

WATERSHED PROTECTION DEPARTMENT

P.O. Box 548 Pittsboro, NC 27312 Phone: (919) 545-8394

Fax: (919) 542-2698 • E-mail: drew.blake@chathamcountync.gov • Website: www.chathamcountync.gov

May 7, 2021

Ms. Alyssa Ricci WithersRavenel 115 Mackenan Dr. Cary, NC 27511

Project Name: McBane Subdivision Conservation Area (Parcel 85448)

Location: Old Graham Road, Chatham County

Subject Features: Six (6) ephemeral segments, three (3) intermittent

segments, five (5) wetlands

Date of May 3, 2021

Determination:

Explanation:

The site visit was completed on May 3, 2021 by Drew Blake with the Chatham County Watershed Protection Department on a property identified as Chatham County Parcel# 85448 that is located inside of the Jordan Lake watershed. WithersRavenel personnel completed a previous site visit which resulted in the identification of six (6) ephemeral segments, three (3) intermittent segments, and five (5) wetlands on the property. WithersRavenel submitted a request for Chatham County to complete a formal review to determine if the features would be subject to riparian buffers according to Section 304 of the Chatham County Watershed Protection Ordinance. All points of origin, stream type transitions, and wetland boundaries were reviewed in the field.

Required Riparian Buffers:

The required riparian buffers described below are based on the surface water features identified on the Buffer Determination Exhibit with Buffers, completed by WithersRavenel. The ephemeral stream segments will require a 30-ft buffer from the top of bank landward. The intermittent stream segments will require a 50-ft buffer from the top of bank landward on both sides of the features.

The wetland boundaries flagged in the field by WithersRavenel have been reviewed and confirmed by the US Army Corps of Engineers (USACE). A 50-ft buffer will be required beginning at the flagged boundary and proceeding landward of any flagged wetlands determined jurisdictional by the USACE.

Impacts to Riparian Buffers:

Impacts to the riparian buffers may require a Riparian Buffer Authorization depending on the size and scope of the impacts. Please refer to Section 304 (J)(3) of the Chatham County Watershed Protection Ordinance to determine if your impacts will require a Riparian Buffer Authorization. If you determine that a Riparian Buffer Authorization is required, please contact Drew Blake to receive the required application and submittal instructions.

This on-site determination shall expire five (5) years from the date of this letter. Landowners or affected parties that dispute a determination made by Chatham County, on parcels outside of the Jordan Lake

WATERSHED PROTECTION DEPARTMENT

P.O. Box 548 Pittsboro, NC 27312 Phone: (919) 545-8394

Fax: (919) 542-2698 ● E-mail: drew.blake@chathamcountync.gov ● Website: <u>www.chathamcountync.gov</u>

watershed, may submit a request for appeal in writing to the Watershed Review Board. A request for a determination by the Watershed Review Board shall be made in accordance with Section 304 of the Chatham County Watershed Protection Ordinance. Landowners or affected parties that dispute a determination made by Chatham County, on parcels inside the Jordan Lake watershed, shall submit a request for appeal in writing to NC DWR, 401 & Buffer Permitting Unit, 1650 Mail Service Center, Raleigh, NC 27669-1650 attention of the Director of the NC Division of Water Quality.

Should this project result in any direct impacts to surface water features (i.e., crossing and/or filling streams or wetlands) additional reviews may be necessary. Additionally, a Section 404/401 Permit may be required. Any inquiries regarding Section 404/401 permitting should be directed to the Division of Water Resources (Central Office) at (919)-807-6364 and the US Army Corp of Engineers (Raleigh Regulatory Field Office) at (919)-554-4884.

Respectfully,

LYLW Blake

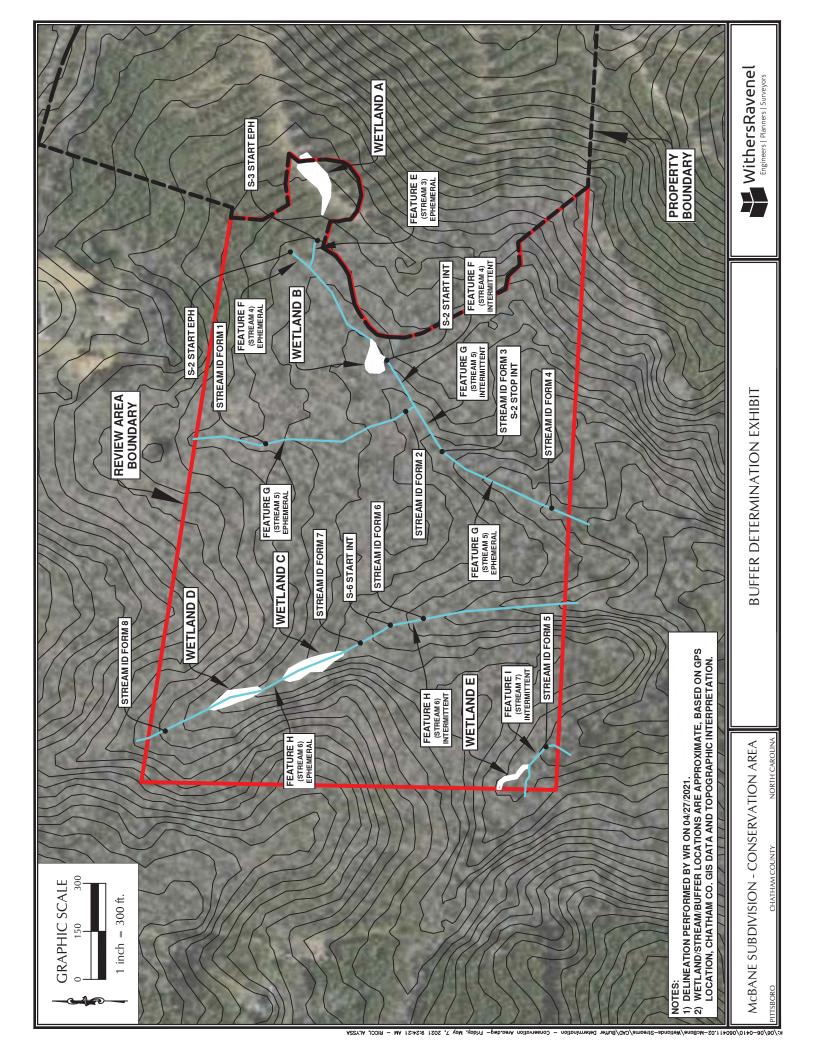
Drew Blake

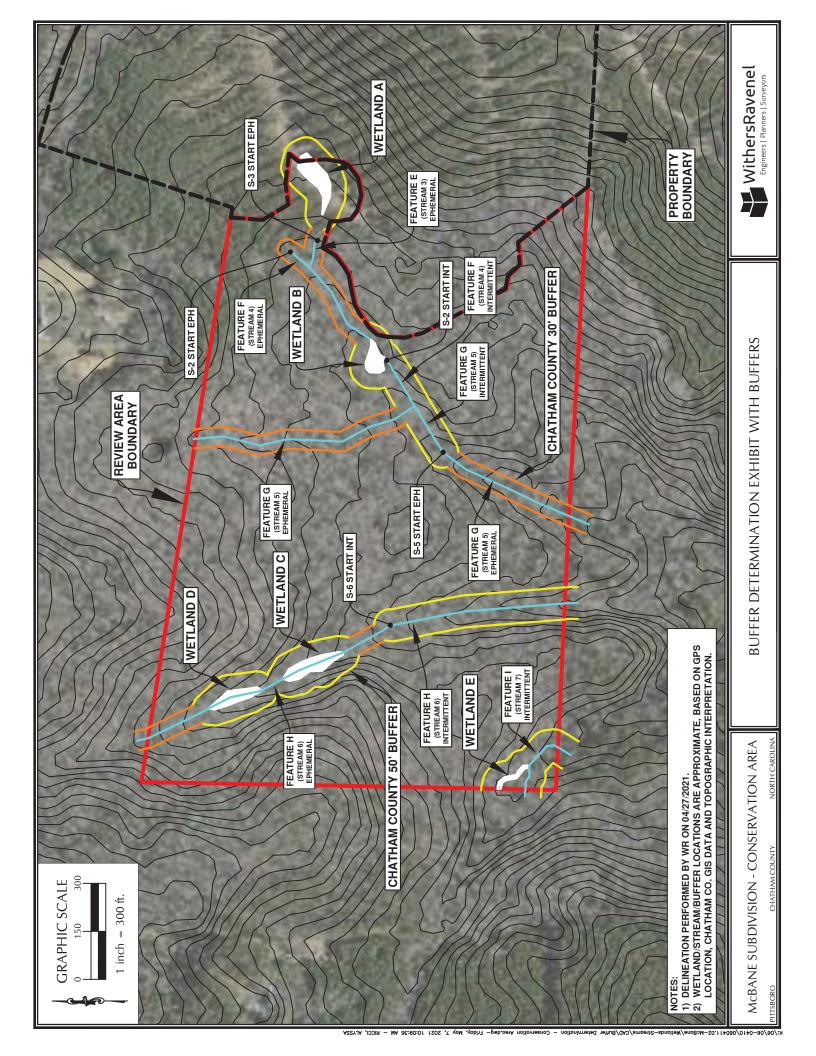
Senior Watershed Specialist, CESSWI

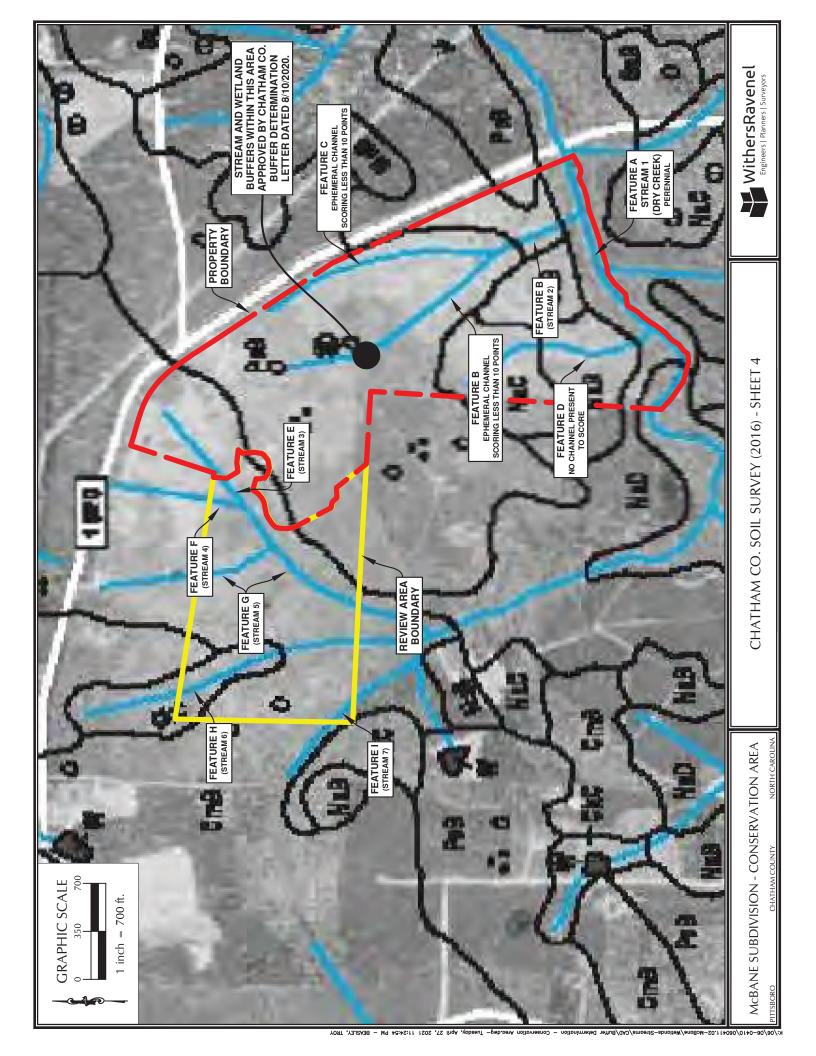
Enclosures: Exhibit 1: Buffer Determination Exhibit – completed by WithersRavenel

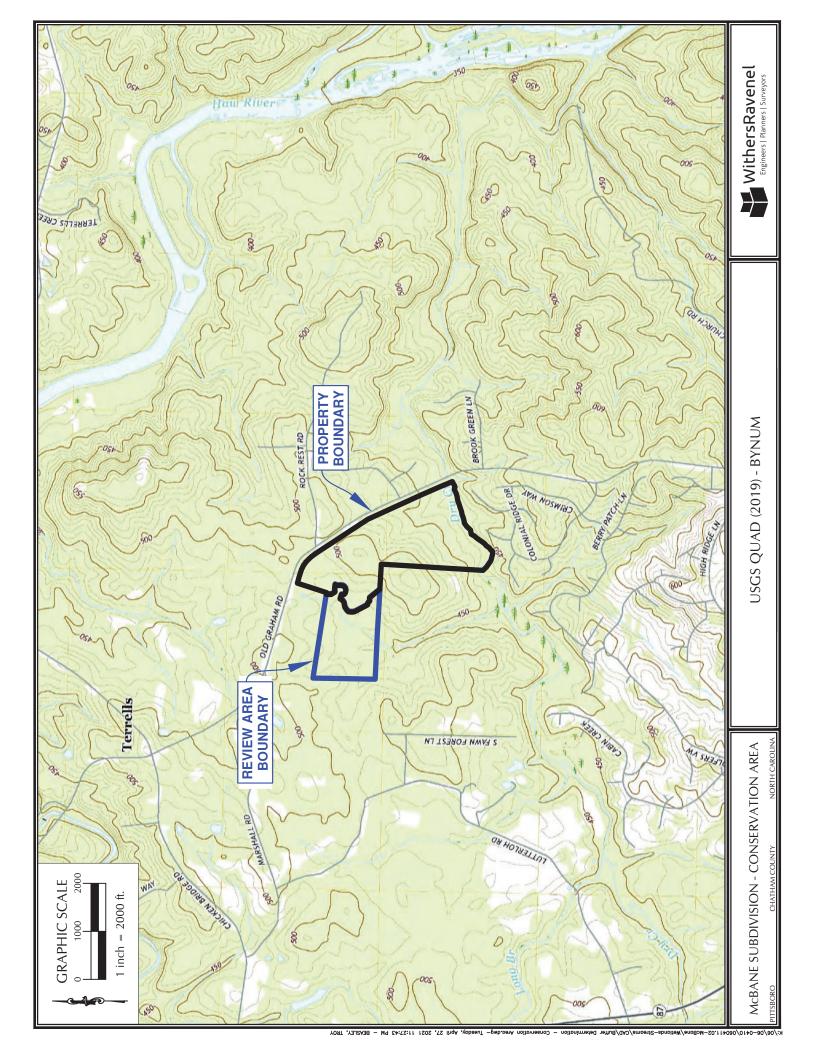
Exhibit 2: Buffer Determination Exhibit with Buffers - completed by WithersRavenel

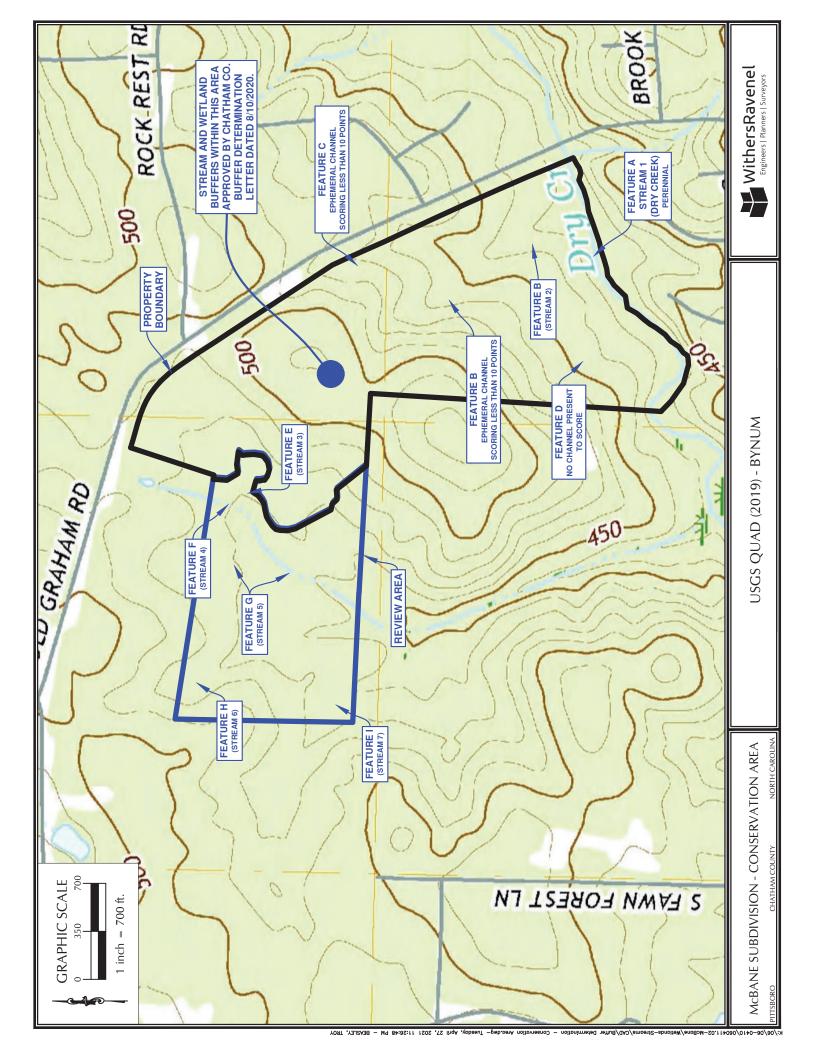
NRCS Soil Survey Map – Completed by WithersRavenel USGS Topographic Map – Completed by Withers Ravenel


NC DWQ Stream Identification Forms – Completed by WithersRavenel Wetland Determination Data Forms – Completed by WithersRavenel


Major Subdivision Riparian Buffer Review Application


Authorized Agent Form


Authorization to Enter Property Form


cc: Rachael Thorn, Director, Chatham County Watershed Protection Department Kimberly Tyson, Planner II/Subdivision Administrator, Chatham County Planning Department Jason Sullivan, Director, Chatham County Planning Department

Date: 4/27/2021	Project/Site: N	lcBane	Latitude:	
Evaluator: Alyssa Ricci - WithersRavenel	County: Chath	nam County	Longitude:	
Total Points: Stream is at least intermittent 10.25 if ≥ 19 or perennial if $\geq 30^*$		ination (circle one) ermittent Perennial	Other e.g. Quad Name:	
A. Geomorphology (Subtotal = 2	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	0	0.5	 1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	No = 0		Yes = 3	
a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = 2.5				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soil-based evidence of high water table?	No = 0		Yes =	= 3
C. Biology (Subtotal = <u>5.75</u>)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks	0	1	2	3
22. Fish	0	0.5	1	1.5
23. Crayfish	0	0.5	11	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OF	BL = 1.5 Other = 0	
*perennial streams may also be identified using other methods	See p. 35 of manua	al.		
Notes:				
Cleatala				
Sketch:				

Date: 4/27/2021	Project/Site: Mo	cBane	Latitude:		
Evaluator: Alyssa Ricci - WithersRavenel	County: Chatha	am County	Longitude:		
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*		nation (circle one) ermittent Perennial	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 3.5	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate		1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	No = 0		Yes = 3		
^a artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal = 2)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	0 = 0	Yes =	= 3	
C. Biology (Subtotal = <u>5</u>					
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	11	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBI	$_{-}$ = 1.5 Other = 0		
*perennial streams may also be identified using other methods.	See p. 35 of manua	al.			
Notes:					
Sketch:					

Date: 4/27/2021	Project/Site:	McBane	Latitude:	
Evaluator: Alyssa Ricci - WithersRavenel	County: Chath	am County	Longitude:	
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*		Stream Determination (circle one) Ephemeral ntermittent Perennial		
A. Geomorphology (Subtotal = 12.5	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3
Sinuosity of channel along thalweg	0	(1)	2	3
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodplain	0	(1)	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	(0)	0.5	1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	No = 0		Yes = 3	
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal =2)				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soil-based evidence of high water table?	N	0 = 0	Yes =	= 3
C. Biology (Subtotal = <u>3.25</u>)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks	0	1	2	3
22. Fish	0	0.5	1	1.5
23. Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = 0	
*perennial streams may also be identified using other methods	. See p. 35 of manua	al.		
Notes:				
Sketch:				

Date: 4/27/2021	Project/Site:	McBane	Latitude:		
Evaluator: Alyssa Ricci - WithersRavenel	County: Chatha	am County	Longitude:	Longitude:	
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral	Stream Determination (circle one) Ephemeral ntermittent Perennial			
A. Geomorphology (Subtotal = 8.5)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	No = 0		Yes = 3		
^a artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal = 1.5					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	0 = 0	Yes =	: 3	
C. Biology (Subtotal = <u>2.75</u>)					
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Wetland plants in streambed			$_{-}$ = 1.5 Other = 0		
*perennial streams may also be identified using other methods.	. See p. 35 of manua	ıl.			
Notes:					
Sketch:					

A. Geomorphology (Subtotal = 13) a. Continuity of channel bed and bank 2. Sinuosity of channel along thalweg 3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	Stream Determine Ephemera Inter	m County pation (circle one) mittent Perennial Weak	Longitude: Other e.g. Quad Name:		
Stream is at least intermittent f≥ 19 or perennial if ≥ 30* A. Geomorphology (Subtotal = 13) a. Continuity of channel bed and bank b. Sinuosity of channel along thalweg b. In-channel structure: ex. riffle-pool, step-pool,	Absent 0	mittent Perennial			
a. Continuity of channel bed and bank 2. Sinuosity of channel along thalweg 3. In-channel structure: ex. riffle-pool, step-pool,	0	Wook			
a. Continuity of channel bed and bank 2. Sinuosity of channel along thalweg 3. In-channel structure: ex. riffle-pool, step-pool,	0	vveak	Moderate	Strong	
2. Sinuosity of channel along thalweg 3. In-channel structure: ex. riffle-pool, step-pool,	-	1	2	3	
3. In-channel structure: ex. riffle-pool, step-pool,	0	1	2	3	
	1				
	0	1	2	3	
I. Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
B. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
0. Natural valley	0	0.5	1	1.5	
1. Second or greater order channel	No	= 0	Yes = 3		
artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal =4)					
2. Presence of Baseflow	0	1	2	3	
3. Iron oxidizing bacteria	0	1	2	3	
4. Leaf litter	1.5	1	0.5	0	
5. Sediment on plants or debris	0	0.5	1	1.5	
6. Organic debris lines or piles	0	0.5	1	1.5	
7. Soil-based evidence of high water table?	No	= 0	Yes =	= 3	
C. Biology (Subtotal = 7.25)					
8. Fibrous roots in streambed	3	2	1	0	
9. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBI	_ = 1.5 Other = 0		
*perennial streams may also be identified using other methods.	. See p. 35 of manual.				
Notes:	·				

Date: 4/27/2021	Project/Site:	McBane	Latitude:		
Evaluator: Alyssa Ricci - WithersRavenel	County: Chatha	am County	Longitude:		
Total Points: Stream is at least intermittent if ≥ 19 or perennial if $\geq 30^*$	Stream Determi	nation (circle one) ermittent Perennial	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 6.5)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	No	o = 0	Yes = 3		
^a artificial ditches are not rated; see discussions in manual				<u>'</u>	
B. Hydrology (Subtotal =7.5)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	o = 0	Yes :	= 3	
C. Biology (Subtotal = <u>5.25</u>)					
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0		2	3	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5		1.5	
26. Wetland plants in streambed	0		_ = 1.5 Other = 0)	
*perennial streams may also be identified using other methods.	See p. 35 or manua	ll.			
Notes:					
Sketch:					

Date: 4/27/2021	Project/Site:	McBane	Latitude:		
Evaluator: Alyssa Ricci - WithersRavenel	County: Chath	am County	Longitude:	Longitude:	
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*		ination (circle one) ermittent Perennial	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 5.5)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel					
artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal =5)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	o = 0	Yes	= 3	
C. Biology (Subtotal = <u>5</u>)					
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = 0		
*perennial streams may also be identified using other methods	. See p. 35 of manua	al.			
Notes:					
Sketch:					

Date: 4/27/2021	Project/Site:	McBane	Latitude:			
Evaluator: Alyssa Ricci - WithersRavenel	County: Chatha	am County	Longitude:	Longitude:		
Total Points:	Stream Determi	nation (circle one)	Other			
Stream is at least intermittent 16.5 if ≥ 19 or perennial if $\geq 30^*$	Ephemeral nte	ermittent Perennial	e.g. Quad Name:			
			•			
A. Geomorphology (Subtotal = 7.5)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank	0	1	2	3		
Sinuosity of channel along thalweg	0	1	2	3		
3. In-channel structure: ex. riffle-pool, step-pool,	0	1	2	3		
ripple-pool sequence 4. Particle size of stream substrate	0		2	3		
Active/relict floodplain	0	1	2	3		
Active relict hoodplain Depositional bars or benches	0	1	2	3		
Recent alluvial deposits	Ö	1	2	3		
8. Headcuts	0	1	2	3		
9. Grade control	0	0.5	1	1.5		
10. Natural valley	0	0.5	<u>·</u> 1	1.5		
11. Second or greater order channel	No	o = 0	Yes = 3			
artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal = 3_)						
12. Presence of Baseflow	0	1	2	3		
13. Iron oxidizing bacteria	0	1	2	3		
14. Leaf litter	1.5	1	0.5	0		
15. Sediment on plants or debris	0 0.5		1	1.5		
16. Organic debris lines or piles	0	0.5	1	1.5		
17. Soil-based evidence of high water table?	No	0 = 0	Yes	= 3		
C. Biology (Subtotal = 6_)						
18. Fibrous roots in streambed	3	2	1	0		
19. Rooted upland plants in streambed	3	2	1	0		
20. Macrobenthos (note diversity and abundance)	0	1	2	3		
21. Aquatic Mollusks	0	1	2	3		
22. Fish	0	0.5	1	1.5		
23. Crayfish	0	0.5	1	1.5		
24. Amphibians	0	0.5	1	1.5		
25. Algae	0	0.5	[1]	1.5		
26. Wetland plants in streambed	FACW = 0.75; OBL = 1.5 Other = 0					
*perennial streams may also be identified using other methods.	See p. 35 of manua	al.				
Notes:						
Sketch:						

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: McBane Subdivision - Conservation Area City/County: Pittsboro/Chatham County Sampling Date: 04/27/2021 Applicant/Owner: Robert Swain - Swain Land & Timber, LLC State: NC Sampling Point: Investigator(s): A. Ricci - WIthersRavenel Section, Township, Range: Landform (hillside, terrace, etc.): Local relief (concave, convex, none): Slope (%): Long: -79.223036°W Subregion (LRR or MLRA): LRR P, MLRA 136 Lat: 35.810811°N Datum: NAD83 Soil Map Unit Name: Ckc - Cid silt loam, 6 to 10 percent slopes NWI classification: Headwater Forest No (If no, explain in Remarks.) Are climatic / hydrologic conditions on the site typical for this time of year? Yes X Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes X No Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Yes X No ____ Hydrophytic Vegetation Present? Is the Sampled Area Yes X Hydric Soil Present? No within a Wetland? Yes X No ___ Wetland Hydrology Present? Yes Remarks: This sampling point is located within Wetland C, near the lat/long specified above. This data form also applies to Wetlands D and E, as conditions were similar **HYDROLOGY** Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) X Surface Soil Cracks (B6) Surface Water (A1) True Aquatic Plants (B14) Sparsely Vegetated Concave Surface (B8) Hydrogen Sulfide Odor (C1) X Drainage Patterns (B10) High Water Table (A2) Saturation (A3) Oxidized Rhizospheres on Living Roots (C3) Moss Trim Lines (B16) Presence of Reduced Iron (C4) Dry-Season Water Table (C2) Water Marks (B1) Sediment Deposits (B2) Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8) Drift Deposits (B3) Thin Muck Surface (C7) Saturation Visible on Aerial Imagery (C9) Algal Mat or Crust (B4) Other (Explain in Remarks) Stunted or Stressed Plants (D1) Iron Deposits (B5) X Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3) X Water-Stained Leaves (B9) Microtopographic Relief (D4) FAC-Neutral Test (D5) Aquatic Fauna (B13) **Field Observations:** Surface Water Present? No X Depth (inches): X Depth (inches): Water Table Present? No Depth (inches): 6 Saturation Present? Wetland Hydrology Present? Yes X No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: Wetland hydrology is present at this sampling point.

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: DP-1 Absolute Dominant Indicator % Cover <u>Tree Stratum</u> (Plot size: 30' Radius) Species? Status **Dominance Test worksheet:** 1. Pinus taeda 5 Yes FAC **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** Species Across All Strata: 7 4. (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover 50% of total cover: 20% of total cover: Total % Cover of: Multiply by: Sapling Stratum (Plot size: 15' Radius) **OBL** species x 1 = Liquidambar styraciflua **FACW** species 15 FAC x2 =35 2. Pinus taeda FAC **FAC** species x 3 = 0 x 4 = 3. FACU species 4. 0 x 5 = UPL species 0 5. 55 140 (B) Column Totals: (A) 6 Prevalence Index = B/A = 2 55 10 =Total Cover **Hydrophytic Vegetation Indicators:** 20% of total cover: 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: X 2 - Dominance Test is >50% Shrub Stratum (Plot size: 15' Radius) FAC X 3 - Prevalence Index is ≤3.0¹ Liquidambar styraciflua 4 - Morphological Adaptations¹ (Provide supporting Pinus taeda data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 10 =Total Cover **Definitions of Five Vegetation Strata:** 20% of total cover: 50% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size: 5' Radius) (7.6 cm) or larger in diameter at breast height (DBH). Microstegium vimineum 10 FAC Yes 2. Juncus effusus 10 Yes **FACW** Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 5 3. Carex spp **FACW** than 3 in. (7.6 cm) DBH. 4. Rosa palustris 5 OBL 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody 8. plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. Woody Vine - All woody vines, regardless of height. 30 =Total Cover 15 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 30' Radius) 1. None 2. 3. 4. Hydrophytic =Total Cover Vegetation

20% of total cover:

ENG FORM 6116-4-SG, JUL 2018

50% of total cover:

Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation is present at this sampling point.

No

Yes X

Present?

SOIL Sampling Point: DP-1

	• •	o the de		iment t x Featur		ator or c	onfirm the absence	of indicators.)
Depth (inches)	Color (moist)	%	Color (moist)	% reatur	Type ¹	Loc ²	Texture	Remarks
0-8	10YR 4/2	70	7.5YR 4/6	30	C	M	Loamy/Clayey	Prominent redox concentrations
8-14	10YR 3/2	60	7.5YR 4/6	40	С	М	Loamy/Clayey	Prominent redox concentrations
¹Type: C=Co	oncentration, D=Deple	etion, RM	=Reduced Matrix, M	 IS=Mas	ked San	Grains.	² Location	: PL=Pore Lining, M=Matrix.
Hydric Soil I		,	,					cators for Problematic Hydric Soils ³ :
Histosol (Polyvalue Be	elow Su	rface (S8	(MLRA		2 cm Muck (A10) (MLRA 147)
	ipedon (A2)		Thin Dark Su		•			Coast Prairie Redox (A16)
Black His			Loamy Muck	,	, .		· —	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye	•	. , .		•	Piedmont Floodplain Soils (F19)
	Layers (A5)		X Depleted Ma					(MLRA 136, 147)
	ck (A10) (LRR N)		X Redox Dark					Red Parent Material (F21)
	Below Dark Surface	(A11)	Depleted Da					(outside MLRA 127, 147, 148)
	rk Surface (A12)	(/	Redox Depre				,	Very Shallow Dark Surface (F22)
	ucky Mineral (S1)		Iron-Mangan		. ,	2) (LRR I		Other (Explain in Remarks)
	leyed Matrix (S4)		MLRA 136		,	, ,		,
	edox (S5)		Umbric Surfa	,	B) (MLRA	122, 13	3Indi	cators of hydrophytic vegetation and
	Matrix (S6)		Piedmont Flo					wetland hydrology must be present,
Dark Sur			Red Parent I					unless disturbed or problematic.
Restrictive L	ayer (if observed):							·
Type:								
Depth (in	ches):						Hydric Soil Prese	ent? Yes X No
Remarks:								
Hydric soils w	vere present at this s	ampling p	ooint.					

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: McBane Subdivision - Conserv	ation Area	City/County: Pittsboro/0	Chatham County	_Sampling Date:	04/27/2021
Applicant/Owner: Robert Swain - Swain I	and & Timber, LLC		State: NC	Sampling Point:	DP-2
Investigator(s): A. Ricci - WIthersRavenel		Section, Township, Range:		_	
Landform (hillside, terrace, etc.):	Lo	cal relief (concave, convex,		Slope (%):	1%
Subregion (LRR or MLRA): LRR P, MLRA 13		Long: -7	•		NAD83
Soil Map Unit Name: Ckc - Cid silt loam, 6 to			NWI classificat		10.1500
· · · · · · · · · · · · · · · · · · ·	·	2 × 2			- \
Are climatic / hydrologic conditions on the site	,,			explain in Remark	
Are Vegetation, Soil, or Hydrol	·		ircumstances" present?		No
Are Vegetation, Soil, or Hydrol	ogynaturally proble	ematic? (If needed, exp	olain any answers in Re	emarks.)	
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point location	ons, transects, im	portant featui	es, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X	
	Yes No X				
Remarks:					
This sampling point is located within uplands	adjacent to Wetland C, ı	near the lat/long specified ab	oove. This data form als	so applies to uplar	nds
adjacent to Wetlands D and E, as conditions	were similar.				
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two I	equired)
Primary Indicators (minimum of one is requir			Surface Soil Crac		
Surface Water (A1) True Aquatic Plants (B14)		## Sparsely Vegetate		ce (B8)	
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Patterns (B10)		
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines (B16)		
Water Marks (B1)	Presence of Reduce	,	Dry-Season Water Table (C2)		
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows		
Drift Deposits (B3)	Thin Muck Surface (Saturation Visible		(C9)
Algal Mat or Crust (B4)	Other (Explain in Rei	marks)	Stunted or Stress	,	
Iron Deposits (B5)			Geomorphic Position (D2)		
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard		
Water-Stained Leaves (B9)			Microtopographic	, ,	
Aquatic Fauna (B13)			FAC-Neutral Test	(D5)	
Field Observations:		,			
Surface Water Present? Yes	No X Depth (inche				
· · · · · · · · · · · · · · · · · · ·	No X Depth (inche		h.d	V	N. V
Saturation Present? Yes	No X Depth (inche	es): 24 wetland i	Hydrology Present?	Yes	No X
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	nitoring wall parial photos	nrovious inspections) if av	vailable:		
Describe Necorded Data (Stream gauge, mo	filtoring well, aerial priotos	s, previous inspections), ii av	allable.		
Remarks:					
Wetland hydrology is not present at this sam	pling point.				

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: DP-2 Absolute Dominant Indicator % Cover Tree Stratum (Plot size: 30' Radius) Species? Status **Dominance Test worksheet:** 1. Pinus taeda 30 Yes FAC **Number of Dominant Species** 10 FAC 2. Liquidambar styraciflua Yes That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 8 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 87.5% (A/B) Prevalence Index worksheet: 40 =Total Cover 50% of total cover: 20% of total cover: Total % Cover of: Sapling Stratum (Plot size: 15' Radius) **OBL** species x 1 = Liquidambar styraciflua **FACW** species Yes FAC x2 =2. Pinus taeda FAC FAC species 70 x 3 = 210 5 x 4 = 3. FACU species 4. 0 x 5 = UPL species 0 5. 75 230 (B) Column Totals: (A) 6 Prevalence Index = B/A = 3.07 15 =Total Cover **Hydrophytic Vegetation Indicators:** 20% of total cover: 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: X 2 - Dominance Test is >50% Shrub Stratum (Plot size: 15' Radius) 3 - Prevalence Index is ≤3.0¹ Liquidambar styraciflua 5 FAC 4 - Morphological Adaptations¹ (Provide supporting Pinus taeda FAC data in Remarks or on a separate sheet) 3. llex opaca **FACU** Yes 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be 6 present, unless disturbed or problematic. 15 =Total Cover **Definitions of Five Vegetation Strata:** 8 20% of total cover: 50% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size: 5' Radius) (7.6 cm) or larger in diameter at breast height (DBH). 1. None 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody 8. plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 30' Radius) 1. Smilax rotundifolia 2. 3. 4. Hydrophytic 5 =Total Cover Vegetation Present?

20% of total cover:

Remarks: (Include photo numbers here or on a separate sheet.)

50% of total cover:

Hydrophytic vegetation is present at this sampling point, however, the Prevalence Index is 3.07

No

Yes X

SOIL Sampling Point: DP-2

Depth Matrix Redox Features Color (moist) % Type¹ Loc² Texture Remarks 0-14 10YR 5/4 100 Loamy/Clayey 1Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 1Type: C=Concentratio
1 Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 1 Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) 1 Damy/Clayey 2 Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soil MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Histosol (A1) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Polyvalue Below Surface (S9) (MLRA 147, 148) Thin Dark Surface (S9) (MLRA 147, 148) Indicators for Problematic Hydric Science (A10) (MLRA 147) Coast Prairie Redox (A16)
Histosol (A1) Polyvalue Below Surface (S8) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147) Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A16)
Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A16)
Black Histic (A3) Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148)
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19)
Stratified Layers (A5) Depleted Matrix (F3) (MLRA 136, 147)
2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Red Parent Material (F21)
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) (outside MLRA 127, 147, 148)
Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface (F22)
Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks)
Sandy Gleyed Matrix (S4) MLRA 136)
Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vegetation ar
Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present
Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problematic.
Restrictive Layer (if observed):
Type:
Depth (inches): Hydric Soil Present? Yes No X
Remarks:
Hydric soils were not present at this sampling point.

4/30/2021 OpenGov

04/30/2021

WP-21-96

Riparian Buffer Review

Status: Active Date Created: Apr 28, 2021

Applicant

Alyssa Ricci aricci@withersravenel.com 115 Mackenan Drive Cary, North Carolina 27511 9192158619

Location

17 The Glens Dr Pittsboro, North Carolina 27312

Number of Features Found

Owner:

SWAIN LAND & TIMBER LLC ETAL 117 EDINBURG SOUTH DR STE 101 CARY, NC 27511-6458

Project Information

Review Type

Major Subdivision

Date Field Work Was Completed

04/27/2021

Has USACE on-site review been scheduled or completed

Scheduled

Date USACE is scheduled

04/29/2021

3

Parcel Information

Parcel Number (s)

85448

Watershed District

--

Is the property within the Jordan Lake Watershed

Yes

Property Owner Name

4/30/2021 OpenGov

Robert Swain Co/Swain Land & Timber LLC **Location of Tract (address if applicable)** West of intersection of Old Graham Road and Rock Rest Road **Driving Directions from Pittsboro** Take Old Graham Road north to site **Subdivision Name (if applicable)** Please describe access issues (provide gate codes, or information for scheduling site visit) Access from Old Graham Road, no trails or roads through site, vegetation is very thick. Applicants Information Are you the Landowner or an Agent **Full Name** Agent Alyssa Ricci **Primary Phone Number Primary Email** 9192158619 aricci@withersravenel.com **Mailing Address** City/State 115 Mackenan Drive Cary/NC **Zip Code** 27511 How would you like to receive the completed review letter? I would like to pick up the completed Riparian Buffer Review at the County Office I would like the completed Riparian Buffer Review mailed to me I would like the completed Riparian Buffer Review e-mailed to me. \mathbf{V} Statement of Understanding **New Field** Name 04/28/2021 Alyssa Ricci

4/30/2021 OpenGov

Attachments

pdf Signed_Right of Entry Form.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:08 PM

pdf SIGNED_Agent Authorization_RS Co-Swain Land & Timber.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:09 PM

pdf Coverletter.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:11 PM

pdf Buffer Determination Exhibits.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:13 PM

pdf Stream ID Forms & Wetland Data forms.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:16 PM

pdf Soil Survey.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:16 PM

pdf USGS Exhibits.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:19 PM

pdf Parcel-Owner Info.pdf

Uploaded by Alyssa Ricci on Apr 28, 2021 9:21 PM

History

Date	Activity
Apr 28 2021 8:37 pm	Alyssa Ricci started a draft of Record WP-21-96
Apr 28 2021 8:53 pm	Alyssa Ricci altered Record WP-21-96, changed ownerStreetName from "EDINBURG SOUTH DR STE 101" to "117 EDINBURG SOUTH DR STE 101"
Apr 28 2021 8:53 pm	Alyssa Ricci altered Record WP-21-96, changed ownerStreetNo from "117" to ""
Apr 28 2021 8:53 pm	Alyssa Ricci altered Record WP-21-96, changed ownerUnit from "" to ""
Apr 28 2021 9:21 pm	Alyssa Ricci added attachment Parcel-Owner Info.pdf to Record WP-21-96
Apr 28 2021 9:22 pm	Alyssa Ricci submitted Record WP-21-96
Apr 28 2021 9:22 pm	approval step Intake Approval was assigned to Drew Blake on Record WP-21-96
Apr 30 2021 10:11 am	Drew Blake approved approval step Intake Approval on Record WP-21-96
Apr 30 2021 10:12 am	completed payment step Major Subdivision Riparian Buffer Review Fee on Record WP-21-96
Apr 30 2021 10:12 am	approval step Field Review was assigned to Drew Blake on Record WP-21-96
Apr 30 2021 10:12 am	changed the deadline to May 13, 2021 on approval step Field Review on Record WP-21-96

AUTHORITY FOR APPOINTMENT OF AGENT

The undersigned Owner Robert Swain Co/Swain Timber & Land, LLC (Client) does hereby appoint WithersRavenel, Inc. as his, her, or it's agent for the purpose of petitioning the appropriate local, state and federal environmental regulatory agencies (US Army Corps of Engineers, NC Division of Water Quality, NC Division of Coastal Management, local municipalities, etc.) for: a) review and approval of the jurisdictional boundaries of onsite jurisdictional areas (wetlands, surface waters, riparian buffers, etc.) and/or; b) preparation and submittal of appropriate environmental permit applications/requests for the ±160 acre McBane property (AKPAR: 85448), located on the west side of Old Graham Rd, east of the Intersection of Old Graham Rd and Buttonwood Dr, in Chatham County, North Carolina.

The Client does hereby authorize that said agent has the authority to do the following acts on behalf of the owner:

- (1) To submit appropriate requests/applications and the required supplemental materials;
- (2) To attend meetings to give representation on behalf of the Client.
- (3) To authorize access to subject property for the purpose of environmental review by appropriate regulatory agencies.

This authorization shall continue in effect until completion of the contracted task or termination by the Client.

	Date: 1/1/2020
Agent's Name, Address & Telephone:	Signature of Client:
WithersRavenel, Inc.	Rubert Swain President
115 MacKenan Drive	(Name - Print) (Title)
Cary, NC 27511	(Signature)
Tel. (919)-469-3340	Pa Box 5689
	Mailing Address Cary NC 27512 City State Zip
	Phone: 919 417 2990
	Email: hadley@ Swain (o. Com

Website: www.chathamnc.org

Authorization to Enter Property Form

CHATHAM COUNTY

Date: 04/29/2021	
PARCEL No. (AKPAR) 85448	
,	Land & Timber LLC , as owner of the property described above,
or as a representative of the owner(s) do hereb	y convey permission to Chatham County staff to enter the property at
their convenience to conduct a surface water ide	ntification (SWID) necessary to determine whether or not water features
on my property are subject to the riparian buffer	regulations described in Section 304 of the Chatham County Watershed
Protection Ordinance. The SWID will be put	blic record and on file at the Planning and Watershed Protection
Departments, and may be requested in the future	e for review by interested parties.
I understand that stream delineations for the pr	operty listed above will be made by County staff only once and that if
future subdivisions are proposed within this pro	perty boundary, it will require a surface water identification by a private
consultant at the property owner's expense.	
(Print Owner's Name)	(Signature of Owner) (Date)
Alyssa Ricci	
(Print Authorized Agent Name)	(Signature of Authorized Agent) (Date)