation Visible on Aerial Imagery (B     | 7)                                           |                     | Shallow Aquitard (D3)                         |
| x Water-Stained Leaves (B9)                 |                                              |                     | Microtopographic Relief (D4)                  |
| Aquatic Fauna (B13)                         |                                              | ×                   | FAC-Neutral Test (D5)                         |
| Field Observations:                         |                                              |                     |                                               |
| Surface Water Present? Yes                  | No X Depth (inches):                         |                     |                                               |
| Water Table Present? Yes                    | No X Depth (inches):                         |                     |                                               |
| Saturation Present? Yes                     | No X Depth (inches):                         | Wetland Hyd         | Irology Present? Yes X No                     |
| (includes capillary fringe)                 |                                              |                     |                                               |
| Describe Recorded Data (stream gauge, mo    | onitoring well, aerial photos, previous insp | ections), if availa | able:                                         |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
| Remarks:                                    |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |
|                                             |                                              |                     |                                               |

## VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP2

|                                                    | Absolute     | Dominant          | Indicator |                                                                      |
|----------------------------------------------------|--------------|-------------------|-----------|----------------------------------------------------------------------|
| Tree Stratum (Plot size: 30ft X 30ft )             | % Cover      | Species?          | Status    | Dominance Test worksheet:                                            |
| 1. Acer rubrum                                     | 20           | Yes               | FAC       | Number of Dominant Species                                           |
| 2. Pinus taeda                                     | 20           | Yes               | FAC       | That Are OBL, FACW, or FAC: 9 (A)                                    |
| 3. Liquidambar styraciflua                         | 10           | Yes               | FAC       | Total Number of Dominant                                             |
| 4                                                  |              |                   |           | Species Across All Strata: 11 (B)                                    |
| 5                                                  |              |                   |           | Percent of Dominant Species                                          |
| 6                                                  |              |                   |           | That Are OBL, FACW, or FAC: 81.8% (A/B)                              |
| 7                                                  |              |                   |           | Prevalence Index worksheet:                                          |
|                                                    | 50           | =Total Cover      |           | Total % Cover of: Multiply by:                                       |
| 50% of total cover: 25                             | 20%          | o of total cover: | 10        | OBL species <u>5</u> x 1 = <u>5</u>                                  |
| Sapling/Shrub Stratum (Plot size: 15ft X 15tt )    |              |                   |           | FACW species $25$ x 2 = $50$                                         |
| 1. Acer rubrum                                     | 10           | Yes               | FAC       | FAC species 90 x $3 = 270$                                           |
| 2. Pinus taeda                                     | 10           | Yes               | FAC       | FACU species 10 $x 4 = 40$                                           |
| 3. Liquidambar styraciflua                         | 10           | Yes               | FAC       | UPL species 10 x 5 = 50                                              |
| 4                                                  |              |                   |           | Column Totals: 140 (A) 415 (B)                                       |
| 5                                                  |              |                   |           | Prevalence Index = B/A =2.96                                         |
| 6                                                  |              |                   |           | Hydrophytic Vegetation Indicators:                                   |
| 7                                                  |              |                   |           | 1 - Rapid Test for Hydrophytic Vegetation                            |
| 8                                                  |              |                   |           | X 2 - Dominance Test is >50%                                         |
| 9                                                  |              |                   |           | X 3 - Prevalence Index is $\leq 3.0^1$                               |
|                                                    | 30           | =Total Cover      |           | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting       |
| 50% of total cover:15                              | <u>;</u> 20% | o of total cover: | 6         | data in Remarks or on a separate sheet)                              |
| Herb Stratum (Plot size: 5ft X 5ft )               |              |                   |           | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)            |
| 1. Juncus effusus                                  | 15           | Yes               | FACW      | <sup>1</sup> Indicators of hydric soil and wetland hydrology must be |
| 2. Woodwardia areolata                             | 10           | Yes               | FACW      | present, unless disturbed or problematic.                            |
| 3. Lycopus americanus                              | 5            | No                | OBL       | Definitions of Four Vegetation Strata:                               |
| 4                                                  |              |                   |           | Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or              |
| 5                                                  |              | <u> </u>          |           | more in diameter at breast height (DBH), regardless of               |
| 6                                                  |              | <u> </u>          |           | height.                                                              |
| 7                                                  |              | <u> </u>          |           | Sapling/Shrub – Woody plants, excluding vines, less                  |
| 8                                                  |              | <u> </u>          |           | than 3 in. DBH and greater than or equal to 3.28 ft                  |
| 9                                                  |              |                   |           | (1 m) tall.                                                          |
| 10.                                                |              |                   |           | Herb – All herbaceous (non-woody) plants, regardless                 |
| 11                                                 |              |                   |           | of size, and woody plants less than 3.28 ft tall.                    |
|                                                    | 30           | =Total Cover      |           | Woody Vine – All woody vines greater than 3.28 ft in                 |
| 50% of total cover:15                              | <u>،</u> 20% | of total cover:   | 6         | height.                                                              |
| Woody Vine Stratum (Plot size: 30ft X 30ft )       |              |                   |           |                                                                      |
| 1. Smilax rotundifolia                             | 10           | Yes               | FAC       |                                                                      |
| 2. Vitis vinifera                                  | 10           | Yes               | UPL       |                                                                      |
| 3. Rubus argutus                                   | 10           | Yes               | FACU      |                                                                      |
| 4.                                                 |              |                   |           |                                                                      |
| 5.                                                 |              |                   |           | Developments at a                                                    |
|                                                    | 30           | =Total Cover      |           | Hydropnytic<br>Vegetation                                            |
| 50% of total cover: 15                             | 5 20%        | of total cover:   | 6         | Present? Yes X No                                                    |
| Pomarke: (Include photo numbers here or on a senai | rate sheet ) |                   |           |                                                                      |
|                                                    | ale sheel.)  |                   |           |                                                                      |
|                                                    |              |                   |           |                                                                      |
|                                                    |              |                   |           |                                                                      |
|                                                    |              |                   |           |                                                                      |
|                                                    |              |                   |           |                                                                      |

## VEGETATION (Five Strata) - Use scientific names of plants.

Sampling Point: DP2

| Tree Stratum (Plot size:                          | Absolute Dominant Indicator<br>% Cover Species? Status | Dominance Test worksheet                                                                              |
|---------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1.                                                |                                                        | Number of Dominant Species                                                                            |
| 2.                                                |                                                        | That Are OBL, FACW, or FAC:(A)                                                                        |
| 3                                                 |                                                        | Total Number of Dominant                                                                              |
| 4                                                 |                                                        | Species Across All Strata:(B)                                                                         |
| 5.                                                |                                                        | Percent of Dominant Species                                                                           |
| 6                                                 |                                                        | - That Are OBL, FACW, or FAC:(A/B)                                                                    |
| 50% of total cover                                |                                                        | Total % Cover of: Multiply by:                                                                        |
| Sapling Stratum (Plot size:                       |                                                        | OBL species x1 =                                                                                      |
| 1                                                 |                                                        | FACW species x2 =                                                                                     |
| 2                                                 |                                                        | FAC species x3 =                                                                                      |
| 3.                                                |                                                        | FACU species x 4 =                                                                                    |
| 4.                                                |                                                        | UPL species x 5 =                                                                                     |
| 5.                                                |                                                        | Column Totals: (A) (B)                                                                                |
| 6.                                                |                                                        | Prevalence Index = B/A =                                                                              |
|                                                   | =Total Cover                                           | Hydrophytic Vegetation Indicators:                                                                    |
| 50% of total cover:                               | 20% of total cover:                                    | 1 - Rapid Test for Hydrophytic Vegetation                                                             |
| Shrub Stratum (Plot size: )                       |                                                        | 2 - Dominance Test is >50%                                                                            |
| 1.                                                |                                                        | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                             |
| 2.                                                |                                                        | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                        |
| 3.                                                |                                                        | data in Remarks or on a separate sheet)                                                               |
| 4.                                                |                                                        | <ul> <li>Problematic Hydrophytic Vegetation<sup>1</sup> (Explain)</li> </ul>                          |
| 5.                                                |                                                        | <sup>1</sup> Indicators of hydric soil and wetland hydrology must be                                  |
| 6.                                                |                                                        | present, unless disturbed or problematic.                                                             |
|                                                   | =Total Cover                                           | Definitions of Five Vegetation Strata:                                                                |
| 50% of total cover:                               | 20% of total cover:                                    | <b>Tree</b> – Woody plants, excluding woody vines,                                                    |
| Herb Stratum (Plot size:)                         |                                                        | approximately 20 ft (6 m) or more in height and 3 in.                                                 |
| 1                                                 |                                                        | (7.6 cm) or larger in diameter at breast height (DBH).                                                |
| 2                                                 |                                                        | <b>Sapling</b> – Woody plants, excluding woody vines,                                                 |
| 3                                                 |                                                        | approximately 20 ft (6 m) or more in height and less                                                  |
| 4                                                 |                                                        | - (7.6 cm) DBH.                                                                                       |
| 5                                                 |                                                        | Shrub - Woody Plants, excluding woody vines,                                                          |
| 6                                                 |                                                        | approximately 3 to 20 ft (1 to 6 m) in height.                                                        |
| 7                                                 |                                                        | Herb – All herbaceous (non-woody) plants, including                                                   |
| 8                                                 |                                                        | herbaceous vines, regardless of size, and woody                                                       |
| 9                                                 |                                                        | <ul> <li>plants, except woody vines, less than approximately</li> <li>3 ft (1 m) in height</li> </ul> |
| 10                                                |                                                        |                                                                                                       |
| 11                                                |                                                        | woody vine – All woody vines, regardless of height.                                                   |
|                                                   | =Total Cover                                           |                                                                                                       |
| 50% of total cover:                               | 20% of total cover:                                    | -                                                                                                     |
| <u>Woody Vine Stratum</u> (Plot size:)            |                                                        |                                                                                                       |
| 1                                                 |                                                        | -                                                                                                     |
| 2.                                                |                                                        | -                                                                                                     |
| 3.                                                |                                                        | -                                                                                                     |
| 4.                                                |                                                        | -                                                                                                     |
| 5                                                 |                                                        | – Hydrophytic                                                                                         |
|                                                   | =Total Cover                                           | Vegetation                                                                                            |
| 50% of total cover:                               | 20% of total cover:                                    | Present? Yes No                                                                                       |
| Remarks: (Include photo numbers here or on a sepa | arate sheet.)                                          |                                                                                                       |

SOIL

| Profile Desc            | ription: (Describe                                         | to the de | oth needed to doc                         | ument ti      | he indica                                       | tor or co        | onfirm the abs             | ence of indicators.)                                   |
|-------------------------|------------------------------------------------------------|-----------|-------------------------------------------|---------------|-------------------------------------------------|------------------|----------------------------|--------------------------------------------------------|
| Depth                   | Matrix                                                     |           | Redo                                      | x Featur      | es                                              |                  |                            |                                                        |
| (inches)                | Color (moist)                                              | %         | Color (moist)                             | %             | Type <sup>1</sup>                               | Loc <sup>2</sup> | Texture                    | Remarks                                                |
| 0-20                    | 10YR 4/2                                                   | 90        | 10YR 4/6                                  | 10            | С                                               | М                | Loamy/Clay                 | Prominent redox concentrations                         |
|                         |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
|                         |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
|                         |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
|                         |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
|                         |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
| <sup>1</sup> Type: C=Co | ncentration, D=Depl                                        | etion, RM | =Reduced Matrix, N                        | /IS=Mas       | ked Sand                                        | d Grains.        | <sup>2</sup> Lc            | ocation: PL=Pore Lining, M=Matrix.                     |
| Hydric Soil I           | ndicators:                                                 |           |                                           |               |                                                 |                  |                            | Indicators for Problematic Hydric Soils <sup>3</sup> : |
| Histosol                | (A1)                                                       |           | Polyvalue Be                              | elow Sur      | face (S8)                                       | (MLRA            | 147, 148)                  | 2 cm Muck (A10) <b>(MLRA 147)</b>                      |
| Histic Ep               | ipedon (A2)                                                |           | Thin Dark Su                              | urface (S     | 69) <b>(MLR</b>                                 | A 147, 14        | 48)                        | Coast Prairie Redox (A16)                              |
| Black His               | stic (A3)                                                  |           | Loamy Muck                                | y Miner       | al (F1) <b>(N</b>                               | ILRA 136         | 6)                         | (MLRA 147, 148)                                        |
| Hydrogei                | n Sulfide (A4)                                             |           | Loamy Gley                                | ed Matri      | x (F2)                                          |                  |                            | Piedmont Floodplain Soils (F19)                        |
| Stratified              | Layers (A5)                                                |           | X Depleted Ma                             | trix (F3)     |                                                 |                  |                            | (MLRA 136, 147)                                        |
| 2 cm Mu                 | ck (A10) (LRR N)                                           |           | Redox Dark                                | Surface       | (F6)                                            |                  |                            | Red Parent Material (F21)                              |
| Depleted                | Below Dark Surface                                         | e (A11)   | Depleted Da                               | rk Surfa      | ce (F7)                                         |                  |                            | (outside MLRA 127, 147, 148)                           |
| Thick Da                | rk Surface (A12)                                           | . ,       | Redox Depr                                | essions       | (F8)                                            |                  |                            | Very Shallow Dark Surface (F22)                        |
| Sandy M                 | ucky Mineral (S1)                                          |           | Iron-Mangar                               | ese Ma        | Masses (F12) (LRR N. Other (Explain in Remarks) |                  | Other (Explain in Remarks) |                                                        |
| Sandy G                 | leved Matrix (S4)                                          |           |                                           | 5)            | ,                                               | <i>,</i> , ,     |                            |                                                        |
| Sandy R                 | edox (S5)                                                  |           | Umbric Surfa                              | ,<br>ace (F13 | ) (MLRA                                         | 122, 136         | 6)                         | <sup>3</sup> Indicators of hydrophytic vegetation and  |
| Stripped                | Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLR/ |           | (A 148) wetland hydrology must be present |               |                                                 |                  |                            |                                                        |
| Dark Sur                | face (S7)                                                  |           | Red Parent                                | Material      | (F21) <b>(M</b>                                 | LRA 127          | , 147, 148)                | unless disturbed or problematic.                       |
| Restrictive L           | ayer (if observed):                                        |           |                                           |               |                                                 |                  |                            |                                                        |
| Туре:                   |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |
| Depth (in               | ches):                                                     |           |                                           |               |                                                 |                  | Hydric Soil                | Present? Yes X No                                      |
| Remarks:                |                                                            |           |                                           |               |                                                 |                  |                            |                                                        |

## NC DWQ Stream Identification Form Version 4.11 G - SF 10

| Date: $3/21/24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project/Site: Hanlets chapel<br>Rd.<br>County: Chatham                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Latitude: 35, 79499/<br>Longitude:-79, /40326                                                                                                                                                                                              |                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Evaluator: StEC - AJ Kamal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                                               |
| Total Points: $22$ Stream is at least intermittent $22$ if $\geq 19$ or perennial if $\geq 30^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stream Determin<br>Ephemeral Inter                                                                         | nation (circle one)<br>mittent Perennial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other<br>e.g. Quad Name:                                                                                                                                                                                                                   |                                                                                                                               |
| A. Geomorphology (Subtotal = 9.5 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                     | Weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moderate                                                                                                                                                                                                                                   | Strong                                                                                                                        |
| 1 <sup>a.</sup> Continuity of channel bed and bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 2. Sinuosity of channel along thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                          | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 3. In-channel structure: ex. riffle-pool, step-pool,<br>ripple-pool sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 4. Particle size of stream substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                                                                                                                                                                                                        | 3                                                                                                                             |
| 5. Active/relict floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 6. Depositional bars or benches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                          | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 7. Recent alluvial deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 8. Headcuts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 9. Grade control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O I                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                          | 1.5                                                                                                                           |
| 10. Natural valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                          | 1.5                                                                                                                           |
| 11. Second or greater order channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Na                                                                                                         | (=0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes = 3                                                                                                                                                                                                                                    |                                                                                                                               |
| B. Hydrology (Subiotal – 1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                                               |
| 12. Presence of Baseflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                                                                                                                                                                                                        | 3                                                                                                                             |
| 12. Presence of Baseflow<br>13. Iron oxidizing bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                          | 3                                                                                                                             |
| 12. Presence of Baseflow<br>13. Iron oxidizing bacteria<br>14. Leaf litter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>1.5                                                                                              | 1<br>1<br>①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>0.5                                                                                                                                                                                                                              | 3<br>3<br>0                                                                                                                   |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>(0)<br>1.5<br>0                                                                                       | 1<br>1<br>(1)<br>(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>2<br>0.5<br>1                                                                                                                                                                                                                         | 3<br>3<br>0<br>1.5                                                                                                            |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>(0)<br>1.5<br>0<br>0                                                                                  | 1<br>1<br>(1)<br>(0.5)<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{c}             2 \\             2 \\         $                                                                                                                                                                         | 3<br>3<br>0<br>1.5<br>1.5                                                                                                     |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>(0)<br>1.5<br>0<br>0<br>0<br>No                                                                       | 1<br>(1)<br>(0.5)<br>0.5<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes                                                                                                                                                                                                         | 3<br>0<br>1.5<br>1.5<br>€3                                                                                                    |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =</li></ul>                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>1.5<br>0<br>0<br>No                                                                              | $ \begin{array}{c} 1 \\ 1 \\ (0.5) \\ 0.5 \\ = 0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes                                                                                                                                                                                                         | 3<br>0<br>1.5<br>1.5<br>3                                                                                                     |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = <u>5</u>)</li> <li>18. Fibrous roots in streambed</li> </ul>                                                                                                                                                                                                                                                                                                                                | 0<br>(0)<br>1.5<br>0<br>0<br>No<br>3                                                                       | $ \begin{array}{c c} 1 \\ 1 \\ (0.5) \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes                                                                                                                                                                                                         | 3<br>0<br>1.5<br>1.5<br>€3                                                                                                    |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = <u>5</u>)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> </ul>                                                                                                                                                                                                                                                                                 | 0<br>(0)<br>1.5<br>0<br>0<br>0<br>No<br>3<br>(3)                                                           | $ \begin{array}{c c} 1 \\ 1 \\ \hline 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 2 \\ \hline 2 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1                                                                                                                                                                                               | 3<br>0<br>1.5<br>1.5<br>€<br>3<br>0<br>0                                                                                      |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = <u>5</u>)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> </ul>                                                                                                                                                                                                                        | 0<br>(0)<br>1.5<br>0<br>0<br>No<br>3<br>(3)<br>(0)                                                         | $ \begin{array}{c} 1 \\ 1 \\ (1) \\ (0.5) \\ 0.5 \\ = 0 \\ \hline 2 \\ 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>1<br>2                                                                                                                                                                                     | 3<br>0<br>1.5<br>1.5<br>€3<br>0<br>0<br>3                                                                                     |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = 5)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> </ul>                                                                                                                                                                                                 | 0<br>0<br>1.5<br>0<br>0<br>No<br>0<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | $ \begin{array}{c c} 1 \\ 1 \\ (0.5) \\ 0.5 \\ \hline 0.5 \\ \hline 2 \\ 1 \\ 1 \\ \hline 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>1<br>2<br>2<br>2                                                                                                                                                                           | 3<br>0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>3<br>3<br>3                                                                       |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> </ul>                                                                                                                                                                                 | 0<br>0<br>1.5<br>0<br>0<br>No<br>0<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | $ \begin{array}{c} 1 \\ 1 \\ (1) \\ (0.5) \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline 2 \\ 1 \\ 1 \\ 0.5 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>2<br>2<br>2<br>1                                                                                                                                                                           | 3<br>0<br>1.5<br>1.5<br>€3<br>0<br>0<br>0<br>3<br>3<br>1.5                                                                    |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = <u>5</u>)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> </ul>                                                                                                                                                  | 0<br>0<br>1.5<br>0<br>0<br>No<br>No<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $ \begin{array}{c c} 1 \\ 1 \\ (0.5) \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 2 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3<br>3<br>0<br>1.5<br>1.5<br>€<br>3<br>0<br>0<br>0<br>3<br>3<br>1.5<br>1.5<br>1.5                                             |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> </ul>                                                                                                                                   | 0<br>0<br>1.5<br>0<br>0<br>No<br>No<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $ \begin{array}{c} 1 \\ 1 \\ (0.5) \\ 0.5 \\ = 0 \\ \hline \hline 2 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ 0.5 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                               | 3<br>0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                       |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal =)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> </ul>                                                                                                                | 0<br>0<br>1.5<br>0<br>0<br>No<br>No<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $ \begin{array}{c} 1 \\ 1 \\ (1) \\ (0.5) \\ 0.5 \\ = 0 \\ \hline 2 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ 0.5 \\ \hline $ | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                   | 3<br>0<br>1.5<br>1.5<br>3<br>0<br>0<br>0<br>0<br>3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                    |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = 5)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> </ul>                                                                     | 0<br>0<br>1.5<br>0<br>0<br>No<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 1<br>1<br>(0.5)<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                    | $ \begin{array}{r} 3\\ 0\\ 1.5\\ 1.5\\ 3\\ 0\\ 0\\ 0\\ 0\\ 3\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 5\\ \end{array} $                      |
| <ul> <li>12. Presence of Baseflow</li> <li>13. Iron oxidizing bacteria</li> <li>14. Leaf litter</li> <li>15. Sediment on plants or debris</li> <li>16. Organic debris lines or piles</li> <li>17. Soil-based evidence of high water table?</li> <li>C. Biology (Subtotal = 5)</li> <li>18. Fibrous roots in streambed</li> <li>19. Rooted upland plants in streambed</li> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> <li>*perennial streams may also be identified using other meth</li> </ul> | 0<br>0<br>1.5<br>0<br>0<br>No<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             | 1<br>1<br>(0.5)<br>0.5<br>0.5<br>0.5<br>1 = 0<br>(2)<br>2<br>1<br>1<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)<br>2<br>0.5<br>1<br>(1)<br>Yes<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                    | $ \begin{array}{r} 3\\ 0\\ 1.5\\ 1.5\\ 3\\ \hline 0\\ 0\\ 0\\ 3\\ 3\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ \hline 0\\ \hline \end{array} $ |

# NC DWQ Stream Identification Form Version 4.11 E2-SF11

| Date: 3/21/24                                                                           | Project/Site: Hamlets<br>Chapel Rd.                                  | Latitude: 35.795045      |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|--|
| Evaluator: StEC - AJ Kanel                                                              | County: Chatham                                                      | Longitude: -79.136616    |  |
| Total Points:Stream is at least intermittentif $\geq$ 19 or perennial if $\geq$ 30*23.5 | Stream Determination (circle one)<br>Ephemeral Intermitten Perennial | Other<br>e.g. Quad Name: |  |
| A Geomorphology (Subtotal = 10)                                                         | Absent Weak                                                          | Moderate Strong          |  |

| A. Ocomorphology (Oublotal - 10 /                                            | resource               | Tround       | mederate          | e ar e r . g |
|------------------------------------------------------------------------------|------------------------|--------------|-------------------|--------------|
| 1 <sup>a.</sup> Continuity of channel bed and bank                           | 0                      | 1            | (2)               | 3            |
| 2. Sinuosity of channel along thalweg                                        | 0                      | 1            | 2                 | 3            |
| 3. In-channel structure: ex. riffle-pool, step-pool,<br>ripple-pool sequence | 0                      | 0            | 2                 | 3            |
| 4. Particle size of stream substrate                                         | 0                      | 1            | 2                 | 3            |
| 5. Active/relict floodplain                                                  | 0                      | 1            | 2                 | 3            |
| 6. Depositional bars or benches                                              | 0                      | 1            | 2                 | 3            |
| 7. Recent alluvial deposits                                                  | 0                      | (1)          | 2                 | 3            |
| 8. Headcuts                                                                  | 0                      | 1            | 2                 | 3            |
| 9. Grade control                                                             | 0                      | 0.5          | 0                 | 1.5          |
| 10. Natural valley                                                           | 0                      | 0.5          | 0                 | 1.5          |
| 11. Second or greater order channel                                          | No                     | =(0)         | Yes               | = 3          |
| <sup>a</sup> artificial ditches are not rated; see discussions in manual     |                        |              |                   |              |
| B. Hydrology (Subtotal = <u>7</u> )                                          |                        |              |                   |              |
| 12. Presence of Baseflow                                                     | 0                      | 1            | 2                 | 3            |
| 13. Iron oxidizing bacteria                                                  | ( <b>0</b> )           | 1            | 2                 | 3            |
| 14. Leaf litter                                                              | 1.5                    | (1)          | 0.5               | 0            |
| 15. Sediment on plants or debris                                             | 0                      | (0.5)        | 1                 | 1.5          |
| 16. Organic debris lines or piles                                            | 0                      | 0.5)         | 1                 | 1.5          |
| 17. Soil-based evidence of high water table?                                 | No                     | 0 = 0        | Yes 3             |              |
| C. Biology (Subtotal = 6.5 )                                                 |                        | Nimo         |                   |              |
| 18. Fibrous roots in streambed                                               | 3                      | (2)          | 1                 | 0            |
| 19. Rooted upland plants in streambed                                        | 3                      | 2            | 1                 | 0            |
| 20. Macrobenthos (note diversity and abundance)                              | 0                      | 0            | 2                 | 3            |
| 21. Aquatic Mollusks                                                         | Ó                      | 1            | 2                 | 3            |
| 22. Fish                                                                     | 0                      | 0.5          | 1                 | 1.5          |
| 23. Crayfish                                                                 | 0                      | 0.5          | 1                 | 1.5          |
| 24. Amphibians                                                               | Õ                      | 0.5          | 1                 | 1.5          |
| 25. Algae                                                                    | 0                      | 0.5          | 1                 | 1.5          |
| 26. Wetland plants in streambed                                              |                        | FACW = 0.75; | OBL = 1.5 Other = | の            |
| *perennial streams may also be identified using other metho                  | ds. See p. 35 of manua | ıl.          |                   |              |
| Notes:                                                                       |                        |              |                   |              |

Sketch:

|                                                                                                                                                                                                                                                                                                     | Project/Site:                                                                           | anlets<br>rapel Read                       | Latitude: 35,3                        | 791250                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|--------------------------|
| Evaluator: SFEC -AJ Kanal                                                                                                                                                                                                                                                                           | County: Ch                                                                              | athan                                      | Longitude: -79, 134754                |                          |
| Total Points:<br>Stream is at least intermittent $18.75$<br>if $\geq 19$ or perennial if $\geq 30^*$                                                                                                                                                                                                | Stream Determination (circle one) Other<br>Ephemeral Intermittent Perennial e.g. Quad I |                                            | Other<br>e.g. Quad Name:              |                          |
| A. Geomorphology (Subtotal = 7.5)                                                                                                                                                                                                                                                                   | Absent                                                                                  | Weak                                       | Moderate                              | Strong                   |
| 1 <sup>a</sup> . Continuity of channel bed and bank                                                                                                                                                                                                                                                 | 0                                                                                       | 1                                          | 2                                     | 3                        |
| 2. Sinuosity of channel along thalweg                                                                                                                                                                                                                                                               | 0                                                                                       | 1                                          | 2                                     | 3                        |
| 3. In-channel structure: ex. riffle-pool, step-pool,<br>ripple-pool sequence                                                                                                                                                                                                                        | Õ                                                                                       | 1                                          | 2                                     | 3                        |
| 4. Particle size of stream substrate                                                                                                                                                                                                                                                                | 0                                                                                       |                                            | 2                                     | 3                        |
| 5. Active/relict floodplain                                                                                                                                                                                                                                                                         | 0                                                                                       | 0                                          | 2                                     | 3                        |
| 6. Depositional bars or benches                                                                                                                                                                                                                                                                     | $\bigcirc$                                                                              | 1                                          | 2                                     | 3                        |
| 7. Recent alluvial deposits                                                                                                                                                                                                                                                                         | 0                                                                                       | $\bigcirc$                                 | 2                                     | 3                        |
| 8. Headcuts                                                                                                                                                                                                                                                                                         | 0                                                                                       | $\overline{0}$                             | 2                                     | 3                        |
| 9. Grade control                                                                                                                                                                                                                                                                                    | 0                                                                                       | 0.5                                        | 1                                     | 1.5                      |
| 10. Natural valley                                                                                                                                                                                                                                                                                  | 0                                                                                       | (0.5)                                      | 1                                     | 1.5                      |
| 11. Second or greater order channel                                                                                                                                                                                                                                                                 | N                                                                                       | 0 = 0)                                     | Yes = 3                               |                          |
| 12. Presence of Baseflow                                                                                                                                                                                                                                                                            | 0                                                                                       | 1                                          | 2                                     | 3                        |
| 13. Iron oxidizing bacteria                                                                                                                                                                                                                                                                         | 0                                                                                       |                                            | 2                                     | 3                        |
| 14, Lear mer                                                                                                                                                                                                                                                                                        | 1.0                                                                                     |                                            | 0.5                                   | 1.5                      |
| 15. Sediment of plants of debris                                                                                                                                                                                                                                                                    | 0                                                                                       | 0.5                                        | 1                                     | 1.5                      |
| 17. Soil-based evidence of high water table?                                                                                                                                                                                                                                                        |                                                                                         | 0.5                                        | Ves                                   | 1.5                      |
| C Dialogue (Subtatal a 2.25                                                                                                                                                                                                                                                                         |                                                                                         | 0-0                                        | 105                                   | 0                        |
| 19. Eibreug mete in streambed                                                                                                                                                                                                                                                                       | 2                                                                                       | 2                                          | 0                                     | 0                        |
| 19. Rooted upland plants in streambed                                                                                                                                                                                                                                                               | 3                                                                                       | 0                                          |                                       | 0                        |
| 19. Rooted upland plants in streambed                                                                                                                                                                                                                                                               | - M                                                                                     |                                            | 2                                     | 3                        |
| 20 Macrobenthos (note diversity and abundance)                                                                                                                                                                                                                                                      | 0                                                                                       | 1                                          | 2                                     | 3                        |
| 20. Macrobenthos (note diversity and abundance)                                                                                                                                                                                                                                                     |                                                                                         |                                            | 2                                     | 1.5                      |
| 20. Macrobenthos (note diversity and abundance)<br>21. Aquatic Mollusks                                                                                                                                                                                                                             | (D)                                                                                     | 0.5                                        | 1                                     |                          |
| 20. Macrobenthos (note diversity and abundance)<br>21. Aquatic Mollusks<br>22. Fish<br>23. Cravfish                                                                                                                                                                                                 | 0                                                                                       | 0.5                                        | 1                                     | 1.5                      |
| <ul> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24 Amphibians</li> </ul>                                                                                                                                    | 0                                                                                       | 0.5                                        | 1<br>1<br>1                           | 1.5                      |
| <ul> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> </ul>                                                                                                                | 0<br>0<br>0                                                                             | 0.5<br>0.5<br>0.5                          | 1<br>1<br>1<br>1                      | 1.5<br>1.5<br>1.5        |
| <ul> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> </ul>                                                                       | 0<br>0<br>0<br>0                                                                        | 0.5<br>0.5<br>0.5<br>0.5<br>FACW = 0.75 OB | 1<br>1<br>1<br>1<br>1 = 1.5 Other = ( | 1.5<br>1.5<br>1.5<br>1.5 |
| <ul> <li>20. Macrobenthos (note diversity and abundance)</li> <li>21. Aquatic Mollusks</li> <li>22. Fish</li> <li>23. Crayfish</li> <li>24. Amphibians</li> <li>25. Algae</li> <li>26. Wetland plants in streambed</li> <li>*perennial streams may also be identified using other method</li> </ul> | 0<br>0<br>3s. See p. 35 of manu                                                         | 0.5<br>0.5<br>0.5<br>FACW = 0.75 OB        | 1<br>1<br>1<br>1<br>L = 1.5 Other = ( | 1.5<br>1.5<br>1.5<br>1.5 |



County of Chatham, NC

WP-24-17 On-site Riparian Buffer Review Status: Active Submitted On: 1/11/2024

Primary Location 0 VACANT , North Carolina 00000 Owner MOORE FAMILY PARTNERSHIP C/O MARILYN M KOENIG 293 FEARRINGTON POST PITTSBORO , NC 27312-5507 Applicant

- 💄 AJ Kamal
- 1 +1 828-320-1959
- @ ajkamal@sandec.com
- 8412 Falls of Neuse Road
   Ste. 104
   Raleigh, NC 27615

Project Information

## **Review Type\***

Major Subdivision

If your project is a Major Subdivision please contact a private consulting firm to complete the surface water determination. For stream determinations the consultant must have successfully completed the NCDWQ/NC State University Surface Waters Classification. For wetland delineations the consultant must demonstrate at least 2 years of experience delineating jurisdictional wetlands in accordance with the Eastern Mountains and Piedmont Regional Supplement to the 1987 US Corps of Engineers Wetland Delineation Manual. Please visit the Watershed Protection Department website for a list of consultants that regularly complete work within Chatham County.

Has this review been completed by an environmental consultant prior to submittal to the county?\*

Number of Features Found\*

15

Yes

Feature is defined as any surface water that is subject to Chatham County Riparian Buffers (streams, wetlands, ponds). Include each stream type transition, with corresponding forms, and individual wetland in your total. Total is total features found before USACE or County site visit.

| Date Field Work Was Completed*<br>10/12/2023                      | Has USACE on-site review been scheduled or<br>completed<br>— |
|-------------------------------------------------------------------|--------------------------------------------------------------|
| Parcel Information                                                |                                                              |
| Parcel Number (s)*<br>2035, 1806, 95989                           | Watershed District<br>Cape Fear                              |
| Is the property within the Jordan Lake<br>Watershed*<br>Yes       | Property Owner Name*<br>Moore Family Partnership             |
| Location of Tract (address if applicable)*                        |                                                              |
| 0 Hamlet's Chapel Road, Pittsboro,<br>NC (35.792336, -79.137744)  |                                                              |
| Driving Directions from Pittsboro*                                |                                                              |
| Head North on us 15-501. Turn le couple miles down the road on th | ft onto Hamlets Chapel Road. The site is a<br>e left.        |
| Subdivision Name (if applicable)                                  |                                                              |

Please describe access issues (provide gate codes, or information for scheduling site visit)\*

N/A

## **Applicants Information**

| Are you the Landowner or an Agent* | Full Name*         |
|------------------------------------|--------------------|
| Agent                              | AJ Kamal (S&EC)    |
| Primary Phone Number*              | Primary Email*     |
| 828.320.1959                       | ajkamal@sandec.com |
| Mailing Address*                   | City/State*        |
| 8412 Falls of Neuse Rd. STE 104    | Raleigh, NC        |
| Zip Code*<br>27615                 |                    |
|                                    |                    |

How would you like to receive the completed review letter?

| I would like to pick up the completed Riparian Buffer |
|-------------------------------------------------------|
| Review at the County Office                           |

I would like the completed Riparian Buffer Review mailed to me

I would like the completed Riparian Buffer Review emailed to me.

 $\checkmark$ 

## Statement of Understanding

I have read and understand the regulations of the Watershed Protection Ordinance, Section 304, and I agree to adhere to these associated policies and guidelines.

Name\*New Field\*AJ Kamal01/10/2024

## Attachments

| B | <b>Signed Right to Enter Property Form</b><br>right to enter.pdf<br>Uploaded by AJ Kamal on Jan 10, 2024 at 2:16 PM                                 | REQUIRED |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| B | <b>Signed Owner's Agent Designation Form</b><br>Auth Agent.pdf<br>Uploaded by AJ Kamal on Jan 10, 2024 at 2:17 PM                                   |          |
| B | <b>Consultant Findings Report</b><br>ORM_Upload_Sheet_Consolidated_Amended_2023Rule_20230921.pdf<br>Uploaded by AJ Kamal on Jan 10, 2024 at 2:37 PM | REQUIRED |
| B | <b>Consultants Findings Map</b><br>Wetland Sketch Map (Chatham Co).pdf<br>Uploaded by AJ Kamal on Jan 10, 2024 at 2:23 PM                           | REQUIRED |



| NCDWQ Stream Identification Forms & Wetland Data Forms | REQUIRED |
|--------------------------------------------------------|----------|
| Stream Forms.pdf                                       |          |
| Uploaded by AJ Kamal on Jan 10, 2024 at 2:23 PM        |          |

## NRCS Map

SS Labeled.pdf Uploaded by AJ Kamal on Jan 10, 2024 at 2:18 PM

REQUIRED

REQUIRED



## USGS Topographic Map USGS.pdf

Uploaded by AJ Kamal on Jan 10, 2024 at 2:18 PM



## **Project Inventory Table** Project Impact Inventory Table Chatham Online Submittal.pdf Uploaded by AJ Kamal on Jan 11, 2024 at 10:14 AM

REQUIRED



## Buffer Feature Spreadsheet

Copy of Buffer Feature Spreadsheet.pdf Uploaded by AJ Kamal on Jan 16, 2024 at 10:04 AM



## County Buffer Review Receipt.pdf County Buffer Review Receipt.pdf

Uploaded by AJ Kamal on Feb 2, 2024 at 10:45 AM



## **Stream Forms Site Visit.pdf** Stream Forms Site Visit.pdf Uploaded by AJ Kamal on Mar 28, 2024 at 12:58 PM



Wetland Sketch Map Post Chatham Co. Drew Blake 3.21.2024.pdf Wetland Sketch Map Post Chatham Co. Drew Blake 3.21.2024.pdf Uploaded by AJ Kamal on Mar 28, 2024 at 12:59 PM

## History

## Timeline

| Label                                                                | Activated                    | Completed                | Assignee          | Due Date  | Status    |
|----------------------------------------------------------------------|------------------------------|--------------------------|-------------------|-----------|-----------|
| ✓ Watershed<br>Intake<br>Approval                                    | 1/11/2024,<br>10:14:56<br>AM | 1/11/2024,<br>3:45:13 PM | Hollie<br>Squires | -         | Completed |
| Subdivision Riparian Buffer Review Fee                               | 1/11/2024,<br>3:45:14 PM     | 2/1/2024,<br>7:57:01 AM  | AJ Kamal          | -         | Completed |
| ✓ Field<br>Review                                                    | 2/1/2024,<br>7:57:01 AM      | -                        | Drew<br>Blake     | 2/14/2024 | Active    |
| Major<br>Subdivision<br>Riparian<br>Buffer<br>Confirmation<br>Report | -                            | -                        | -                 | -         | Inactive  |

DocuSign Envelope ID: 0085662E-55DB-4EBA-A408-32FD648575C4





## CHATHAM COUNTY

## AUTHORIZED AGENT FOR FORM

#### PROPERTY LEGAL DESCRIPTION:

LOT NO. \_\_\_\_\_\_PARCEL ID (PIN) 2035, 1806, 95989 PARCEL SIZE 118

STREET ADDRESS: 0 Hamlet's Chapel Road

Please print: Property Owner: Moore Family Partnership

Property Owner:

(Contractor / Agent)

The undersigned owner(s) of the above described property, do hereby authorize

Steven Ball

, of Soil and Environmental Consultants (Name of consulting firm if applicable)

to act on my/our behalf and take all actions, I/we could have taken if present, necessary for the processing, issuance and acceptance of reviews, inspections, or permits and any and all standard and special conditions attached to these approvals. The activities authorized include the following (Check all that apply):

Check here for all of the below options.

| 2 | Building Permit                                                                            |
|---|--------------------------------------------------------------------------------------------|
| ~ | Zoning Compliance Permits                                                                  |
| V | Floodplain Determination                                                                   |
| ~ | Soil Erosion & Sedimentation Control Permit                                                |
|   | Permits to install, repair, evaluate, or expand onsite wastewater system(s)                |
|   | Evaluation/inspection/permitting of a private drinking water well(s).                      |
| V | Riparian Buffer Review pursuant to §304 of the Chatham Co. Watershed Protection Ordinance. |
|   | Other:                                                                                     |

Property Owner's Address (if different than property above):

293 Fearrington Post, Pittsboro, NC 27312

Telephone: 919-542-3344

E-mail: tkoenig@mindspring.com

We hereby certify the above information submitted in this application is true and accurate to the best of our knowledged by:

Date:

Marilyn M. Lourig Owner Rtfff8rized Signature 11/29/2023 Date:

Agent Authorized Signature

Revised 10/2017

DocuSign Envelope ID: 0085662E-55DB-4EBA-A408-32FD648575C4



Watershed Protection Department

P.O. Box 548 Pittsboro, NC 27312

Website: www.chathamnc.org

## Authorization to Enter Property Form

## Date: 11/29/23

PARCEL No. (AKPAR) 2035, 1806, 95989

I, (print name) Moore Family Parnership by Marilyn M. Koenig

, as owner of the property described above,

or as a representative of the owner(s) do hereby convey permission to Chatham County staff to enter the property at their convenience to conduct a surface water identification (SWID) necessary to determine whether or not water features on my property are subject to the riparian buffer regulations described in Section 304 of the Chatham County Watershed Protection Ordinance. The SWID will be public record and on file at the Planning and Watershed Protection Departments, and may be requested in the future for review by interested parties.

I understand that stream delineations for the property listed above will be made by County staff only once and that if future subdivisions are proposed within this property boundary, it will require a surface water identification by a private consultant at the property owner's expense.

Moore Family Partnership by Marilyn M. Koenig (Print Owner's Name)

DocuSigned by: Source (Signat Free 230 (Date)

(Print Authorized Agent Name)

(Signature of Authorized Agent) (Date)