

Environment

Prepared for: North Carolina Department of Transportation Raleigh, NC Prepared by: AECOM Raleigh, NC 60154105.6 November 2010

2010 Site Assessment Report

North Carolina Department of Transportation NCDOT Pittsboro Asphalt Site No. 6-48 (34613.3.13) 240 Sugar Lake Road Pittsboro, Chatham County, North Carolina, USA

Prepared for: North Carolina Department of Transportation Raleigh, NC

Prepared by: AECOM Raleigh, NC 60154105.6 November 2010

2010 Site Assessment Report

North Carolina Department of Transportation NCDOT Pittsboro Asphalt Site No. 6-48 (34613.3.13) 240 Sugar Lake Road Pittsboro, Chatham County, North Carolina, USA

Prepared By Michael Dail, P.G. Senior Staff Scientist

Reviewed By Matt Brennan

L. **Project Scientist Reviewed By Michael** Senior Scientist

Contents

1.0	Introd	uction	.1-1
	1.1	Site History	. 1-1
	1.2	Regional Geology and Hydrogeology	. 1-2
2.0	Invest	igation Methodology	.2-1
	2.1	Geologic Field Reconnaissance	. 2-1
	2.2	Fracture Trace Survey	.2-1
	2.3	Soil Sampling	.2-1
	2.4	Monitoring Well Installation	. 2-2
	2.5	Monitoring Well Sampling	. 2-3
	2.6	Industrial Derived Waste	. 2-3
3.0	Result	S	.3-1
	3.1	Site Geology	. 3-1
	3.2	Fracture Trace Analysis	. 3-1
	3.3	Soil Analytical Results	. 3-1
		3.3.1 Former North Carolina Department of Transportation Laboratory and Septic Tank Area	.3-2
		3.3.2 Current Asphalt Laboratory Area	
		3.3.3 Former Potable Water Well Area	. 3-3
		3.3.4 Septic Tank Percolation Area	. 3-3
	3.4	Site Hydrogeology	. 3-3
	3.5	Groundwater Analytical Results	. 3-3
4.0	Concl	usions	.4-1
5.0	Refere	ences	5-1

List of Appendices

- Appendix A Aerial Photographs
- Appendix B Boring Logs
- Appendix C Well Construction Records
- Appendix D Groundwater Sample Collection Records

Appendix E Laboratory Analytical Reports and Chain of Custody

November 2010

List of Tables

Table 2.1	Well Construction and Groundwater Elevation
Table 3.1	Summary of Soil Analytical Results
Table 3.2	Summary of Groundwater Analytical Results
Table 3.3	Summary of Field Parameters

List of Figures

Figure 1.1	Site Location Map
Figure 1.2	Site Plan
Figure 2.1	Soil Sample Location Map
Figure 2.2	Monitoring Well Location Map
Figure 3.1	Geologic Cross-section Map
Figure 3.2	Geologic Cross-section A-A'
Figure 3.3	Fracture-Trace Analysis Rose Diagram
Figure 3.4	Soil TCE Isoconcentration Map – June 2010
Figure 3.5	Surficial Aquifer Potentiometric Map – June 2010
Figure 3.6	Shallow Bedrock Aquifer Potentiometric Map – June 2010
Figure 3.7	Surficial Aquifer TCE Isoconcentration Map – April & July 2010
Figure 3.8	Shallow Bedrock Aquifer TCE Isoconcentration Map – April & July 2010

List of Acronyms

1,1-DCE	1,1-dichloroethene
1,1,1-TCA	1,1,1- trichloroethane
1,2,3-TCP	1,2,3-trichloropropane
2L Standard	North Carolina Groundwater Standards
AECOM	AECOM North Carolina, Inc.
CAP	Corrective Action Plan
CLP	Contract Laboratory Program
CSA	Comprehensive Site Assessment
DO	dissolved oxygen
DPT	direct push technology
EPA	United States Environmental Protection Agency
ft bls	feet below land surface
G&M	Geraghty & Miller, Inc.
IHSB	Inactive Hazardous Sites Branch
NCDENR	North Carolina Department of Environment and Natural Resources
NCDOT	North Carolina Department of Transportation
ORP	oxygen reduction potential
PDBs	passive diffusion bags
PID	Photoionization Detector
PVC	polyvinyl chloride
PWR	partially weathered rock
SGS	SGS North America, Inc.
SRGs	soil remediation goals
TCE	trichloroethene

- USGS United States Geological Survey
- VOCs volatile organic compounds
- µg/kg micrograms per kilogram
- μg/L micrograms per liter

1.0 Introduction

AECOM North Carolina, Inc. (AECOM) is pleased to submit this *Site Assessment Report* (Report) to the North Carolina Department of Transportation (NCDOT). This report presents the findings of the limited soil and groundwater assessment activities conducted by AECOM at the former NCDOT Pittsboro Asphalt Site No. 6–48 (Site) located at 240 Sugar Lake Road (SR 1714) in Pittsboro, Chatham County, North Carolina (Figure 1.1). The Site is currently owned by S.T. Wooten Company and is used as an asphalt production facility and includes an active laboratory. Primary objectives of the site assessment were to:

- Perform a fracture trace analysis to determine the orientation of fractures, which can influence groundwater and contaminant flow;
- Confirm presence of diabase dikes reported in the vicinity. Diabase dikes can act as a preferential pathway of contaminants in groundwater due to relatively high fracture densities compared to the surrounding country rocks;
- Evaluate potential volatile organic compound (VOC) source areas including:
 - Former NCDOT Asphalt Testing Laboratory Area;
 - Current Asphalt Testing Laboratory Area;
 - Former Potable Water Well Area; and
 - Septic Tank Percolation Area.
- Determine the current concentrations and vertical extent of VOCs in groundwater immediately down gradient of the former NCDOT asphalt testing laboratory location.

1.1 Site History

The NCDOT operated an asphalt testing laboratory at the Site for an unknown period of time and used several different solvents at different times throughout its operation including carbon tetrachloride, trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) [NCDOT target compounds].

The laboratory location and period of NCDOT laboratory use is unclear. Figures presented in the Corrective Action Plan (CAP) prepared by S&ME, Inc. indicate the NCDOT laboratory was located less than 50-feet northeast of groundwater monitoring well 48DW-1 (Figure 1-2). To help confirm the former laboratory location and operational history, AECOM obtained historical aerial photographs from the Chatham County Geographic Information Systems Department. Aerial photographs from April 1977 are inconclusive and of poor quality, but illustrate several small structures in the area where the former NCDOT testing laboratory was purportedly located. The 1987 aerial photograph illustrates a structure in the same approximate location as the current asphalt testing laboratory. No structures were observed near the location designated as the former NCDOT laboratory location. Copies of the aerial photographs are presented in Appendix A.

In 1989, the NCDOT began assessing former NCDOT asphalt testing laboratories for environmental impacts related to their use of chlorinated VOC's. A preliminary site survey conducted by the NCDOT

at the Site reported the detection of TCE and 1,1,1–TCA in groundwater and carbon tetrachloride in soil. A Comprehensive Site Assessment (CSA) report was submitted to North Carolina Department of Environment and Natural Resources (NCDENR) in June 1997 by Geraghty & Miller, Inc. (G&M), for NCDOT (G&M CSA Report). The G&M CSA Report documented soil and groundwater impacted with chlorinated hydrocarbons. In response to these impacts, a CAP was prepared by S&ME, Inc., and submitted to NCDENR in September 1999. The CAP proposed a remediation system network

including groundwater pump and treat, air sparging, and soil vapor extraction. The soil and groundwater remediation system network was installed at the site in 2002 (Figure 1.2).

Since the start of corrective action, the areal extent of the TCE plume has been reduced; however, TCE concentrations have remained stable in monitoring well MW-1 and the groundwater treatment system influent, indicating a persistent source of groundwater impacts.

1.2 Regional Geology and Hydrogeology

The site is situated within the east-central portion of North Carolina's piedmont physiographic region which is characterized by differing thicknesses of saprolite overlying a transition zone of partially weathered rock (PWR) and fractured bedrock. This transition zone generally grades into more consolidated, less fractured rock with depth. Piedmont geology predominately consists of metamorphic rocks including gneiss, schist, and metamorphosed granitic rocks, which typically occur in a series of northeast trending belts. The Site is located in the Carolina Slate Belt, which consists of folded and mildly metamorphosed volcanic and sedimentary rocks. The local geology of the Site consists of felsic metavolcanic rocks (Brown, 1985). More specifically, bedrock at the Site is heterogeneous tuffs of felsic to intermediate composition with lesser interlayers of andesitic to basaltic lavas and epiclastic rocks (Bradley et al. 2007).

Groundwater flow systems in the Piedmont are typically separated into three hydrogeologic zones; saprolite, PWR, and bedrock. Groundwater in saprolite and PWR generally flows parallel to the bedrock surface before discharging into surface water bodies (LeGrand, 2004). Groundwater flow through saprolite is generally controlled by primary and relic secondary porosity features. Saprolite transmits water slowly, but has a high storage capacity with porosity ranges of 35 to 55 percent near the ground surface and decreases with depth (LeGrand, 2004).

The PWR zone is characterized as a highly permeable zone that is conducive for rapid groundwater flow. Similar to saprolite, groundwater in PWR flows parallel to the bedrock surface flowing from topographic highs to topographic lows. Secondary porosity features such as fractures, faults and weathered zones determine movement of groundwater in the transition zone.

In the underlying bedrock, groundwater occurrence and flow is dictated by the presence of fracture zones. Groundwater movement in bedrock is dependent upon secondary porosity in the form of fractures and solution openings (LeGrand, 2004). Fractured bedrock has the ability to transmit water rapidly depending on the interconnectivity of fractures, but it has a relatively low storage capacity. Groundwater contained in the bedrock portion of the aquifer will also typically discharge to a perennial stream or surface water body and mix with the water discharged from the saprolite and PWR (LeGrand, 2004).

2.0 Investigation Methodology

In the spring of 2010, AECOM conducted several field activities including: fracture trace survey, geologic field recon, soil investigation, monitoring well installation, and groundwater sampling collection from all monitoring wells on-site. The following sections discuss the field activities in greater detail.

2.1 Geologic Field Reconnaissance

On April 15th 2010, AECOM conducted a geologic field reconnaissance to measure fracture attitudes in outcrops near the Site. Field measurements of fractures were recorded from outcrops along creeks to the east, south and west of the site and incorporated in the fracture trace analysis. A secondary goal of the geologic field reconnaissance was to document if diabase dikes are present in the area. Diabase was reported in the boring logs for 48DW-3 presented in the CSA (S&ME, 1999). Diabase dikes can act as a preferential pathway of contaminates in groundwater due to relatively high fracture densities compared to the surrounding country rocks.

2.2 Fracture Trace Survey

A fracture trace is the surficial representation of an underlying fracture zone, joint, fault, or bedding plane. Fracture traces may reveal themselves on the surface as tonal variations in soils, alignment of vegetative patterns, straight stream segments or valleys, aligned surface depressions, gaps in ridges, and other features showing a linear orientation. These natural, linear topographic features are generally attributable to the presence of water in the underlying fractures or fracture zones. Fracture-trace analysis is useful in determining the preferential direction of groundwater and contaminate flow in an area.

Fracture traces in the area were identified during a desktop analysis of readily available United States Geological Survey (USGS) topographic maps, aerial photos, and satellite imagery. The approximate distance from the site, segment length, and bearings of the identified features were recorded and tabulated. The fracture-trace analysis also includes measurement of fracture sets from bedrock outcrops along unnamed creeks to the east, south, and west. Due to the scales available maps and image scales, fracture traces were limited to surface water features and their associated valleys.

2.3 Soil Sampling

Soil borings were advanced in four general areas of concern; 1) the former NCDOT laboratory and septic tank area; 2) the current asphalt laboratory area; 3) the area adjacent to the former potable water well PW-1; and 4) the septic tank percolation area. Soil samples were collected for the purpose of identifying potential impacted soil source areas and to delineate the horizontal and vertical extent of chlorinated volatile organic compounds (CVOCs) in the areas of concern. The data will also be used to evaluate possible remediation strategies.

Continuous soil core sampling was conducted on-site using direct push technology (DPT) methods. The DPT was advanced to refusal at 22 locations (Figure 2.1). At each location soils were collected at two foot intervals and field screened using a Photoionization Detector (PID), flame ionization detector, and for total chlorinated ethenes using a ColorTec® colorimetric test kit. Field screening was

used to obtain real-time, semi-quantitative measurements of chlorinated ethene and VOC concentrations in soil, and were used to assist in selection of boring locations for contamination delineation. Based on field screening results, 30 samples were selected for laboratory analyses.

Generally, the soil sample with the highest PID and/or Color-Tec® readings from each boring were retained for laboratory analysis of VOCs by United States Environmental Protection Agency (EPA) Method 8260B. The samples were placed into laboratory supplied containers, labeled, and placed in a cooler with ice pending shipment to SGS North America, Inc. (SGS) laboratory in Wilmington, North Carolina under Chain of Custody procedures. Soil cuttings generated during boring advancement were contained in 55-gallon drums.

2.4 Monitoring Well Installation

The average TCE concentration in the groundwater treatment system influent since 2004 (240 micrograms per liter [μ g/L]) is more than twice that observed in well MW-1, which has the highest impacts among the Site monitoring wells. The TCE concentration trend in treatment system influent appears to be stable indicating a likely residual TCE source. The disparity between the average influent concentration and that observed in well MW-1 suggests that the source of persistent groundwater impacts exists within the capture zone of the groundwater recovery system but is not identified by the existing Site monitoring well network.

To identify residual groundwater source areas, AECOM installed two type II (48MW-16 and 48MW-17) and one type III (48DW-5) monitoring wells using a combination of hollow stem augers and air rotary techniques. The locations of the monitoring wells are presented as Figure 2.2.

Monitoring well 48MW-16 was installed downgradient of the former NCDOT asphalt testing lab (Figure 2.2) to a depth of approximately 45 feet below land surface (ft bls). Monitoring well 48MW-17 was installed near destroyed monitoring well 48MW-9 to a depth of approximately 35 ft bls to facilitate better control on shallow groundwater flow direction on the western side of the Site. Soil was logged for lithology from two-foot split spoon samples collected at five foot intervals. Boring logs are included in Appendix B.

Each Type II monitoring well was constructed with a two-inch diameter schedule 40 polyvinyl chloride (PVC) casing with 10 feet of 0.010-inch slotted PVC screen. A sand pack was placed in the annulus to a height of approximately two feet above the top of the well screen. A bentonite seal was placed approximately two feet above the sand pack and hydrated. The remainder of the well annulus was filled with grout to the ground surface.

To determine if residual sources were present in bedrock, AECOM installed one type III monitoring well (48DW-5) downgradient of the former NCDOT asphalt testing lab. The well was constructed with a six-inch PVC outer casing advanced approximately three feet into the top of bedrock. The casing was grouted in place and allowed to set for approximately 24 hours. After the grout cured, the borehole was advanced using air rotary techniques to a depth of approximately 102 ft bls and left open hole to facilitate multi-level groundwater sampling (see section 2.5).

Each well was secured with a locking expansion plug, and completed with a three-foot steel protective stick-up cover surrounded by a two-foot square concrete pad. After installation, each monitoring well was developed by pumping and surging with a submersible pump until the turbidity decreased. Development water was containerized in five gallon buckets and transferred to the on-site groundwater treatment facility for disposal. Drill cuttings were placed in 55-gallon drums and staged

November 2010

A summary of the well construction details is provided in Table 2.1 and the well construction records are included in Appendix C. The horizontal location and vertical elevation of each monitoring well was surveyed by Taylor Wiseman Taylor, a North Carolina licensed surveyor.

2.5 Monitoring Well Sampling

Groundwater samples were collected from each of the 14 existing groundwater monitoring wells in April 2010 during the regularly scheduled semiannual groundwater sampling event. Monitoring wells 48MW-16, 48MW-17, and 48DW-5 were sampled in July 2010 shortly after they were installed. The monitoring well network is shown on Figure 2.2. Groundwater sampling was performed according to AECOM standard operating procedures that generally comply with the requirements of the 2007 Field Branches Quality System and Technical Procedures document.

Each well was purged with a peristaltic pump or a Grundfos® submersible pump. Sample collection records for the field methods used at each well location are presented in Appendix D. Water levels were monitored approximately every three to five minutes and a steady flow rate was maintained to stabilize the water level. Field parameters (temperature, pH, specific conductance, dissolved oxygen [DO], and oxygen reduction potential [ORP]) were measured to ensure collection of a sample representative of formation water. Each well was considered ready for sampling when the parameters had stabilized to within 10 percent for three consecutive readings or if the well purged dry. After purging, groundwater samples were collected at a flow rate between 100 and 250 milliliters per minute. Field parameters were recorded on field data sheets (Appendix D).

Groundwater samples were containerized, preserved, and shipped to the analytical laboratory. Sampling equipment was thoroughly decontaminated with phosphate-free soap and distilled water prior to fieldwork and between wells to prevent cross-contamination.

One week following the installation of monitoring well 48DW-5, AECOM deployed passive diffusion bags (PDBs) at depths corresponding to water bearing fractures documented during well installation (i.e. changes in advancement rate, cuttings, rate of groundwater flow out of the casing). Three PDBs were deployed in monitoring well 48DW-5 at 60 ft bls, 80 ft bls, and 100 ft bls. The PDBs were allowed to equilibrate with the surrounding water for two weeks. After the two week equilibration period, the PDBs were retrieved and the water decanted into laboratory supplied sample containers.

Sample handling, packaging, preservation and storage were conducted in general accordance with AECOM, NCDENR and EPA protocols. Samples were submitted to SGS under Chain of Custody procedures for laboratory analysis of VOCs by EPA Method 8260B.

2.6 Industrial Derived Waste

Decontamination water and water generated during the purging of monitoring wells was temporarily contained in five gallon buckets and transferred to the remediation system 500-gallon equalization tank. Drill cuttings, personal protection equipment, decontamination pad plastic, and groundwater containment plastic were placed in 55-gallon drums and staged on-site pending disposal at a permitted facility by A&D Environmental, Inc., a NCDOT approved waste disposal operator.

3.0 Results

The following sections discuss the field and laboratory results of the Limited Site Assessment. Laboratory analytical reports from SGS and field data associated with samples collected by AECOM personnel were reviewed and validated to ensure that specific data-quality objectives were met. Laboratory analytical reports are provided in Appendix E.

3.1 Site Geology

The subsurface geology encountered at the site generally consists of 10 to 35 feet of yellowish-orange to light gray saprolite composed of silt with minor sand and clay, increasing in grain size with depth. The transition zone from saprolite to bedrock (i.e. PWR) was approximately 4 to 6 feet. A geologic cross-section of the site subsurface was constructed along the lines A to A' (Figure 3.1). The subsurface geology at the site and was created using soil and monitoring well boring logs (Figure 3.2). In general, the saprolite/PWR contact was determined using split-spoon blow counts and the PWR/bedrock contact was estimated based on auger refusal. Based on hand samples collected during monitoring well installation and observations of bedrock outcrops during the geologic field reconnaissance, no evidence of diabase dikes was documented.

3.2 Fracture Trace Analysis

Fracture traces were identified during a desktop analysis of readily available topographic maps, aerial photos, and satellite imagery. Fracture bearings measured during the geologic field reconnaissance were also incorporated into the analysis.

In general, fracture traces tend to be oriented at a consistent angle with the regional structure trend, and in the case of the Piedmont this trend is northeast to southwest (NE-SW). Typically, fracture traces occur in two orthogonal sets that are approximately perpendicular (i.e. one set is oriented north-south [N-S] with a weaker second set oriented east-west [E-W]). Thus streams developed in rocks where fractures exhibit control over surface water features will display a "stair-step" pattern.

The fracture trace bearings were used to construct a rose diagram (Figure 3.3) indicating a dominant north-northwest/south southeast (NNW/SSE) fracture set, with a weaker subparallel east-northeast/west-southwest (ENE/WSW) set. When coupled with the local topography, the fracture patterns suggest that site groundwater flows towards the east-southeast. This is consistent with historical groundwater flow directions for the site determined from depth to water measured in on site groundwater monitoring wells.

3.3 Soil Analytical Results

A total of 30 soil samples were collect from 22 boring locations to evaluate the potential for VOCs impacted soil in the four areas of concern; 1) the Former NCDOT Laboratory and septic tank area; 2) the current asphalt laboratory area; 3) the area adjacent to the former potable water well PW-1; and 4) the septic tank percolation area. Results of the soil samples collected during the investigation are summarized on Table 3.1.

3.3.1 Former North Carolina Department of Transportation Laboratory and Septic Tank Area

Soil borings SB-1 through SB-18 were advanced around the location of the former NCDOT laboratory and septic tank area. Each boring was advanced to DPT refusal (between 14 to 23 ft bls). A total of 24 soil samples were collected in the area. The investigation revealed the following:

- Two out of three NCDOT target compounds were detected in soil samples above their Inactive Hazardous Sites Branch's (IHSB) Protection of Groundwater Soil Remediation Goals (SRGs), including carbon tetrachloride and TCE. TCE was also detected above its IHSB Preliminary Health-Based SRGs
- Three non-NCDOT target compound VOCs were detected above their Protection of Groundwater SRG including 1,2,3-trichloropropane (1,2,3-TCP), benzene, and vinyl chloride (vinyl chloride is a daughter product of TCE). . 1,2,3-TCP and bromomethane were detected in soil above their IHSB Preliminary Health-Based SRGs
- TCE was detected in soil samples collected from 9 of 18 borings located near the former NCDOT laboratory. Three soil samples had concentrations of TCE above the IHSB Health-Based SRG of 2,800 micrograms per kilogram (µg/kg) including SB-8 (10-12 ft bls), SB-8 (18-20 ft bls), and SB-14 (16-18 ft bls) with concentrations of 3,320 µg/kg, 5,710 µg/kg, and 2,890 µg/kg, respectively. A TCE isoconcentration map for soil is provided as Figure 3.4.
- The horizontal extent of soil impacted with TCE above its Protection of Groundwater SRG (18 μg/kg) covers an area of approximately 5,500 square feet (110 ft by 50 ft).
- TCE impacted soil extends at least to DPT refusal (up to 23 ft bls) in the central source area. However, elevated TCE concentrations in groundwater immediately down gradient (see section 3-4) suggests TCE impacted soil extends to the water table (approximately 35 ft bls).
- Carbon tetrachloride (7.45 µg/kg) and vinyl chloride (14.9 µg/kg) were detected in one sample collected from boring SB-4 above their Protection of Groundwater SRGs of 2 and 0.19 µg/kg, respectively.
- No VOCs were detected above laboratory reporting limits in soil collected from borings SB-1, SB-2, SB-3, SB-6, SB-9, SB-15, SB-16, SB-17, and SB-18.
- PCE was not detected in soil samples collected near the former NCDOT laboratory.
- 1,2,3-TCP, benzene, and bromomethane are not NCDOT target VOCs. Historically, 1,2,3-TCP was used as a paint and varnish remover, cleaning and degreasing agent, and a cleaning and maintenance solvent (NTP, 2005). Benzene is a natural part of crude oil and gasoline, and is widely used to make plastics, resins, synthetic fibers, lubricants, dyes, detergents, drugs, and pesticides (ATSDR, 2007). Bromomethane is used to kill a variety of pests including rats, insects, and fungi (ATSDR, 1992).

3.3.2 Current Asphalt Laboratory Area

Soil borings SB-20 and SB-22 were advanced at the southwest and southeastern corners of the current laboratory, respectively. Two samples were collected from boring SB-20 at depths of 6-8 ft bls and 12-14 ft bls. Two samples were also collected from boring SB-22 at depths of 6-8 ft bls and 10-12 ft bls. The laboratory results are summarized below:

- PCE was detected in soil samples SB-20 (6-8 ft bls) and SB-20 (12-14 ft bls) with concentrations of 625 µg/kg and 692 µg/kg, respectively. The concentrations exceed the IHSB Health-Based SRG (550 µg/kg) and Protection of Groundwater SRG (5 µg/kg). No other compounds were detected in soil samples SB-20 (6-8 ft bls) and SB-20 (12-14 ft bls).
- Four VOCs were detected in soil samples collected from boring SB-22, including TCE, isopropylbenzene, naphthalene, and sec-butylbenzene. However, the concentration of the four VOCs are below both the Health-Based and Protection of Groundwater SRGs.

3.3.3 Former Potable Water Well Area

Soil boring SB-19 was advanced to 27 ft bls adjacent to the former potable water well PW-1. One sample, SB-19 (20-22 ft bls), was collected for analysis of VOCs. Toluene was the only VOC detected in the sample with a concentration of 9.05 μ g/kg. The concentration of toluene is well below its IHSB Health-Based SRG (820,000 μ g/kg) and Protection of Groundwater SRG (5,500 μ g/kg). No other VOCs were detected above reporting limits.

3.3.4 Septic Tank Percolation Area

Soil boring SB-21 was advanced near the septic tank percolation area on the western side of the Site to 18 ft bls. One soil sample was collected for laboratory analysis at 14-16 ft bls. No VOCs were detected above laboratory reporting limits.

3.4 Site Hydrogeology

Groundwater elevation data collected on June 18, 2010 is presented in Table 2.1 and was used to prepare the groundwater potentiometric surface elevation contour map of the surficial aquifer (Figure 3.5) and shallow bedrock aquifers (Figure 3.6). Groundwater in the surficial and bedrock aquifers flows generally east toward an unnamed tributary of the Haw River.

3.5 Groundwater Analytical Results

Groundwater samples were collected from site monitoring wells in April and July 2010. The analytical results are summarized in Table 3.2. Field parameters, including temperature, DO, pH, conductivity, and ORP were recorded during the sampling events and are presented in Table 3.3.

The following is a summary of the April and July 2010 groundwater monitoring results:

- TCE was detected at concentrations above the North Carolina Administrative Code 2L Groundwater Standard (2L Standard) of 3 micrograms per liter (µg/L) in monitoring wells 48MW-1 (150 µg/L), 48MW-3 (3.5J µg/L), 48MW-15 (15 µg/L), 48MW-16 (1,060 µg/L), and 48DW-2 (42 µg/L). TCE was detected in all three PDB samples deployed in 48DW-5 with concentrations of 313 µg/L, 283 µg/L, and 356 µg/L at depths of 60 ft bls, 80 ft bls, and 100 ft bls, respectively.
- The horizontal extent of the TCE plume exceeding the 2L Standard is defined by the monitoring well network and is within the capture zone of the pump and treat system. Isoconcentration maps of TCE in the surficial and bedrock aquifers are presented on Figures 3.7 and 3.8, respectively.
- 1,1,1-TCA was detected in groundwater collected from on-site monitoring wells 48MW-1 (10 μg/L), 48MW-3 (2.0 μg/L), and 48DW-2 (4.9 μg/L), at concentrations below its 2L Standard of 200 μg/L.

- 1,1-dichloroethene (1,1-DCE), a daughter product of both TCE and 1,1,1-TCA, was also detected in groundwater at concentrations above its 2L Standard of 7 µg/L in monitoring wells 48MW-1 (48 µg/L), 48MW-3 (7.1 µg/L), 48MW-15 (9.6 µg/L), 48MW-16 (84.8 µg/L), and 48DW-2 (22 µg/L). 1,1-DCE was detected above its 2L Standard in all three PDB samples deployed in 48DW-5 with concentrations of 30.2 µg/L (60 ft bls), 27.4 µg/L (80 ft bls), and 28.2 µg/L (100 ft bls).
- 1,1-dichloroethane, a daughter product of 1,1,1-TCA, was detected in monitoring well 48MW-3 with a concentration of 6.5 μg/L, above its 2L Standard of 6 μg/L.
- cis-1,2-Dichloroethene was the only other TCE daughter product detected in groundwater and concentrations were below its 2L Standard. No other daughter products of 1,1,1-TCA were detected in groundwater on-site.
- PCE was detected in groundwater collected from monitoring wells 48MW-1 (9.5 μg/L), 48MW-3 (5.0 μg/L), and 48MW-15 (3.5 J μg/L) at concentrations above its 2L Standard of 0.7 μg/L. According to the NCDOT, PCE was not used during their operation of the asphalt testing laboratory.
- Ethylbenzene, Isopropylbenzene, o-Xylene, and sec-Butylbenzene were detected in groundwater collected from on-site monitoring wells at concentrations below 2L Standards. These non-target NCDOT compounds are commonly associated with petroleum products.
- 1,3,5-Trimethylbenzene and Acetone were detected in groundwater collected from on-site monitoring wells at concentrations below 2L Standards and are non-target compound.

4.0 Conclusions

The average TCE concentration in the groundwater treatment system influent since 2004 (240 µg/L) is more than twice that observed in well MW-1, which has the highest impacts among the Site monitoring wells. The TCE concentration trend in treatment system influent appears to be stable indicating a likely residual TCE source. The disparity between the average influent concentration and that observed in well MW-1 is likely explained by the identification of the TCE impacted soil source area near the location of the former NCDOT laboratory.

The following conclusions were made based on field measurements and laboratory analytical data from the April and July 2010 sampling event and previous sampling events.

- Based on the fracture trace analysis, dominant fracture traces in the area trend NNW/SSE with a weaker ENE/WSW, subparallel set. When coupled with the local topography, these findings indicate that the likely direction of groundwater flow at the site is toward the east-southeast. This is consistent with historical groundwater flow directions for the site determined from depth to water measured in on site groundwater monitoring wells.
- No evidence of diabase dikes was observed during the geologic field reconnaissance nor was evidence diabase observed during drilling monitoring well borings.
- TCE was detected in half of the soil borings located near the former NCDOT laboratory with a maximum concentration of 5,710 µg/kg at SB-8 (18-20 ft bls). The horizontal extent of soil impacted with TCE above its Protection of Groundwater SRG (18 µg/kg) is approximately 5,500 square feet (110 feet by 50 feet) and extends to at least 23 ft bls in the central source area. However, elevated TCE concentrations in monitoring well 48MW-16 immediately down gradient suggests TCE impacted soil extends to the water table (approximately 35 ft bls).
- TCE was not detected in soil above its Health-Based or Protection of Groundwater SRGs in any area other than the former NCDOT laboratory area.
- PCE was detected in soil collected at the southwest corner of the current laboratory above its Health-Based and Protection of Groundwater SRGs. PCE was not detected in soil from any other location during this assessment. In addition, NCDOT records indicate PCE was not used during operation of the former NCDOT asphalt testing laboratory. However, the NCDOT target compound TCE is a daughter product of PCE.
- Groundwater in the surficial and bedrock aquifers flows generally east-southeast toward an unnamed tributary of the Haw River.
- The horizontal extent of the TCE plume exceeding the 2L Standard is generally defined by the monitoring well network and captured by the pump and treat system.
- PCE was detected in groundwater collected from monitoring wells 48MW-1 (9.5 μg/L), 48MW-3 (5.0 μg/L), and 48MW-15 (3.5 J μg/L) at concentrations above its 2L Standard. According to NCDOT, PCE was not used during their operation of the asphalt testing laboratory and could be an additional source of TCE and its daughter products.

4-1

5.0 References

- Geraghty & Miller, Inc., Comprehensive Site Assessment, NCDOT Asphalt Testing Site #6-48, 240 Sugar Lake Road, Pittsboro, North Carolina. June 1997.
- NCDENR, 2010, Title 15A North Carolina Administrative Code (NCAC) Subchapter 2L Groundwater Quality Standards. State of North Carolina, NCDENR, Division of Water Quality, Groundwater Section. January 2010.
- S&ME, Inc. 2002. Monitoring Report Former Asphaltic Material Testing Laboratory Sites Site No. 6-48. August 2002.
- S&ME, Inc. 1999. Corrective Action Plan. NCDOT Asphalt Testing Site #6-48, 240 Sugar Lake Road, Pittsboro, North Carolina. June 1999.
- Bradley, P.J., Gay, N.K., Bechtel, R., Clark, T.W., 2077. Geologic Map of the Farrington 7.5-Minute Quadrangle, Chatham, Orange and Durham Counties, North Carolina, North Carolina Geological Survey Open File Report 2007-03.
- United States Environmental Protection Agency (USEPA). 1999. National Functional Guidelines for Organic Data Review.
- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, USEPA-540-R-07-003, July 2008,
- United States Environmental Protection Agency (USEPA) Region IV Environmental Compliance Branch Standard Operating Procedures and Quality Assurance Manual, November 2001.
- NTP, 2005, 1,2,3-Trichloropropane, Report on Carcinogens, Eleventh Edition; U.S. Department of Health & Human Services, Public Health Service, National Toxicology Program, January 2005.
- Agency for Toxic Substances & Disease Registry (ATSDR). 2007. Toxicological Profile for Benzene. Atlanta, GA: U.S. Department of Public Health & Human Services, Public Health Service.
- Agency for Toxic Substances & Disease Registry (ATSDR). 1992. Toxicological profile for bromomethane. Atlanta, GA: U.S. Department of Health & Human Services, Public Health Service.
- Brown, P.M. and others, 1985, Geological Map of North Carolina; North Carolina Department of Natural Resources and Community Development.
- LeGrand, H. E. Sr., 2004. Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina. Prepared for the North Carolina Department of Environment and Natural Resources, Division of Water Quality, Groundwater Section, February 2004.

5-1

Tables

AECOM

Table 2.1Well Construction and Groundwater ElevationNCDOT - Former Asphalt Plant SitePittsboro, North Carolina

Well	Installation Date	Total Depth (ft bgs)	Screened Interval (ft bgs)	Top of Casing Elevation (ft msl)	Depth To water (ft bTOC)	Groundwater Elevation (ft msl)
48MW-1	11/14/1996	50	36-46	405.80	32.99	372.81
48MW-2	11/14/1996	50	40-50	404.41	30.31	374.10
48MW-3	11/14/1996	56	40-50	408.31	33.96	374.35
48MW-4R	11/13/1996	36	26-36	409.33	21.21	388.12
48MW-5	11/12/1996	35	25-35	411.04	22.35	388.69
48MW-10	3/3/1997	40	30-40	405.61	24.61	381.00
48MW-11R	3/31/2004	30	20-30	400.30	28.19	372.11
48MW-12	4/17/1997	37.5	27.5-37.5	383.37	11.62	371.75
48MW-13	4/17/1997	32.5	22.5-32.5	378.28	9.36	368.92
48MW-14	4/1/2000	27.5	22.5-27.5	393.49	19.28	374.21
48MW-15	2/6/2002	13.6	3.6-13.6	380.81	9.00	371.81
48MW-16	6/9/2010	45	35-45	410.44	37.17	373.27
48MW-17	6/9/2010	35	25-35	402.92	14.90	388.02
48DW-1	1/15/1997	100	63-100*	405.29	1.95	403.34
48DW-2	4/24/1997	66	43-66*	402.48	29.78	372.70
48DW-3	7/26/1999	125	115-125	399.26	26.31	372.95
48DW-4	2/18/2002	125	115-125	381.79	11.24	370.55
48DW-5	6/9/2010	102	43-102*	407.80	34.51	373.29

Notes:

bgs - below ground surface.

ft - feet.

bTOC - below top of casing.

msl - mean sea level.

*Open-rock well from the bottom of the surface casing to the bottom of the borehole.

All groundwater measurements were collected on June 18, 2010.

Table 3.1 Summary of Soil Analytical Results NCDOT - Former Asphalt Plant Site Pittsboro, North Carolina

Sample ID	Preliminary	Protection of	SB-1	SB-2	SB-3		SB-4		SB-5	SB-6	SE	6-7		SB-8		SB-9	SB-10	SB-11	SB-12	SB-13	SB	-14	SB-15	SB-16	SB-17	SB-18	SB-19	SB	-20	SB-21	SB	-22
Depth (ft bls)				(10-12)	(6-8)	(4-6)	(12-14)	(20-22)	(14-16)	(12-14)	(8-10)	(14-16)	(10-12)	(14-16)	(18-20)	(12-14)	(8-10)	(12-14)	(4-6)	(14-16)	(10-12)	(16-18)	(12-14)	(6-8)	(20-22)	(8-10)	(20-22)	(6-8)	(12-14)	(14-16)	(6-8)	(10-12)
Constituent (µg/kg)																																
1,1,1-Trichloroethane	640000	1200	<6.28	<6.18	<6.47	16.2	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,1,2-Trichloroethane	1100		<6.28	<6.18	<6.47	394	<64.6	<5.62	<5.11	<5.86	<29.6	14.9	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,2,3-Trichloropropane	5	0.03	<6.28	<6.18	<6.47	87	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,2,4-Trimethylbenzene	12000	6700	<6.28	<6.18	<6.47	256	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
1,3,5-Trimethylbenzene	160000	6700	<6.28	<6.18	<6.47	86.9	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Acetone	12000000	24000	<62.8	<61.8	<64.7	<82.3	5710	<56.2	<51.1	<58.6	<740	<50.9	<6100	<2710	<1430 0	<68.8	<1610	<78.5	<80.7	<1250	<1410	<5410	<50.5	<96.9	<57.1	<66.7	<71.5	<1670	<1430	<65.3	<63.5	<59.9
Benzene	1100	7.30	<6.28	<6.18	<6.47	<8.23	341	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromobenzene	59000		<6.28	<6.18	<6.47	<8.23	25.7	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromochloromethane			<6.28	<6.18	<6.47	<8.23	11.8	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromodichloromethane	270		<6.28	<6.18	<6.47	<8.23	255	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromoform	62000		<6.28	<6.18	<6.47	<8.23	995	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Bromomethane	1500		<6.28	<6.18	<6.47	<8.23	2890	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Carbon disulfide	160000	3800	<6.28	<6.18	<6.47	<8.23	28.5	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Carbon tetrachloride	250	2	<6.28	<6.18	<6.47	<8.23	7.45	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Chlorobenzene	59000	450	<6.28	<6.18	<6.47	<8.23	23.4	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Chloroethane	2100000	16000	<6.28	<6.18	<6.47	<8.23	9.5	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Isopropylbenzene			<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	7.45
m,p-Xylene	390000	6000	<12.6	<12.4	<12.9	3320	<129	<11.2	<10.2	<11.7	<59.2	<10.2	<488	<217	<1140	<13.8	<129	<15.7	<16.1	<99.9	<113	<433	<10.1	<19.4	<11.4	<13.3	<14.3	<134	<114	<13.1	<12.7	<12
Methyl ether ketone	5600000	16000	<31.4	<30.9	<32.4	<41.1	9.05	<28.1	<25.6	<29.3	<740	<25.5	<6100	<2710	<1430 0	<34.4	<1610	<39.2	<40.3	<1250	<1410	<5410	<25.3	<48.5	<28.5	<33.3	<35.7	<1670	<1430	<32.6	<31.7	<30
Naphthalene	3600	210	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	23.4
n-Butylbenzene		4300	<6.28	<6.18	<6.47	<8.23	625	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
o-Xylene	430000	60000	<6.28	<6.18	<6.47	897	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
sec-Butylbenzene		3300	<6.28	<6.18	<6.47	<8.23	692	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	48	28.5
tert-Butylbenzene		3400	<6.28	<6.18	<6.47	<8.23	48	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Tetrachloroethene	550	5	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	625	692	<6.53	<6.35	<5.99
Toluene	820000	5500	<6.28	<6.18	<6.47	<8.23	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	9.05	<66.9	<57.2	<6.53	<6.35	<5.99
Trichloroethene	2800	18	<6.28	<6.18	<6.47	120	394	29	87	<5.86	256	86.9	3320	897	5710	<6.88	341	25.7	11.8	255	995	2890	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	9.5
Trichlorofluoromethane	160000	24000	<6.28	<6.18	<6.47	29	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217	<5.05	<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99
Vinyl chloride	60	0.19	<6.28		<6.47	14.9	<64.6	<5.62	<5.11	<5.86	<29.6	<5.09	<244	<108	<572	<6.88	<64.4	<7.85	<8.07	<50	<56.5	<217		<9.69	<5.71	<6.67	<7.15	<66.9	<57.2	<6.53	<6.35	<5.99

Notes:

All samples were analyzed for volatile organic compounds by USEPA method 8260b.

Only detected compounds shown.

Samples were collected in April 2010.

µg/kg - micrograms per kilogram.

-- - no standard.

< - constituent detected below the laboratory reporting limit shown.

Bold - constituent detected above the laboratory reporting limit.

Constituent detected concentration exceeds North Carolina Department of Environmental and Natural Resources, Inactive Hazardous Sites Branch, Preliminary Health-Based Remediation Soil Goals (January 2010). Constituent detected concentration exceeds North Carolina Department of Environmental and Natural Resources, Inactive Hazardous Sites Branch, Protection of Groundwater Remediation Soil Goals (January 2010).

ΑΞϹΟΜ

Table 3.2Summary of Groundwater Analytical ResultsNCDOT - Former Asphalt Plant SitePittsboro, North Carolina

Analyte	2L Standard	48MW-1	48MW-2	48MW-3	48MW-4R	48MW-5	48MW-10	48MW-11R	48MW-12	48MW-13	48MW-14	48MW-15	48MW-16	48MW-17	48DW-1	48DW-2	48DW-3			48DW-5 (80 ft bls)	(100 ft bls)
		04/27/10	04/26/10	04/26/10	04/26/10	04/27/10	04/27/10	04/27/10	NA	04/27/10	04/27/10	04/27/10	07/06/10	04/26/10	04/26/10	04/27/10	04/27/10	04/27/10	07/09/10	07/09/10	07/09/10
1,1,1-Trichloroethane	200	10	<5.0	2.0 J	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	4.9 J	<5.0	<5.0	<20	<20	<20
1,1-Dichloroethane	6	4.7 J	<5.0	6.5	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.0 J	<80	<1	<5.0	5.7	<5.0	<5.0	<20	<20	<20
1,1-Dichloroethene	7	48	<5.0	7.1	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	9.6	84.8	<1	<5.0	22	<5.0	<5.0	30.2	27.4	28.2
1,3,5-Trimethylbenzene	400	<5.0	<5.0	<5.0	<5.0	2.6 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Acetone	6000	<50	<50	<50	<50	<50	<50	<50	NS	9.8 J	<50	<50	<2000	<25	21 J	<50	<50	<50	<500	<500	<500
cis-1,2-Dichloroethene	70	3.4 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.4 J	<80	<1	<5.0	7.4	<5.0	<5.0	<20	<20	<20
Ethylbenzene	600	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	0.46 J	<20	<20	<20
Isopropylbenzene	70	<5.0	<5.0	<5.0	<5.0	1.9 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
o-Xylene	500	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	3.0 J	<20	<20	<20
sec-Butylbenzene	70	<5.0	<5.0	<5.0	<5.0	2.7 J	<5.0	<5.0	NS	<5.0	<5.0	<5.0	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Tetrachloroethene	0.7	9.5	<5.0	5.0	<5.0	<5.0	<5.0	<5.0	NS	<5.0	<5.0	3.5 J	<80	<1	<5.0	<5.0	<5.0	<5.0	<20	<20	<20
Trichloroethene	3	150	<5.0	3.5 J	<5.0	<5.0	<5.0	2.0 J	NS	<5.0	<5.0	15	1060	<1	<5.0	42	<5.0	2.2 J	313	283	356

Notes:

All samples were analyzed for volatile organic compounds by USEPA method 8260b.

2L Standard- Title 15A North Carolina Administrative Code (NCAC) Subchapter 2L Groundwater Quality Standards (January 2010).

J - estimated value detected below reporting limits and above the method detection limit.

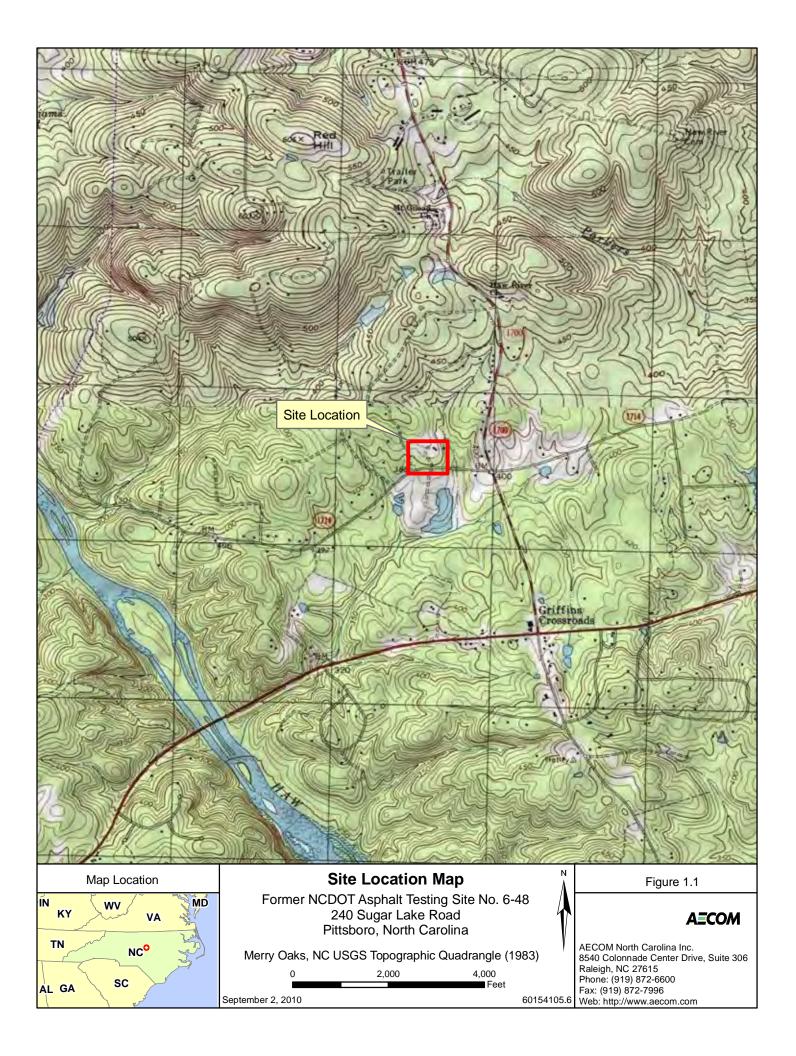
< - constituent was not detected above the quantitation limit.

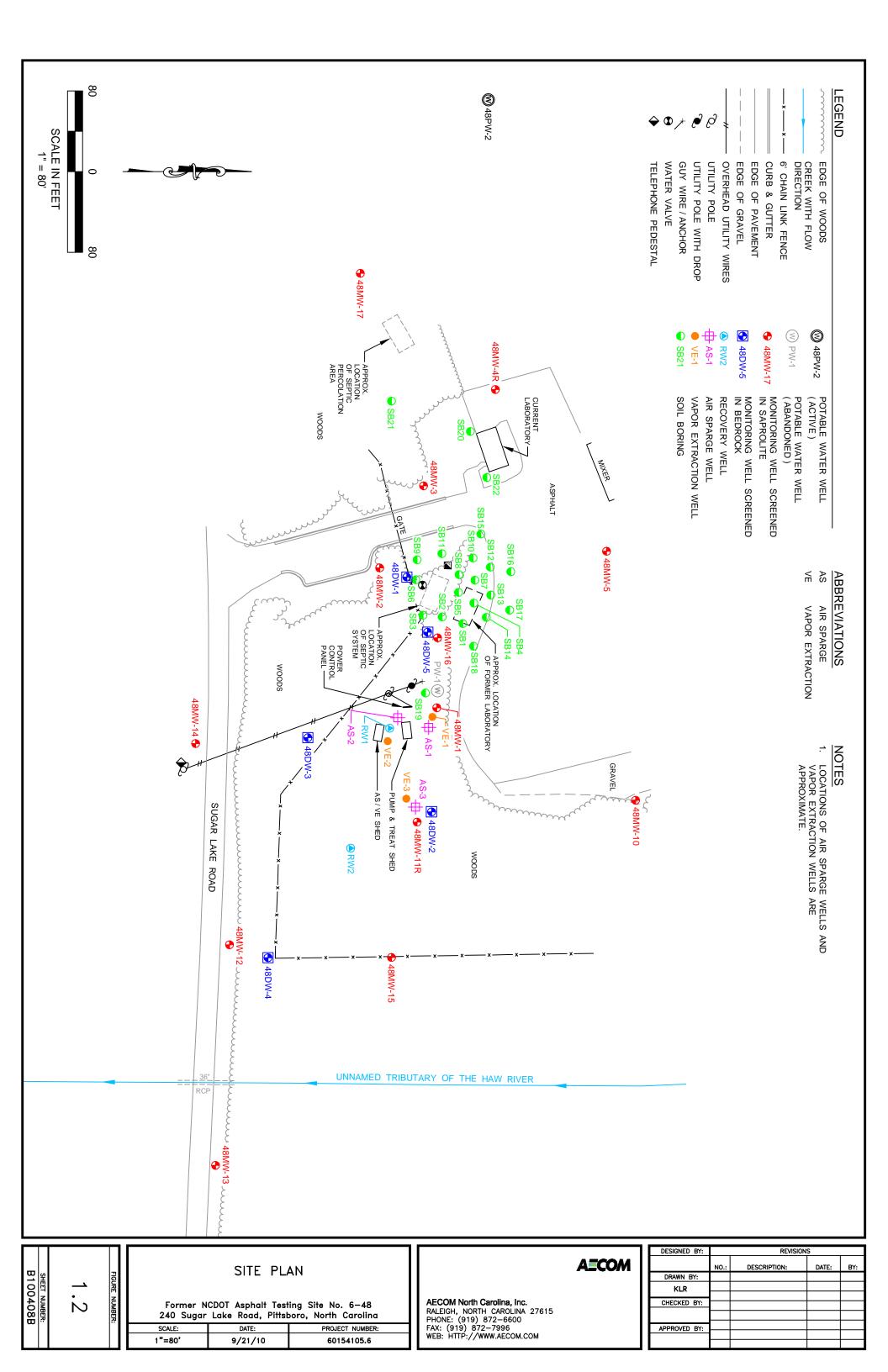
NS - Well not sampled. Water level too low to sample.

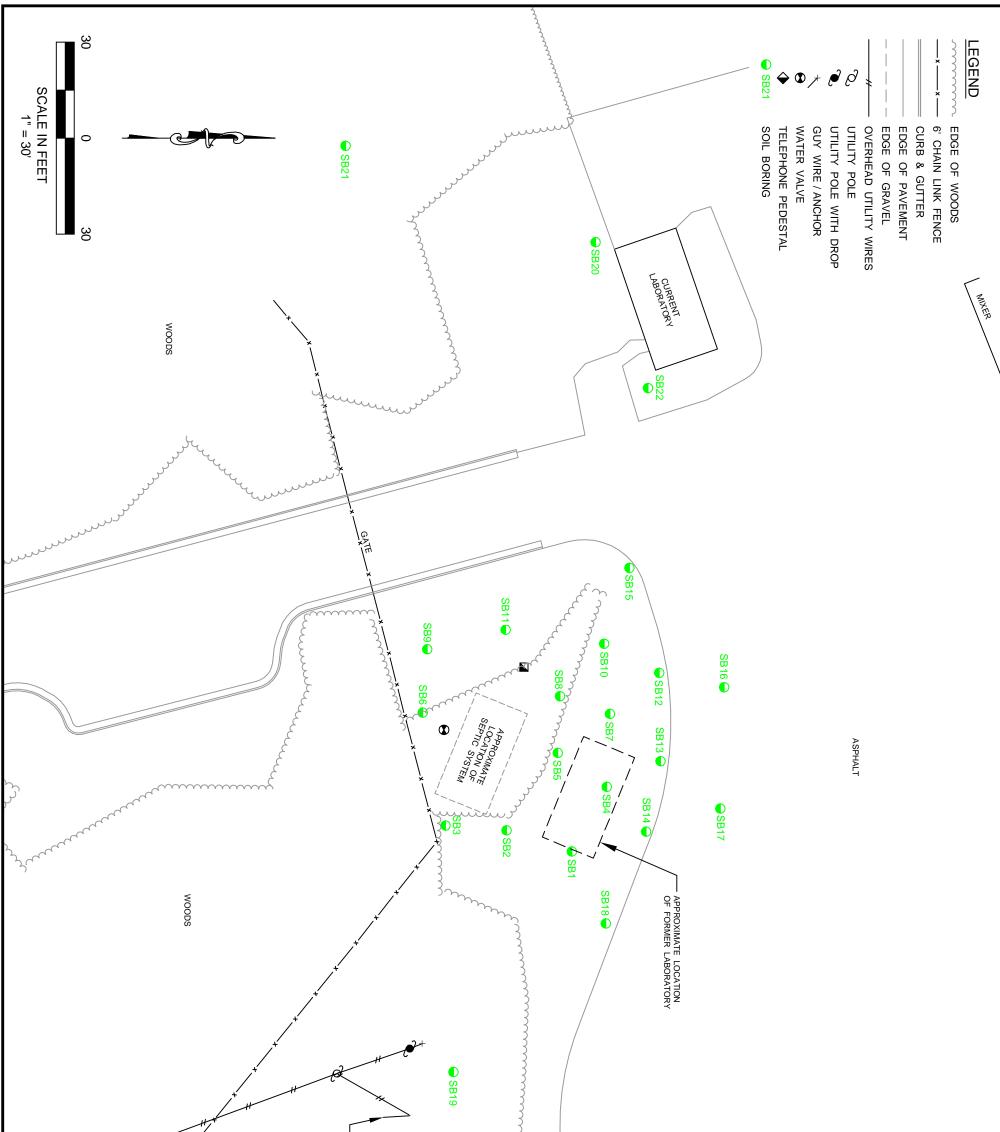
All results are reported in micrograms per liter (µg/L).

Constituents detected above NCAC 2L Groundwater Standard are shaded.

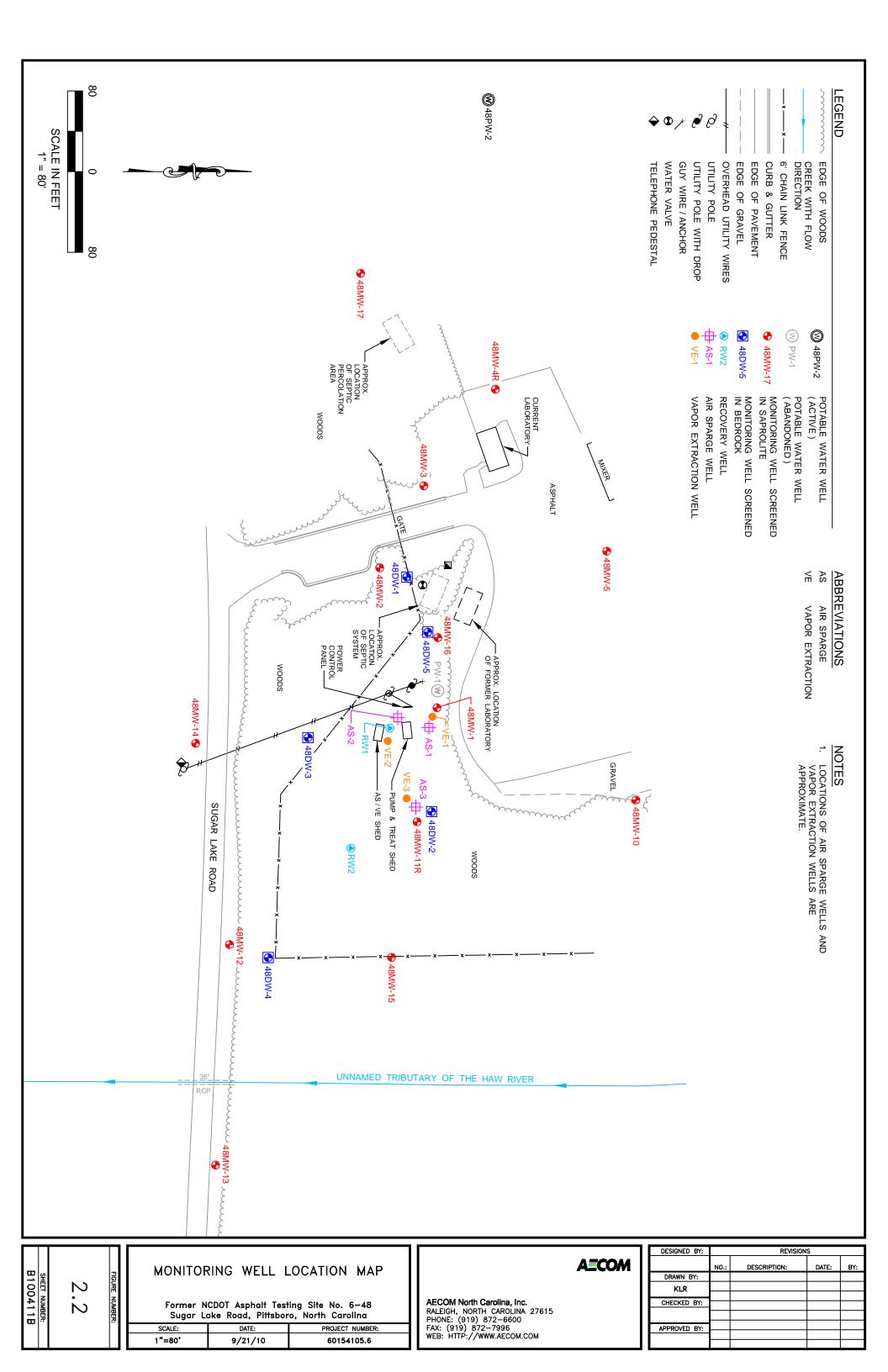
ΑΞϹΟΜ

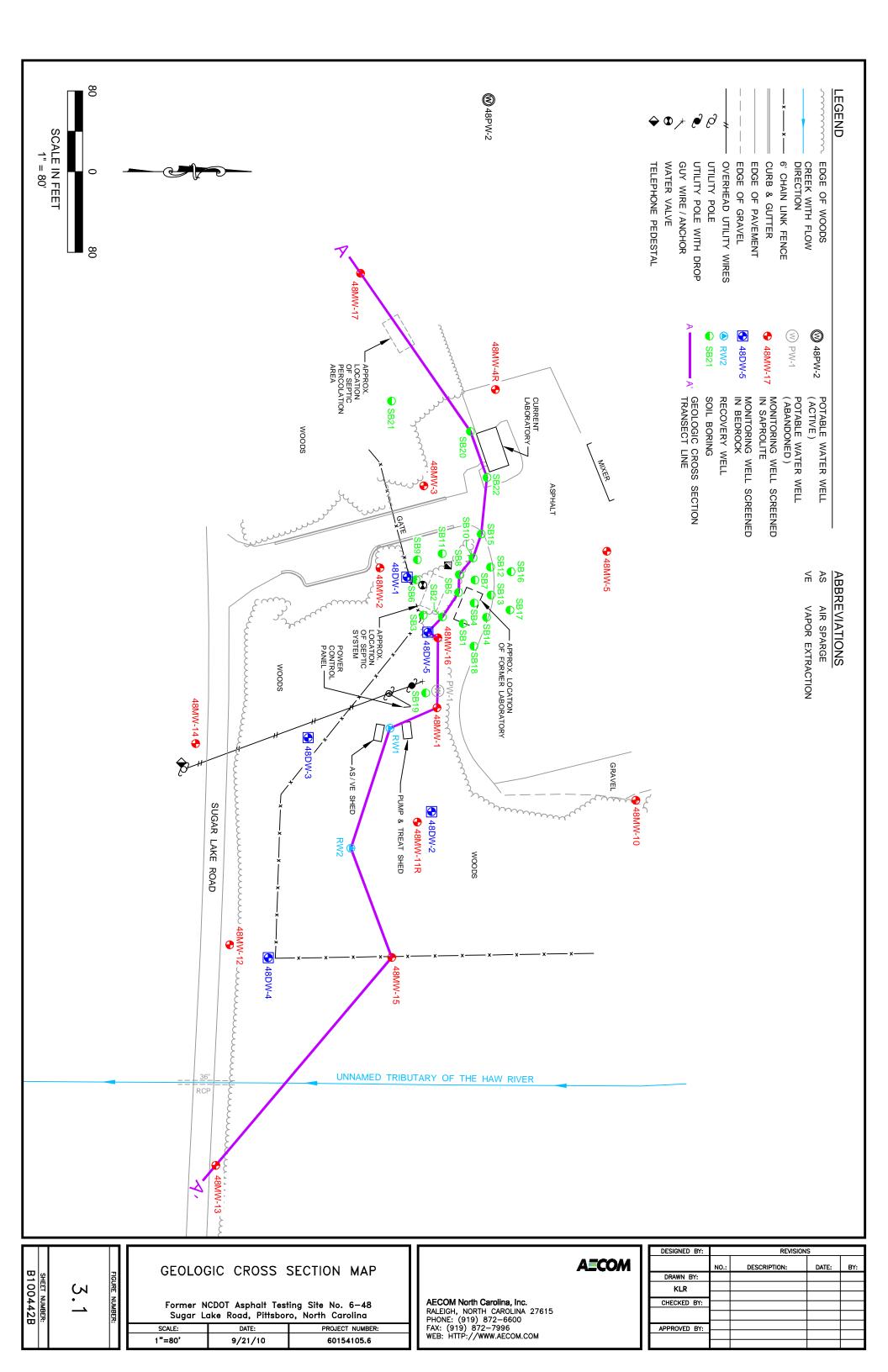


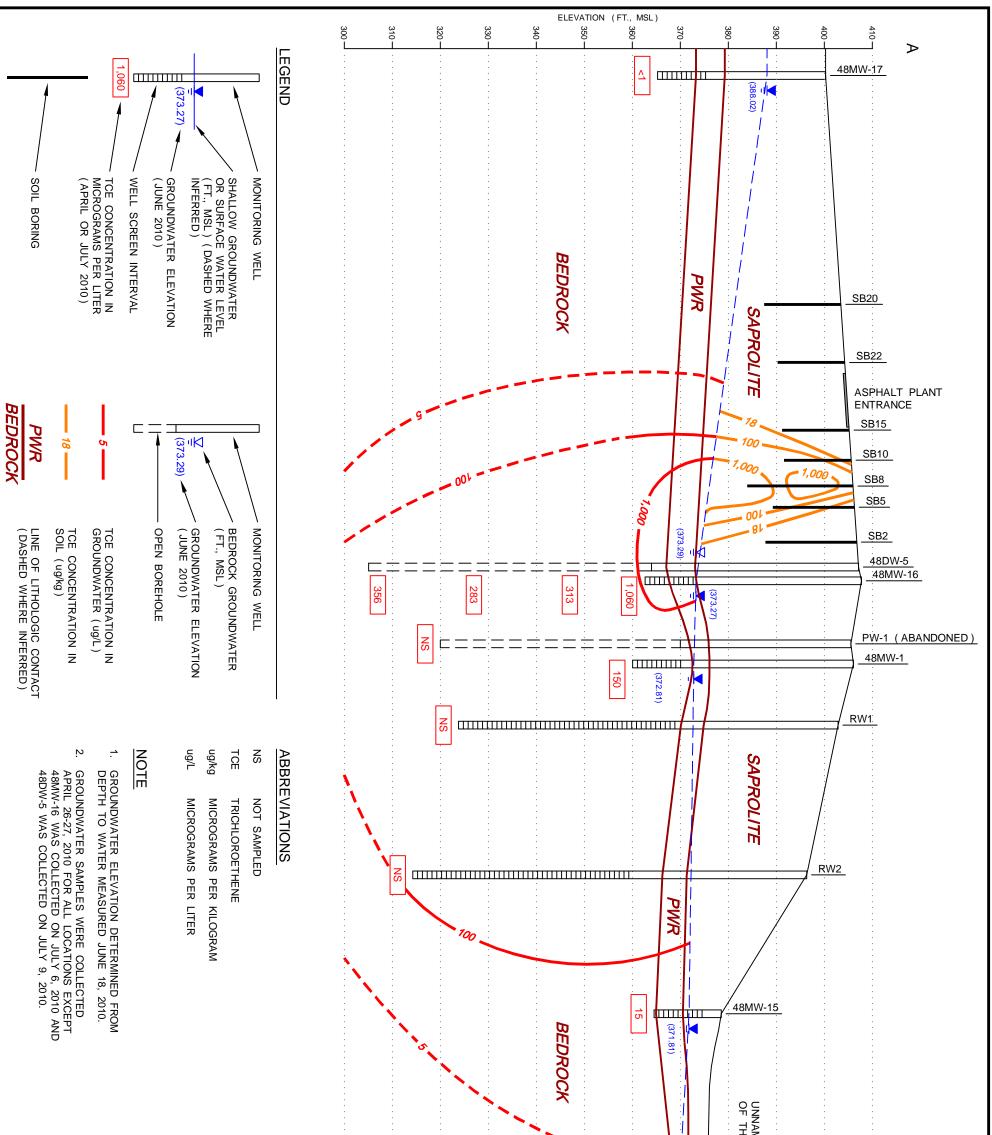

Table 3.3 Summary of Field Parameters NCDOT - Former Asphalt Plant Site Pittsboro, North Carolina

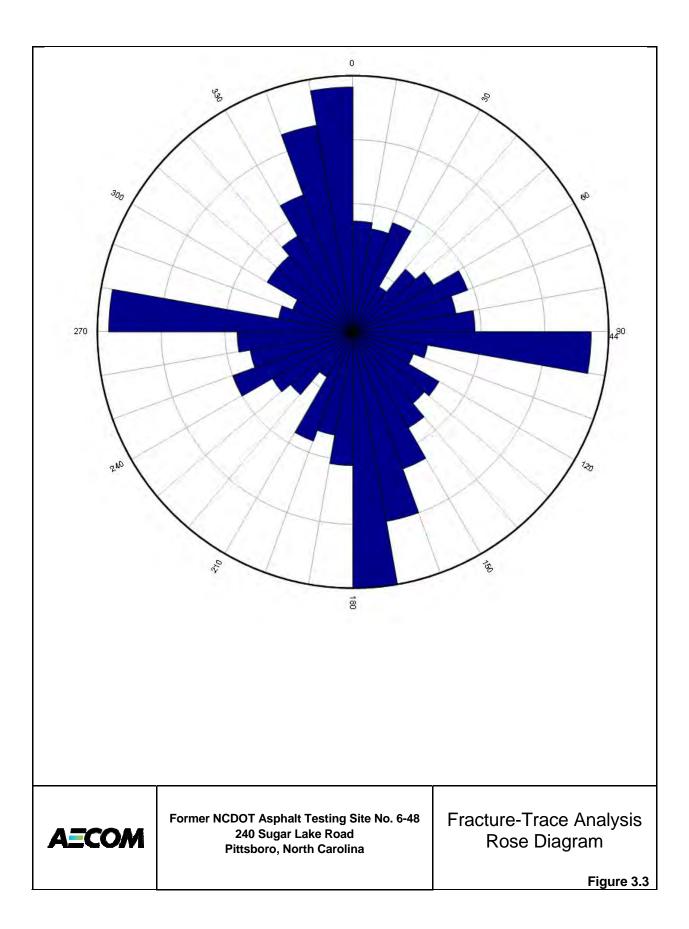

Monitoring Well	Sampling Date	Temperature (⁰C)	pH (SU)	Dissolved Oxygen (mg/L)	Specific Conductivity (umhos/cm)	Oxidation- Reduction Potential (mV)
48MW-1	04/27/10	17.43	6.18	0.40	261	101.1
48MW-2	04/26/10	18.34	5.81	1.93	187	111.8
48MW-3	04/26/10	17.82	6.13	1.10	251	130.9
48MW-4R	04/26/10	18.36	5.80	1.86	349	147.7
48MW-5	04/27/10	19.92	6.06	1.18	310	-54.6
48MW-10	04/27/10	17.98	5.63	1.75	130	230.9
48MW-11R	04/27/10	15.27	6.37	5.97	192	212.3
48MW-13	04/27/10	16.21	7.22	3.21	385	155.7
48MW-14	04/27/10	16.40	6.72	4.84	233	82.7
48MW-15	04/27/10	14.08	6.00	0.77	231	93.8
48MW-16	07/09/10	19.05	5.98	0.33	192	303.4
48MW-17	07/09/10	15.86	4.07	2.09	200	442.5
48DW-1	04/26/10	21.74	6.37	0.68	74	160.7
48DW-2	04/27/10	15.82	7.10	1.08	399	239.7
48DW-3	04/27/10	16.36	7.89	0.40	261	154.7
48DW-4	04/27/10	15.63	7.88	1.33	294	-10.7

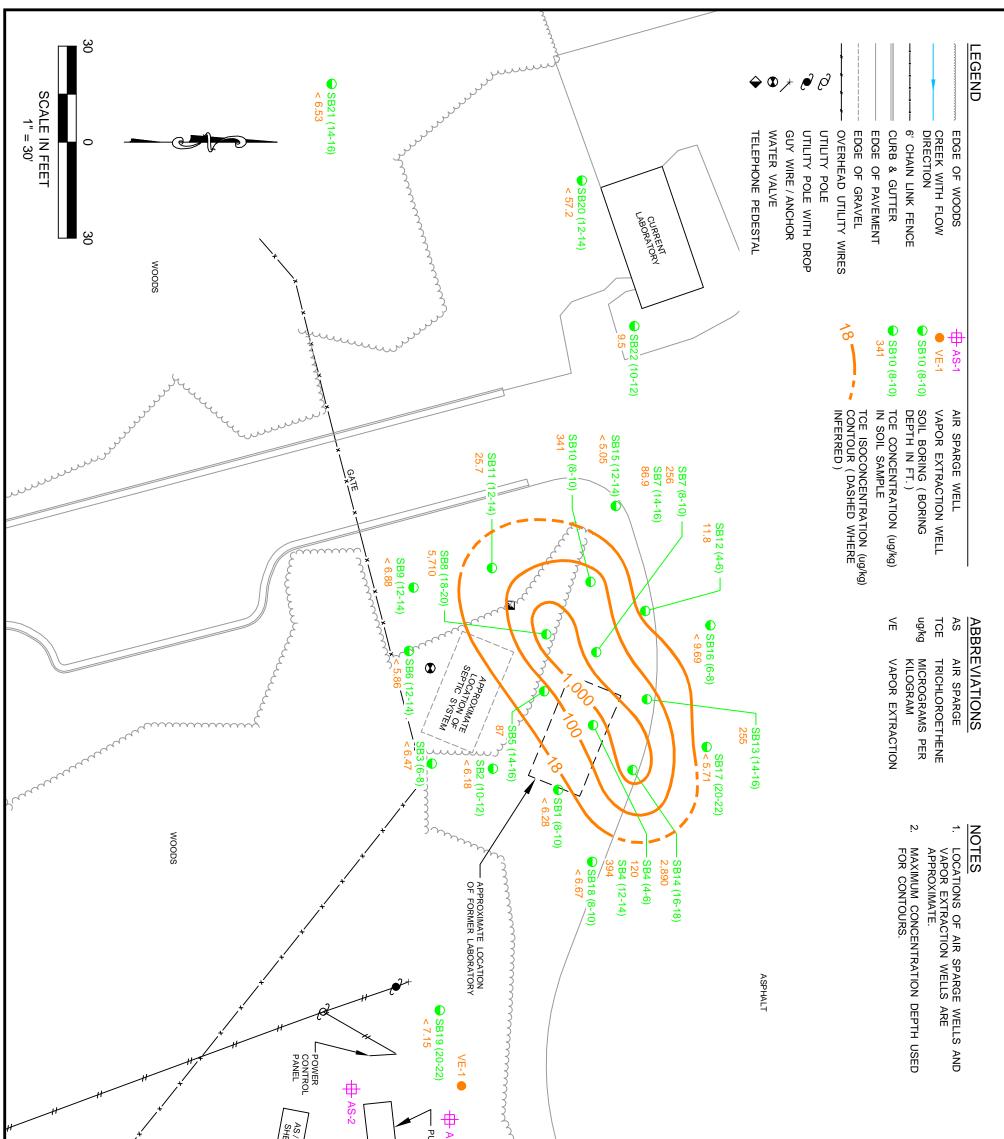
Notes:

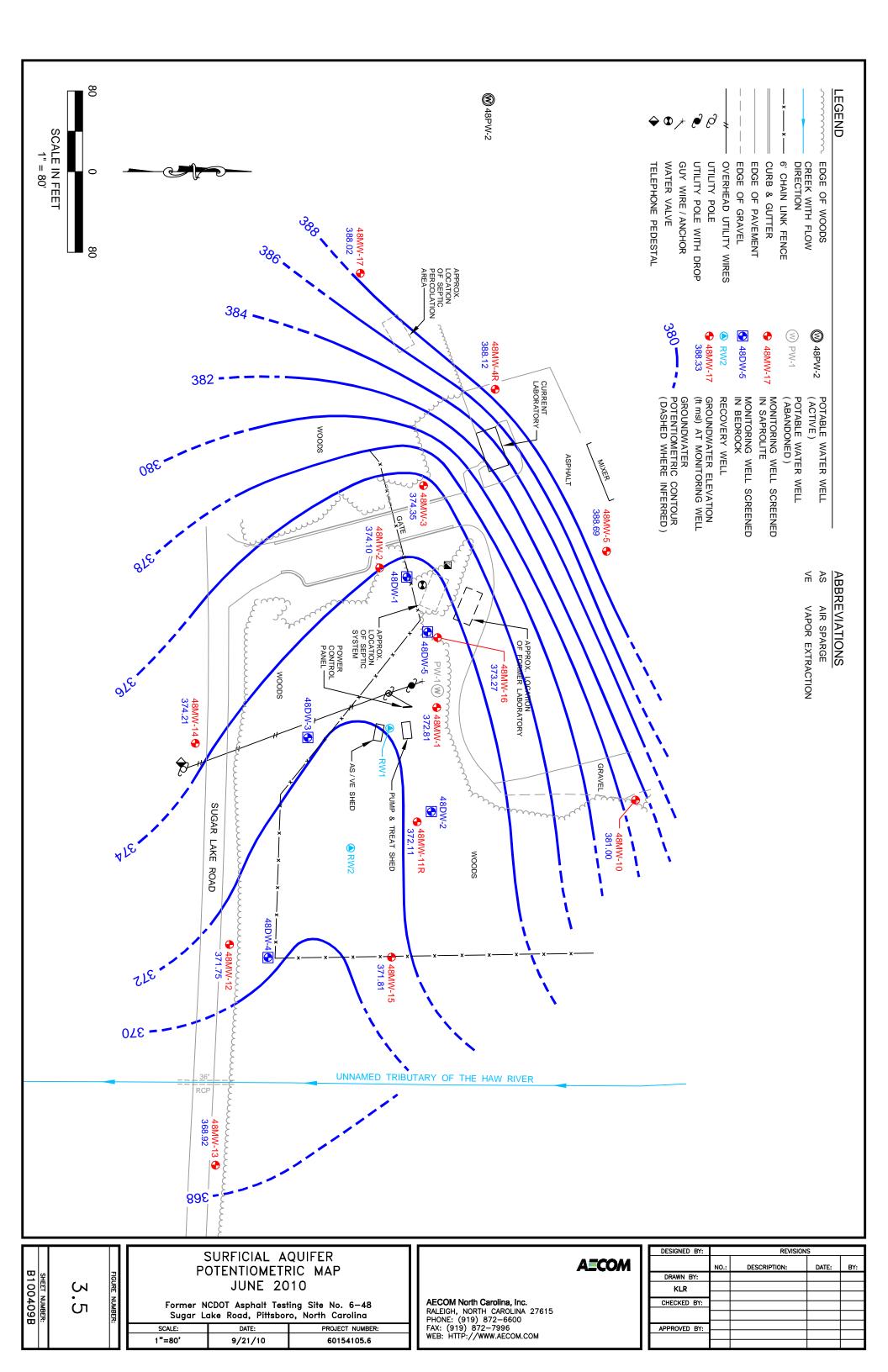

°C - degrees Ceslius mg/L - milligrams per liter mV - millivolts SU - standard units umhos/cm - microsiemens per centimeter Figures

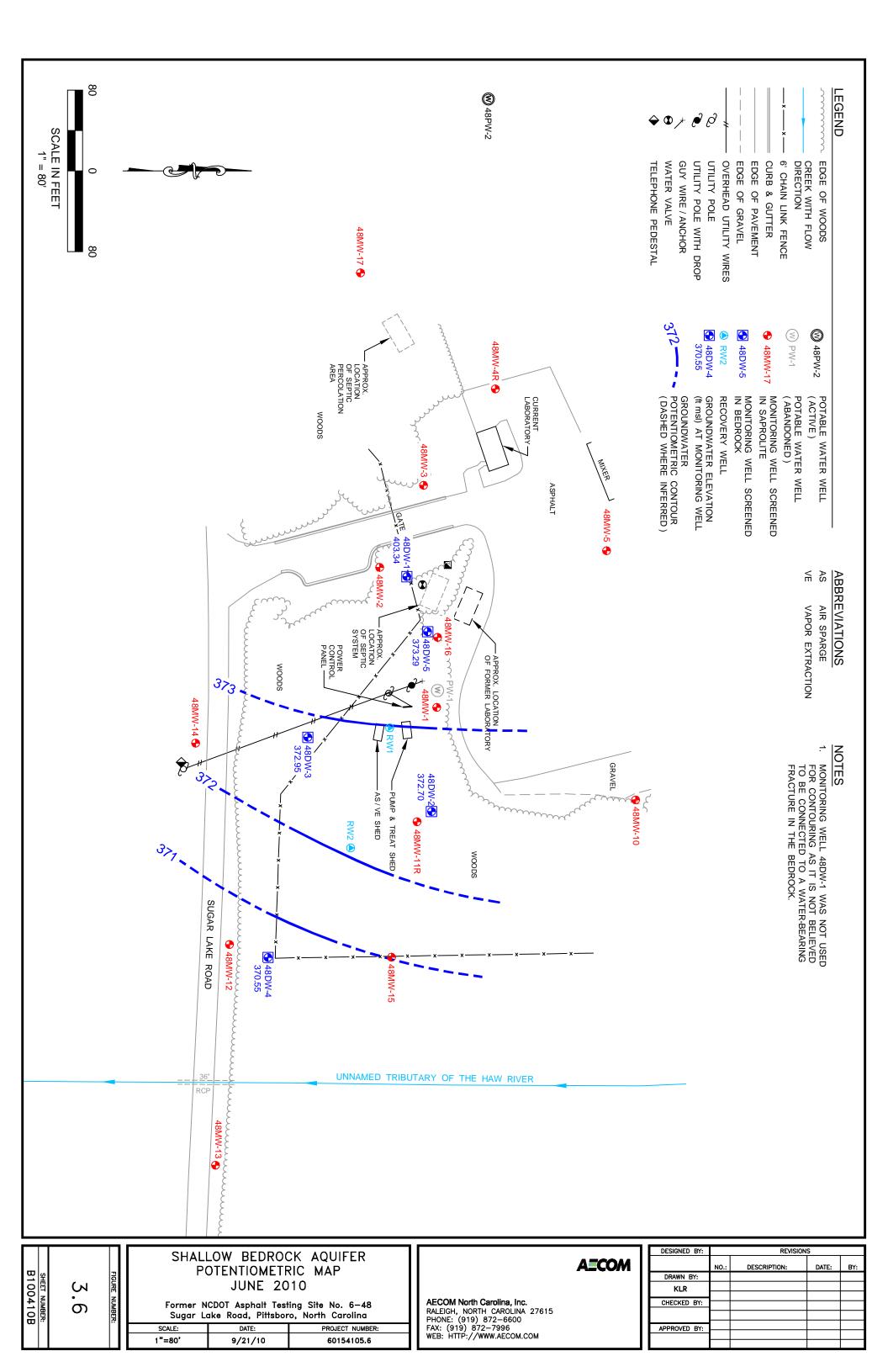


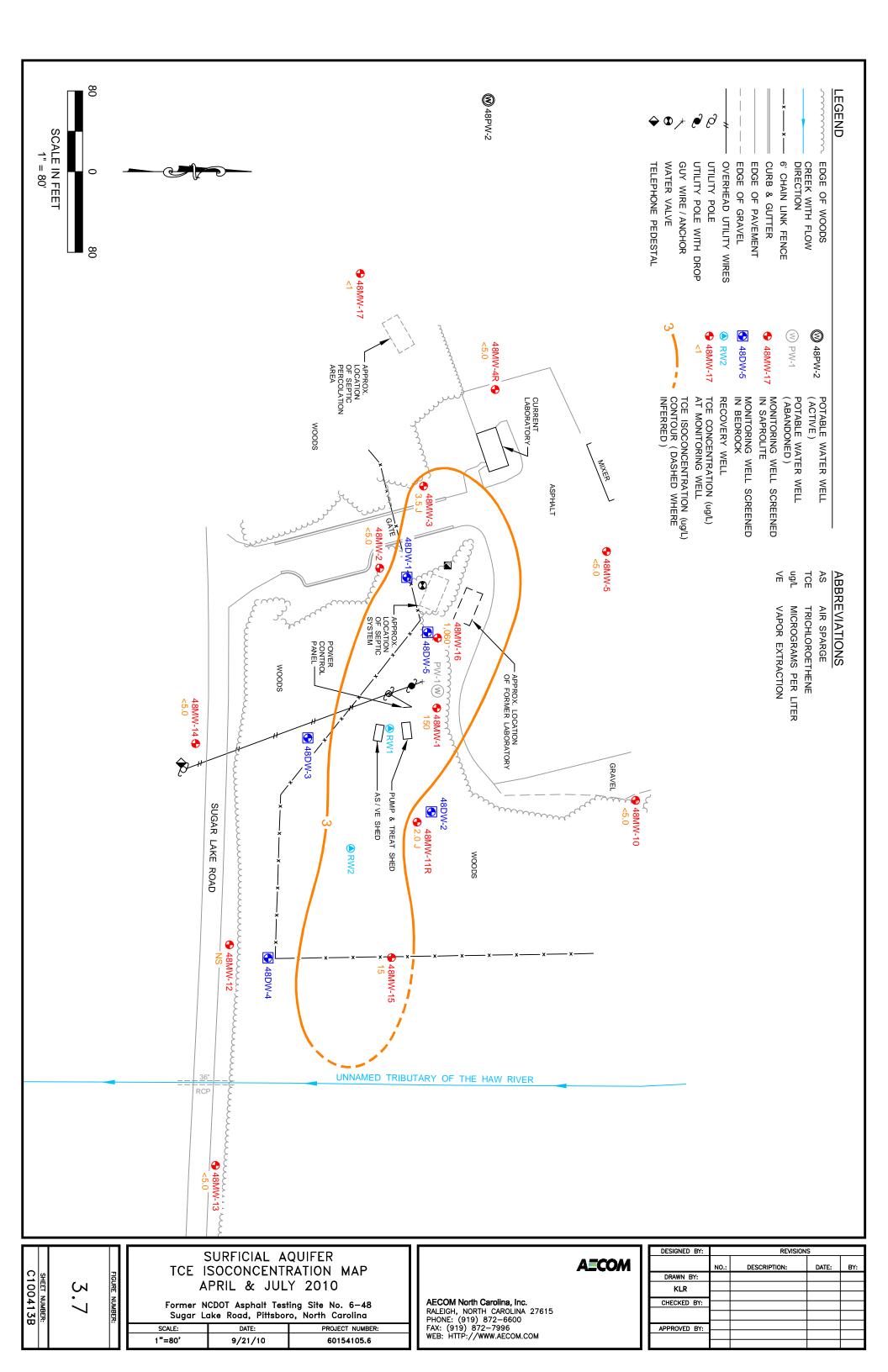


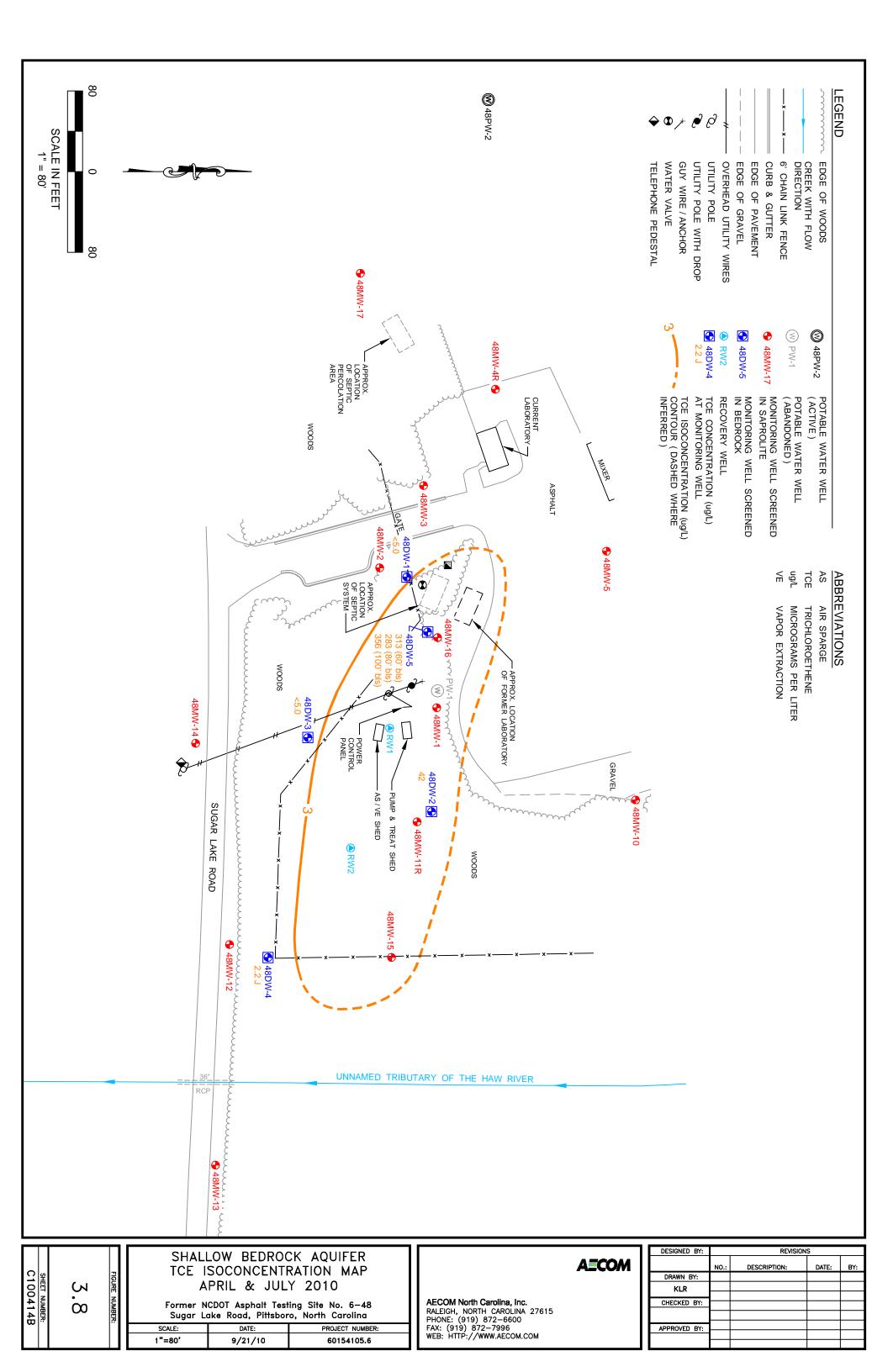

		AS / VE SHED		PUMP & TREAT SHED				GRAVEL		
FIGURE NUMBER: 2.1 SHEET NUMBER: B100412B	Former NCDOT Sugar Lake R SCALE:	Asphalt Testi	ATION MAP ng Site No. 6–48 o, North Carolina PROJECT NUMBER: 60154105.6		AECOM North Carolina, Inc. RALEIGH, NORTH CAROLINA 27615 PHONE: (919) 872–6600 FAX: (919) 872–7996 WEB: HTTP://WWW.AECOM.COM	DESIGNED BY: DRAWN BY: KLR CHECKED BY: APPROVED BY:	NO.:		DATE:	BY:



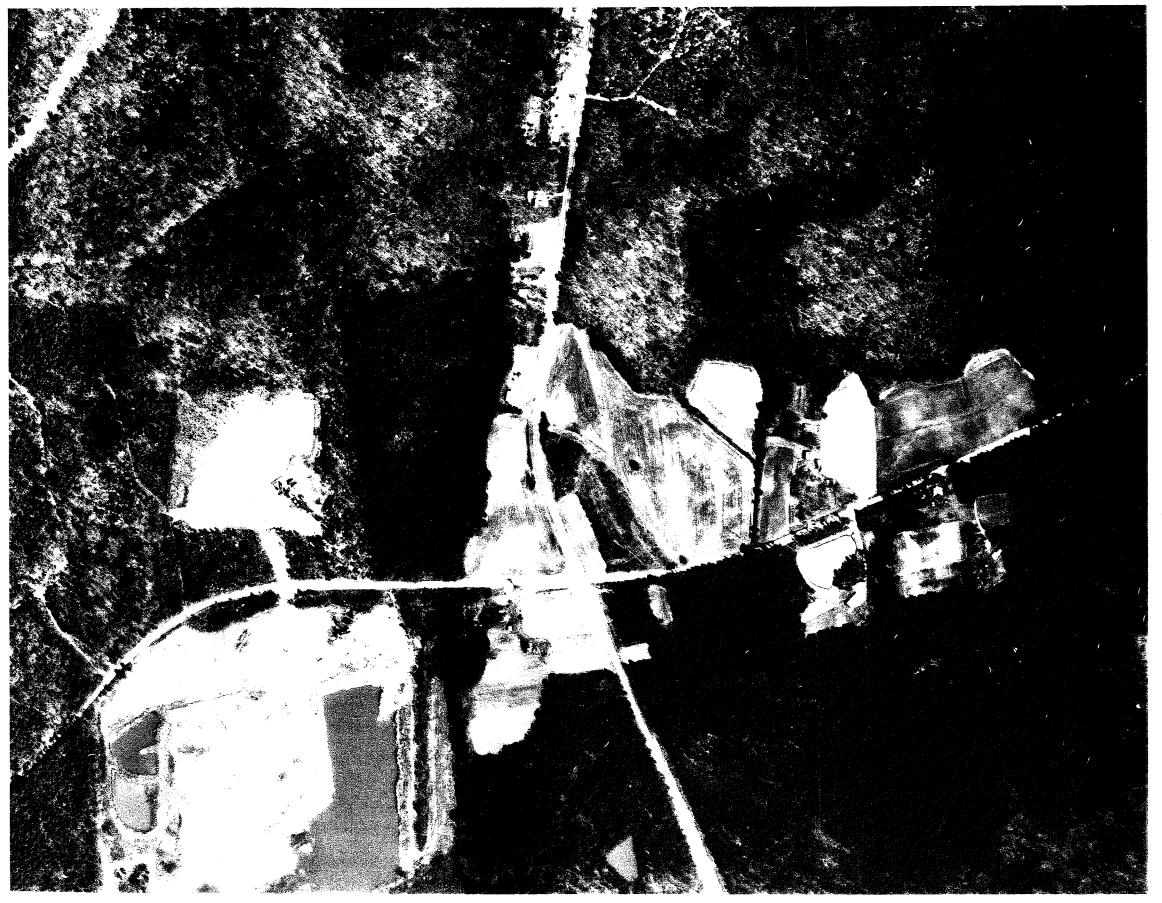


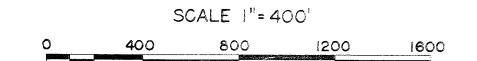

VERTICAL SCALE: 1: - 0 VERTICAL SCALE: 1: - 0 SCALE: 1: - 0 SCA





*	, t	VE-2	AS-1 PUMP & TREAT SHED AS-3						
3.4 sheet number: C100415B	FIGURE Former NCDOT	JUNE 2010 Asphalt Testing	Site No. 6-48	AECOM North Carolina, Inc. RALEIGH, NORTH CAROLINA 27615	DESIGNED BY: DRAWN BY: KLR CHECKED BY:	NO.: DI	REVISION:	S DATE:	BY:
58 58	SCALE:	Road, Pittsboro, N DATE: 9/21/10	orth Carolina PROJECT NUMBER: 60154105.6	PHONE: (919) 872–6600 FAX: (919) 872–7996 WEB: HTTP://WWW.AECOM.COM	APPROVED BY:				





Appendix A

Aerial Photographs

4/1/1977

Appendix B

Boring Logs

\$	w-16	48 M		NC DO		•		Client: Project N				
			Pittsboro, North Carolina	ike Road, I	240 Sugai			Site Loca		ON	EC	Δ
		Sheet:	Elevation:	1	DHSA +	1. 113E"		Coordina	_			
		Monitoring Well Screened Interval	Boring Diameter:	r hummer	1:+ Spoon							
<u> </u>		Depth of Boring:	Date/Time Started:	1	Logged By: M	~ 20	Type(s):	Sample I			-	Veather
	-15	Water Level:	Date/Time Finished:		Ground Elevat				GEX	1041	Contrac	
		Truter Level.	Duter time Pinishea.		Ground Eleval							<i>n uung</i>
Lab Sample	Lab Sample ID		lor, size, range, MAIN COMPO content, structure, angularity, m , and Geologic Unit (If Known)	moisture		U.S.C.S	Headspace (ppm)	Recovery (inches)	Blows per 6"	Sample Depth (ft)	Geologic sample ID	Depth (TU)
	5	red Superide	n SILT witchay, no preserve, dry	h-brow textu	65-7 or:	mi		15	3-4 7		9 4	
		+CLAY	ye SILT w/minor SANL z texture, dry			ML		18/-	56-6		SAP	
			SILT, dry	rist-tur	15-17 yea	ML		146/ /14	7-840		sh ^p	
		v vertical	W/preserved weathered, ne which suprolite, dry	above actives i	20-22-1	ML		19,	4-5-5		SA	
			ge SANADE Fine SAND 7	-				12/18	家山		PWR	
		I PWR 3.	ruge Meta vokanic rack zerse gravel rack fraguen	lowish or and to ci lsy	30-32				25-5%		pwr	
			~5 ~) 1)	PWR WR(or uck (gr	#33-3 36-37 37-40						Jul vet	
	•	ing	ruge) rug dist)	NR los oct (g	40-41 41-45							·
												*
					-16							
ng	r while drillin	e Depth to groundwate	Date Ti		615 213	1 ~ 34' 33'	0	Refish	ji Ach	25 [#] 10	s: 4,7	NOTE
								Λ	7			
								$\sum I_{i}$	M			

				Client:			NC DOT		
				Project I	Numher	:	10.001	48-MW-	\$ 17
		<u> </u>		Site Loci		-	240 Sugar Lake Road, Pittsboro, North Carolina		
A	ΞC	ОЛ	Λ	Coordin				Sheet:	
			-			1. 475"		Monitoring Well In	nstalled.
				Sample				Screened Interval:	
Want.				Sample	rype(s):			Depth of Boring:	
Weather			CEY						<u>ر</u> د
Drilling	Contrac		GEX				Ground Elevation: Date/Time Finished:	Vater Level:	
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (inches)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size, range, MAIN COMPONEN component(s), moisture content, structure, angularity, maxim odor, and Geologic Unit (If Known)	ium grain size,	Lab Sample ID Lab Sample Depth (Ft.)
	<i>Ş,</i> Ų		6-6-7	18/		m	5-75Reddohroninge SIKTY CLAY soil, dr		
	Sep		7-7-8	18/ 18/		ML	10-17-5 Hyellowistroning SILT w/ muhor 5. dry	and	
	54		7-y-K	18, /18		pre	15-16.5 Hgry to yellowish orange SILT: dry	saprolite.	
	PWR		20450	15/		sn	20-21.5 Hyzerish gray to yellinish orange Fine SAND #/SILT FWR	2	
	-		۲۰۰	•			21-27 It been RWR dist withys 27-33 It gray rock dust cuttings, day 33-35 It gray send cuttings, net		
					• .				
	110	e" 10	HSA , water	-fusel	Q. •	21161	Date Time [Depth to groundwater	while drilling
NOTE	ES: 4.7	່ມ່	trane 1		101	1.	•		
	Det	04h to	water	6		כוס.			
		Checked	hv			Date:			
		Спескед	<u>.</u>			Date:			

~>

48DW-5

		2.11		Client:	λ <i>Γ</i> , 7		NC DOT	Type II will			
				Site Lo	<u>Number</u> cation:		240 Sugar Lake Road, Pittsboro, North Carolina	- Τγρε4	t w	11	
A		ĊΟ/	Ν	Coordi			Elevation:	Sheet:			
-				Drilling	g Methoa	1: 4.25	5" 10 HSA & Air hum	Monitoring Well	Installed:		
	<u> </u>	·. · · · · ·		Sample	Type(s):		Boring Diameter:	Screened Interva			
Weather			CEV			.	Logged By: Date/Time Started:	Depth of Boring:			
Drilling			GEX				Ground Elevation: Date/Time Finished:	Water Level:	-		
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (inches)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size, range, MAIN COMPON component(s), moisture content, structure, angularity, ma odor, and Geologic Unit (If Known)	ENT, minor ximum grain size,	Lab Sample ID	Lab Sample Depth (Ft.)	
							0-27'bls Suprolitie 27-34'bls RWR 34-38'bls Rock 38-40'bls PWR/Frictie zone (White 40-43'bls PWR/Frictie zone (White 43-52'bls Unfinited Poch, noch dust, It 143-52'bls Unfinited Poch, noch dust, It 143-53'bls Water Friedres; ## gray Water, 58'-61'bls Water Friedres; Water changed H gray to It Brown a increasel, soft zone rock, making goal m 79-80'bls Minor water Friedre, weder turnel 80-102'bls No Friedras observed	grad a dist color from functional rate of needboal adar.	B)		
										,	
NOTES	81776	25"1D 8" air	HSA R hanner hanner	efusn) From From	Q 20 29 to 2 43'to	1'6 5 13'6 5 102'6 5	Date Time	Depth to groundwater t	vhile drilling		
		0				_					
		Checked by	·		<u>I</u>	Date:					

Ś

Appendix C

Well Construction Records

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

1. WELL CONTRACTOR:				30		
JASON MANTAK				3.0 FT. A		
Well Contractor (Individual) Name				ce with 15A NCA		
GEOLOGIC EXPLORATION, INC.				METHOD		
Well Contractor Company Name		f. DISINFEC	TION: Type	N/A	Amount	N/A
STREET ADDRESS 176 COMMERCE BLVD		g. WATER Z	ONES (dept	h):		
	625	From	To	From	To	
	D Code	From	To	From	To	
(704)- 872-7686		From	To	From	То	
Area code- Phone number		6. CASING:			Thicknes	s/
2. WELL INFORMATION:		Erom 0.0	Depth	Diameter Ft2 INCH	Weight SCH 40	Material PVC
SITE WELL ID #(if applicable) 48-MW-16		From		Ft		
				Ft		
DWQ or OTHER PERMIT #(if applicable) WELL USE (Check Applicable Box) Monitoring ☑ ML		7. GROUT:	Depth	Material		Method
Industrial/Commercial _ Agricultural _ Recovery _	· · · · · · · · · · · · · · · · · · ·	.0 Erom	Ta 30.0	_ Ft. Portland ben	tonite	
		From	_ 10 _ To	_ Fl _ Ft		
Irrigation Other (list use)		From	 	_ Ft		
DATE DRILLED 06/09/10		8. SCREEN:				Material
	PM 🗖			_ Ft2.0in.		
3. WELL LOCATION:		From	_ 10 To	_ Ftin.	in.	<u></u>
CITY: PITTSBORO COUNTY C		From			in.	
240 SUGAR LAKE ROAD 27312		9. SAND/GRAV				
(Street Name, Numbers, Community, Subdivision, Lot Not Not OPOGRAPHIC / LAND SETTING:	o., Parcel, Zip Code)	Depth		Size		
□Slope □Valley □Flat □Ridge □ Other				Ft20-40		
(check appropriate box)	······································			_ Ft		
	ay be in degrees,	From		_ Ft		
111	inutes, seconds or a decimal format	10. DRILLING LO	G	–	–	
Latitude/longitude source: GPS Topogr		From To		Formatic ORANGE CLAY	n Descript	ION
(location of well must be shown on a USGS topo	map and			TAN SILTY CLAY		
attached to this form if not using GPS)		32.0 36.0		BROWN PARTIA		ERED ROCK
4. FACILITY- is the name of the business where the well is locate	d.	<u>36.0 37.0</u>		TAN SILTY CLAY	/	
FACILITY ID #(if applicable)		37.0 40.0		GRAY ROCK		
NAME OF FACILITY ST WOOTEN				TAN SILTY CLA		
STREET ADDRESS240 SUGAR LAKE ROAD	·	41.0 45.0	<u> </u>	GRAT ROCK	·	
PITTSBORO NC	27312					
City or Town State	Zip Code					
CONTACT PERSON_NCDOT				·····	·	
MAILING ADDRESS 4809 BERYL ROAD						
RALEIGH NC	27606	11. REMARKS:				
City or Town State Z	ip Code	BENTONITE SEAL	FROM 30.0	TO 33.0 FT		
() Area code - Phone number						
		I DO HEREBY CERTIFY				
5. WELL DETAILS:		15A NCAC 2C, WELL RECORD HAS BEEL	ONSTRUCTION	N STANDARDS	D THAT A COP	Y OF THIS
a. TOTAL DEPTH: 45.0 FEET		NLOOKU TAS BEEL			r	06/11/10
b. DOES WELL REPLACE EXISTING WELL? YE	S NO 🛛	SIGNATURE OF C	ERTIFIED	WELL CONTR		DATE
c. WATER LEVEL Below Top of Casing: 35.0	FT.	JASON MANTA				5.012
(Use "+" if Above Top of Casing)		PRINTED NAME C				/ <u>FL</u>
						· _ L L L

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center - Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

d. TOP OF CASING IS <u>3.0</u> FT. Above Land Surface* *Top of casing terminated at/or below land surface may require
- a variance in accordance with 15A NCAC 2C .0118.
e. YIELD (gpm): <u>N/A</u> METHOD OF TEST <u>N/A</u>
f. DISINFECTION: Type_N/A Amount_N/A
g. WATER ZONES (depth):
From To To
- FromTo ToTo
FromToToTo
6. CASING: Thickness/
Depth Diameter Weight Materi From 0.0 To 25.0 Ft. 2 INCH SCH40 PVC
From To Ft
From 0.0 To 18.0 Ft. Portland bentonite SLURRY
FromToFt FromToFt
8. SCREEN: Depth Diameter Slot Size Mater
From 25.0 To 35.0 Ft. 2.0 in010 in. PVC
FromToFtin in
e 9. SAND/GRAVEL PACK: Depth Size Material
From 22.0 To 35.0 Et 20-40 FINE SILICA SAND
FromToFt
FromToFt
From To Formation Description
0.0 10.0 ORANGE CLAY
10.0 20.0 TAN SILTY CLAY
20.0 35.0 GRAY ROCK/TAN SILTY CLAY LAYERS
11. REMARKS:
BENTONITE SEAL FROM 18.0 TO 22.0 FT
TEA NEAD 20 WELL CONTRACT INSTRUCTED IN ACCORDANCE V
TOA INCAC 2C, WELL CONSTRUCTION STATIDADUS, AND THAT A COPY OF THIS
I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE V 15A NCAC 2C, WELL CONSTRUCTION STATIONEDS, AND THAT A COPY OF THIS RECORD HAS HERN PROVIDED TO THE WELL OWNER.
06/11/10

depth): From To From____ _ To___ From____ ___ To__ Thickness/ Weight SCH 40 Material Ft Ff Material Method Portland bentonite .0 SLURRY Ft. Ft. _Ft. Diameter Slot Size Material in. PVC 0. Ft. 2.0 in. .010 Ft. _in. in. _in. _ Ft. _ in. K: Size Material 5.0 Ft. 20-40 FINE SILICA SAND Ft. Ft. Formation Description ORANGE CLAY TAN SILTY CLAY GRAY ROCK/TAN SILTY CLAY LAYERS 18.0 TO 22.0 FT IS WELL WAS CONSTRUCTED IN ACCORDANCE WITH CTION STANDARDS, AND THAT A COPY OF THIS OWNER. 06/11/10 IED WELL CONTRACTOR DATE

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center - Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Non Residential well construction record

North Carolina Department of Environment and Natural Resources- Division of Water Quality

WELL CONTRACTOR CERTIFICATION # 2580

1		
	1. WELL CONTRACTOR:	d. 1
	JASON MANTAK	*
	Well Contractor (Individual) Name	
	GEOLOGIC EXPLORATION, INC.	e. `
	Well Contractor Company Name	f.
	STREET ADDRESS 176 COMMERCE BLVD	g.
	STATESVILLE NC 28625	
	City or Town State Zip Code	
	<u>(704)</u> - <u>872-7686</u>	
	Area code- Phone number 2. WELL INFORMATION:	6. CA
	SITE WELL ID #(if applicable)48-DW-5	Fr
	STATE WELL PERMIT#(if applicable)	Fr
	DWQ or OTHER PERMIT #(if applicable)	Fr
	WELL USE (Check Applicable Box) Monitoring 🗹 Municipal/Public 🗆	7. G
	Industrial/Commercial 📋 Agricultural 🔲 Recovery 🗖 Injection 🗔	Fr
	Irrigation Other 🛛 (list use)	Fr Fr
	DATE DRILLED 06/09/10 - 06/10/10	Fr
		8. S
	3. WELL LOCATION:	Fr
	CITY: PITTSBORO COUNTY CHATHAM	Fr
	240 SUGAR LAKE ROAD 27312	Fr
	(Street Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code)	9. SA
	TOPOGRAPHIC / LAND SETTING:	Fr
	□ Slope □ Valley □ Flat □ Ridge □ Other	Fr
	(check appropriate box) A TITHOF May be in degrees,	Fr
	minutes, seconds or	10. DR
	LONGITUDE in a decimal format	Fror
1	Latitude/longitude source:	<u>0.0</u>
	(location of well must be shown on a USGS topo map and attached to this form if not using GPS)	<u>15.0</u> 34.0
	4. FACILITY- is the name of the business where the well is located.	38.0
	FACILITY ID #(if applicable)	40.0
	NAME OF FACILITY_ST WOOTEN	
	STREET ADDRESS 240 SUGAR LAKE ROAD	
	PITTSBORO NC 27312	
	City or Town State Zip Code	
	CONTACT PERSON_NCDOT	
	MAILING ADDRESS 4809 BERYL ROAD	
	RALEIGH NC 27606	11. RE
	City or Town State Zip Code	OPENI
	()	
	Area code - Phone number	
	5. WELL DETAILS:	I DO HEF 15A NCA RECORD
	a. TOTAL DEPTH: 100.0 FEET	
	b. DOES WELL REPLACE EXISTING WELL? YES D NO	SIGNA
	c. WATER LEVEL Below Top of Casing: <u>35.0</u> (Use "+" if Above Top of Casing)	JAS
L		PRINT

d. TOP OF CASING IS	3.0 FT. Above Land Surface* ed at/or below land surface may require
a variance in accordan	nce with 15A NCAC 2C .0118.
	METHOD OF TEST_N/A
f. DISINFECTION: Typ	e_N/A AmountN/A
g. WATER ZONES (dep	oth):
FromTo	From To
FromTo	From To
FromTo	From To
6. CASING:	Thickness/
Depth From 0.0 To 43.0	Diameter Weight Material Ft. 6 INCH SCH 40 PVC
From To	
FromTo	Ft
7. GROUT: Depth	Material Method
From 0.0 To 43.0	FtPortland bentoniteSLURRY
From To	
FromTo	
8. SCREEN: Depth	Diameter Slot Size Material
	Ftinin
	Ftin in Ftin in
9. SAND/GRAVEL PACK: Depth	Size Material
	Ft
	Ft Ft
10. DRILLING LOG From To 0.0 15.0 15.0 34.0	Formation Description ORANGE CLAY TAN SILTY CLAY BROWN PARTIALLY WEATHERED ROCK
<u>34.0 38.0</u> 38.0 40.0	TAN SILTY CLAY
40.0 100.0	GRAY ROCK
·	
· · · · · · · · · · · · · · · · · · ·	
11. REMARKS: OPEN HOLE FROM 43.0 TO 1	100.0 FT
I DO HEREBY CERTIFY THAT THIS 15A NCAC 20 WELL CONSTRUCT RECORD HAS BEEN PROVIDED	WELL WAS CONSTRUCTED IN ACCORDANCE WITH ON STAND RDS, AND THAT A COPY OF THIS THE FELL OWNER. 06/11/10
SIGNATION RE OF CERTIFIED	D WELL CONTRACTOR DATE
JASON MANTAK	
PRINTED NAME OF PERSO	ON CONSTRUCTING THE WELL

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Appendix D

Groundwater Sample Collection Records

Well ID: 48DW -1

Client: NCDOT - Pittsboro Project No:	60154105.3	Date: 4/2010	Time: Start 3	
Site Location: Pittsboro, NC	0015 1105.5			<u>13°</u> aniipin
Weather Conds: ~ 80° Y Jun	N	Collector(s):	D. Babinegu/B.Bennett	
1. WATER LEVEL DATA: (measure a. Total Well Length @8,74	vired from Top of Cas		Casing Diam	neter/Material
· · · ·			6"Z"	eter/Material
b. Water Table Depth <u>A</u> .	d. Calculated System	N Volume (see back)	<u>p. 36g</u>	
a. Purge Method: , Peristaltic/	Vionsoon Grundfus	<u></u>		
b. Acceptance Criteria defined (- Temperature 3% - pH <u>+</u> 1.0 unit - Sp. Cond. 3%	-D.O. 10%)mV		
c. Field Testing Equipment use	d: Make YSI	Model 556	Serial	Number
- Volume				
<u>Time Removed Temp. pH</u> (24hr) (Liters) (°C)	<u>Spec. Cond.</u> <u>DO</u> (μS/cm) (mg/L) <u>ORP</u> <u>Turbidity</u> (mV) (NTU)	Flow Rate Drawdown (ml/min) (feet)	Color/Odor
1310 3L 12.79 6.17	74 0.70		150 3,10	cloudy/war
1313 4L 20.56 6.24 1316 52 20.94 6.33	73 0.7.		3.15	closefuse
13/1 GL 21.18 6.34	73 0.68	158.4	3.19	cloudy/une
1327 76 21.74 6.37	74 0.68	160,7	3.21	derfuse
	· · · · · · · · · · · · · · · · · · ·			
d. Acceptance criteria pass/fail Has required volume been re Has required turbidity been r Have parameters stabilized If no or N/A - Explain bel	emoved eached			(continued on back)
3. SAMPLE COLLECTION:	Method: <u>Gran</u> B			
Sample ID Container Type <u>48 Du</u> -) 40ml VOA	No. of Containers 3	Preservation HCl	Analysis Req. 8260B	Time 1330
	. <u></u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u></u>	
Comments <u>well Jamplee</u> Sample on 4/2	O, low flow	then pumped A	ny - will take	, and
Signature			Date 4/26/10	<u></u>

Client:	NCDOT	- Pittsboro	0			Date:	4/ 26 /2010	Ti	me: Start <u>I</u>	
Project N Site Loca		ttsboro, N	JC	60	0154105.3				Finish <u>f</u>	5 <u>40</u> am/pm
Neather			~ 50 m	γ		Collector(s)	:	D. Babineau	I/B.Bennett	
1. WATI	ER LEVEL	DATA:	(measu	red from To	op of Casir	ng)		\bigcirc		
a. To	tal Well Le	ngth	.74_	c. Length o	f Water Co	lumn <u>96,14</u>	(a-b)		Casing Diar	neter/Material
b. Wa	ater Table	Depth 9	2,60	d. Calculate	ed System	Volume (see	back) /4	0.36	2'	PVC
			pz						~	
		-	staltic/ N	Aonsoon/ Gru	ndfus	- Full	Purae) OE	nell	
b. Ac	ceptance (Criteria d	efined (see workplai	1)		-0-			
- Ten	operature	3%	-	-D.O.	10%					
- pH	Oraci	_		- ORP	<u>+</u> 10n					
- Sp.	Cond.	3%		- Drawdow	n < 0.3'					
c. Fie	ld Testing	Equipme	ent usec		/lake		Model		Seria	Number
				· · · · · · · · · · · · · · · · · · ·	YSI		556		157	68
	Volume		_	·····					····	
<u>Time</u> (24hr)	Removed (Liters)	<u>d Temp.</u> (°C)	<u>Hq</u>	Spec. Conc (µS/cm)	l. <u>DO</u> (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1415	·N/A		7.04	81	0.78	125.3	N/A	>300	35.63	dentable
1430	80 g	18.61	6.71	70	0.74	158.3			45.40	dofum
1445 1500	1009	19,00	6.70 6.66	<u>72</u> 70	0.70	<u>161.7</u> 157.4			59.61	dentinone
1300	1182	19.38		<u>72</u>	0.79	197.3			82.79	Clearfune Clearfune
1530	1307		7.19	71	0,80	194.2			91.00	Cleurfund
545							1	1		
	ceptance o	-		mound	Yes N	o N/A	۱.			(continued on back)
	is required is required									
	ive parame									
	If no or N			w.						
-						. <u> </u>		- <u> </u>	······································	
		ECTION	• N	lethod:						·
			• ••	iethiod				· · · · · · · · · · · · · · · · · · ·		
Sample II	D Co	ontainer		No. of Con	tainers	Prese		Analys	-	Time
		-40ml V(100			— Н			78260B	<u></u>
										
							· · · · · · · · · · · · · · · · · · ·			
Commen	ts	PUR	he o	tnell	only	- Wel	1 Ne	, at	1545.	
			ر ر	· · · · · · · · · · · · · · · · · · ·	1					
		<u></u>								
		-						_		
		\sim 2			1000 - 100 - 10 - 1					

Well ID: 48 DW-2

·				· · · · · · · · · · · · · · · · · · ·							
Client:	NCDOT -	Pittsbo	ro		[Date:	4/27/	2010	Ti	me: Start <u>Ø</u>	
Project N	o:			60	154105.3					Finish (p	sam/pm
Site Loca		tsboro,									
Weather	Conds:	~650	+ Sun	m		Collector(s):]	D. Babineau	I/B.Bennett	
1. WATE		DATA:	(measu	/ ired from To	p of Casir	ng)					6 · ·
a. Tot	al Well Ler	ngth_ <u>66</u>	6.00	c. Length of	Water Co	lumn <u>36,4</u>	<u>'7 (</u> (a-b)			neter/Material
b. Wa	ter Table I	Depth 🕯	9.53	d. Calculate	d System '	Volume (see	e back)	5	3.24 g	<u>6 %</u>	EXC metal
	PURGE E ge Method		ristaltic/	Monsoon Gru	ndfus						
	perature	3%	.0 unit	(see workplar -D.O. - ORP - Drawdown	10% <u>+</u> 10n						
c. Fiel	d Testing I	Equipm	ent use		lake (SI		Мо	del 556		Serial 13968	Number
			_								·
Time	Volume	Tomp	<u>_</u>	Shop Cond			Turk	ditu	Elow Doto	Drawdown	
<u>Time</u> (24hr)	Removed (Liters)	(°C)	<u>pH</u>	Spec. Cond (µS/cm)	. <u>DO</u> (mg/L)	ORP (mV)	(N1		Flow Rate (ml/min)	(feet)	Color/Odor
0940	Sniticl	15,84	6.94	401 :	1.21	245.9	N/	A	~150	30.40	clea-INOR
T943		15,89	7.03	399	1.11	241.5	11		:	30160	Cleartwore
0446		15.85	7.09	391	1.09	240.3	┼╌┠			30.63	Clear/Nore
0949	6.0	R'37 -	7,10	399	1.03	239.7				30.67	Clear/wone
			14 A.		1						
					1		L V		V		
Ha Ha	ceptance c s required s required ve parame If no or N/	volume turbidit ters sta	e been re y been r abilized	eached	Yes N C A A A C C C C C C C C C C C C C C C						(continued on back)
3. SAMP		ECTION	N: 1	Method: <u>6 (</u>	аB						
Sample II		ntainer 40ml V		No. of Cont	ainers		rvatio IC1	1	Analys	is Req. 8260B	Time 0955
				·····		· · · · · · · · · · · · · · · · · · ·				· ··	
Comment	ts					· · · · ·					~
								<u></u>			
Signature	<u> </u>	X.s		X					Date	4/22/18	• • • • • • • • • • • • • • • • • • •
-											

Well ID: 48 DW-3

Client: NCDOT - Pittsboro	Date:	4/27/2010	Tin	ne: Start 🔏	ioam/pm
Project No: 60154105.3				Finish 🚺	<u>4</u> am/pm
Site Location: Pittsboro, NC					
Weather Conds: ~65° ¥ SUNM	Collector(s)	:1	. Babineau	/B.Bennett	· · ·
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	······			
a. Total Well Length > /00 c. Length of Water C	olumn <u>N/A</u>	(a-b)			eter/Material
b. Water Table Depth $\partial \mathcal{L} \partial \partial$ d. Calculated System	n Volume (see	back) <u>V</u>	A	•	
2. WELL PURGE DATA a. Purge Method: , Peristaltic/ Monsoon/ (rundfus					
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.1	DmV	•			
c. Field Testing Equipment used: Make YSI		Model 556		Serial	Number 68
· · · · · · · · · · · · · · · · · · ·					
Volume <u>Time</u> <u>Removed Temp. pH</u> <u>Spec. Cond. DO</u>	ORP	Turbidity	Flow Rate	Drawdown	* Color/Odor
TimeRemovedTemp.pHSpec. Cond.DO(24hr)(Literş)(°C)(μS/cm)(mg/L)		(NTU)	(ml/min)	(teet)	0101/0401
1220 En. Jar 16.20 2.89 261 0.44	164.5	NIA	200	30.45	des/war
1223 6.0 16.27 7.89 261 0.43	160.9			30.70	clar/work
126 9.0 16.32 7.89 262 0.42	156.9	<u> </u>		30.81	Clertin
1229 11,0 16.36 7.89 261 0.40	154.7			30.94	datura
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.					(continued on back)
3. SAMPLE COLLECTION: Method: GRAS					······································
Sample ID Container Type No. of Containers	Preser H		Analysi	s Req. 8260B	Time
					<u></u>
					<u> </u>
Comments icenter level meter Not long &	enough to	gaze	Bottom	ot well	
		· · · · ·			
∂	· · · · · · · · · · · · · · · · · · ·				1
Signature			Date	4/22/	18
				·	

Well ID: 48 DW-4

Client:	NCDOT -	Pittsbo	ro	(01		Date:	4/2720	10 Ti	me: Start <u>l'</u>	
Project N Site Loca		tsboro,		601	54105.3				Finish 15	10am/pm
Weather			5 3 50	wm	· · · · · · · · · · · · · · · · · · ·	Collector(s)	:	D. Babineau	l/B.Bennett	
Ł						·····				
				ared from Top			/a h		Casing Diam	eter/Material
				c. Length of		•		<i>י</i> ן	-	PVC
			1.31	d. Calculated	d System	Volume (see	back) -	NIA		2
	ge Methoc		ristaltic/ I	Monsoon/Grun	dfus					
b. Acc	eptance C			(see workplan)						
	perature	3%		-D.O.	10%	~)/				
- pH - Sp. (Cond.			- ORP - Drawdown	<u>+</u> 10r < 0.3					
							Mada	, ·	O a mia l	N la una la com
C. FIEI	d Testing I	Equipm	ent used		ake SI		Mode 55			Number
									, , , , , , , , , , , , , , , , ,	
Time	Volume			Space Cond			Turbidi	ty Elow Pote	Drawdown	Calar/Odar
<u>Time</u> (24hr)	Removed (Liters)	(°C)	<u>pH</u>	Spec. Cond. (µS/cm)	<u>DO</u> (mg/L)	ORP (mV)	(NTU)	ty Flow Rate (ml/min)	(teet)	Color/Odor
1445	Intral	15.63		292	1.30	-11.8	NA	150	16.32	clea/None
1448	3.0 4.0	15.57	7:88	<u>294</u> 295	1.33	-10.5			16.37 16.40	clos/was
1451 1454	5.0	15.63	7.88	294	1.33	~10.7			16.43	Clar/Wood
										<i>,.</i>
				1				+ -	P	
d. Ac	ceptance c	riteria p	bass/fail	L	Yes N	lo N//	A J		1	(continued on back)
	s required									
	s required ve parame			eached	L L ភា r					
, na	If no or N			ow.						
3 SAMP		ECTIO	N- I	Method: G	los					
0. 07.111			••							
Sample II		ontainer		No. of Conta	ainers		rvation	Analys	is Req.	Time
430W		40ml V	/OA	3		H	ICI		8260B	1458
									·····	
							· ·			
Commen	ts									
<u></u>										
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					· · · ·
	2	\square	/					<u> </u>	1/107/	 λ
Signature		6	~	Alers				Date	712/11	U
	$\delta q \langle z \rangle$									

Well ID:48Mw-1

Low Flo	w Ground	Water	Sample	Collection	Record
---------	----------	-------	--------	------------	--------

Client: NCDOT - Pittsboro Project No: 60154105.3	Date: 4/2~7/2010	Time: Start <u>محرور</u> Finish زرون	am/pm am/pm
Site Location: Pittsboro, NC Weather Conds: ~65° ¥SUNM	Collector(s): D. Bat		
1. WATER LEVEL DATA: (measured from Top of Cas			,
a. Total Well Length <u>46.03</u> c. Length of Water C	olumn <u>]3.23</u> (a-b)	Casing Diameter 2" PVC	
b. Water Table Depth 32.85 d. Calculated System	N Volume (see back)		
2. WELL PURGE DATA a. Purge Method: Peristaltic/ Monsoon/ Grundfus			~ .
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.)mV		
c. Field Testing Equipment used: Make YSI	Model 556	Serial Nur 13968	nber
Volume <u>Time Removed Temp. pH</u> <u>Spec. Cond. DO</u> (24hr) (Liters) (°C) (μS/cm) (mg/L		Rate Drawdown C	olor/Odor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 33.90 c/d 34.71 c/e	why wore
1044 5.0 17.46621 270 0.42 1047 6.0 17.536.20 262 0.39 1050 7.5 17.436.13 261 0.40	99,0 99,5 101.1	34,77 Cl. 34.78 Cl	entitie
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		inued on back)
3. SAMPLE COLLECTION: Method: Graß	<u></u> , voloni volo i pro		
Sample ID Container Type No. of Containers <u>48 m W ~1</u> 40ml VOA 3	Preservation A HCl		Time 05 ე
Comments			
Signature Profession	D	Pate <u>4/27/10</u>	

Client: NCDOT - Pittsboro Project No: 60154105.3 Site Location: Pittsboro, NC	Date: 4/26/2010	Time: Start / Finish / 1	
Weather Conds: 705, p. clardy	Collector(s):	Babineau/B.Bennett	
 WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length <u>49.7</u> c. Length of Water C b. Water Table Depth <u>30.13</u> d. Calculated System WELL PURGE DATA 	Column i 9.58 (a-b)	Casing Diam	eter/Material PVC
a. Purge Method: , Peristaltic Monsoon/ Grundfus			
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- Sp. Cond.3%- Drawdown< 0.	DmV		
c. Field Testing Equipment used: Make	Model		Number
YSI	556		054
Volume <u>Time Removed Temp.</u> pH <u>Spec. Cond. DO</u> (24hr) (Liters) (°C) (μS/cm) 22(mg/L) (mV) (NTU)	-low Rate Drawdown (ml/min) (feet)	Color/Odor
1320 3L 18.55 5.77 237 VSA		250 31.77	Hibrown/ MUN
1325 41 18.80 5.74 207 3.0	2 138.8	200 31.76	1. 14
1330 GL 18.23 5.60 198 2.20		200 31.78	11/11
1335 in 19.17 5.80 194 2.0. 1340 71 18.83 5.81 191 7.90		200 31.78	1 / 11 11 / 11
1340 7L 1883 5 81 191 7.90 1345 8L 1834 5.81 187 1.9		200 31.91	11/11
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.		5- 5-	(o galinued of Daek)
3. SAMPLE COLLECTION: Method:	On		
Sample ID Container Type No. of Containers 48 MW -2 40ml VOA 3	Preservation HC1	Analysis Req. 8260B	Time /3 <i>5</i> 0
Comments		·	
			·····
Signature			·

Client: NCDOT - Pittsboro		Date:	4/ 26 /2010	Tir	ne: Start <u>14</u>	103 am/pm	
Project No:	60154105.3				Finish <u>/</u>	<u>9ぞこ</u> am/pm	
Site Location: <u>Pittsboro, NC</u>							
Weather Conds: 70's p-c	lardy	Collector(s):	I	D. Babineau	/B Bennett		
1. WATER LEVEL DATA: (measured from Top of Casing)							
a. Total Well Length <u>49.2%</u> c. Length of Water Column <u>15.43</u> (a-b) Casing Diameter/Material b. Water Table Depth <u>33.45</u> d. Calculated System Volume (see back) <u>~9.45</u>							
	d. Calculated System	n Volume (see	back)	~ 1.756	-	·	
a. Purge Method: , Peristaltic/ N	onsoon Grundfus			***			
b. Acceptance Criteria defined (- Temperature 3%	see workplan) -D.O. 10%	<u>_</u>					
- pH <u>+</u> 1.0 unit)mV					
c. Field Testing Equipment used			Model	į		Number	
	YSI	. <u></u>	556		V	1054	
	<u></u>					·····	
<u></u>	Spec. Cond. DO (µS/cm) (mg/L)) <u>ORP</u> (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor	
1413 32 17.50 6.09	242 1.62		NA	250	34.19	aler Inone	
1418 42 17.76 6.12	244 1.17	128.4		200	34.09	11/11	
1133 34 17.66 6.13	249 1.08			200	34.27	4/11	
1428 66 17.97 6.14	250 1.04			200	34.32	11/17	
1433 78- 17-82 6.13	251 1.10	130.9		200	34.30	" [0	
				. <u></u>	e		
d. Acceptance criteria pass/fail	Yes	No N/A	٢		l <u>'</u>	(centinued on back)	
Has required volume been re			7			(Serning of Dack)	
Has required turbidity been re			/				
Have parameters stabilized		i n					
If no or N/A - Explain belo	ow.						
	Acthority Mu		<u>_</u>	<u></u>	······,		
3. SAMPLE COLLECTION: N	lethod: <u>Monsoon</u>						
Sample ID Container Type 48 MW-3 40ml VOA	No. of Containers	Preser He		Analys	is Req. 8260B	Time /43 5	
Comments							
						······	
Signature	8 A			Date	4/20/1		
	<i>y</i>		· · · · · · · · · · · · · · · · · · ·				

Well ID: 48 MW - 4R

Project No: 60154105.3 Finish 1555° am/pm Ste Location: Pittsboro, NC Collector(s): D. Babineau/B/Bernett 1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length 35.43° c. Length of Water Column 14.24° (a-b) Casing Diameter/Material b. Water Table Depth 21.17° d. Calculated System Volume (see back) $3.74^{\circ}L_{-}$ 2" PVC 2. WELL PURGE DATA a. Purge Method: Peristalic/Monsoon/Grundfus b. Acceptance Criteria defined (see workplan) b. Acceptance Criteria defined (see workplan) -D.O. 10% - pH ± 1.0 unit ORP $\pm 10mV$ - Sp. Cond. 3% -Drawdown <0.3' c. Field Testing Equipment used: Make Model Serial Number YSI 556 (μOS° /1.12 160° /1.12 160° /1.12 I520 1.21,21 5.80 2.5,21 137.7 $10/1$ 100° 1521 1.1/2,12 5.80 2.320 1.23 142.2 100° 11.7 11.7 1523 1.5,17 5.81 3.50°						P			
Site Location: Pittsboro, NC Weather Conds: $\overline{703}$ $A \in Ioody$ Collector(s): D. Babineau/Bernett 1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length $\overline{35.43}$ c. Length of Water Column $14.2 \forall$ (a-b) Casing Diameter/Material 2* PVC b. Water Table Depth $\overline{21.11}$ d. Calculated System Volume (see back) $3.44 _$ 2* PVC 2. WELL PURCE DATA a. Purge Method: Peristilker/Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) 1. Temperature 3% -D.O. 10% - PH $\pm 1.0 \text{ unit}$ -O.PP $\pm 10mV$ - Sp. Cond. 3% -D.o. 0.3^* c. Field Testing Equipment used: Make Model Serial Number - (2ahr) (Lifes) (G) (mpL) (mV) (mV) - 1525 1.4 5.08 5.80 3.5 37.2 $1/4$ 190 Me021/1 Clor/Oder - 1525 1.4 5.08 5.80 3.50 1.237 $1/472$ $1/20 = 21.17$ $1/4$ - 1525 $4.5.1$ 18.7.01 5.80 1.37 <t< td=""><td>Client: NCDOT - Pittsboro</td><td></td><td>ite: <u>4/ 2</u></td><td><i>a</i>2010 T</td><td></td><td></td></t<>	Client: NCDOT - Pittsboro		ite: <u>4/ 2</u>	<i>a</i> 2010 T					
Weather Conds: 705 $p.cloudy$ Collector(s): D. Babineau/Bernet 1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length 35.43 c. Length of Water Column $14.2V$ (a-b) Casing Diameter/Material b. Water Table Depth 71.11 d. Calculated System Volume (see back) 3.744 2° PVC 2. WELL PURGE DATA a. Purge Method: Perstall(c/ Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) - Temperature 3% - D.O. 10% - pH ± 1.0 unit - ORP $\pm 10mV$ - Sp. Cond. 3% - Drawdown $< 0.3'$ c. Field Testing Equipment used: Make Model Serial Number Volume Spec. Cond. (mgL) (mgV) (mV) (mV) 152a 12.25 $35O$ 2.53 137.7 $1V/T$ 1000 10% 152a 12.75 12.73 147.2 1200 21.17 1.77 147.7 1.77 147.7 1.77 1.77 1.77 1.72 1.72 1.72 1.77 1.77 </td <td></td> <td>60154105.3</td> <td></td> <td></td> <td>⊢inish_/</td> <td><u>ح چے</u> am/pm</td>		60154105.3			⊢inish_ /	<u>ح چے</u> am/pm			
1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length 35:43 c. Length of Water Column 14.2V (a-b) Casing Diameter/Material 2" PVC b. Water Table Depth 21:11 d. Calculated System Volume (see back) 9.744 2" PVC 2. WELL PURGE DATA a. Purge Method: Peristally:/ Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) - - Temperature 3% -D.0. 10% - - PH ±1.0 unit - ORP ±10mV - Sp. Cond. 3% - Drawdown <0.3"				D D 1					
a. Total Well Length $\frac{35}{25}\sqrt{3}$ c. Length of Water Column $\underline{14.2 \forall (a-b)}$ b. Water Table Depth 21.11 d. Calculated System Volume (see back) $\underline{3.44}$ 2. WELL PURGE DATA a. Purge Method: Peristalte/ Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH ± 1.0 unit - ORP ± 10 mV - Sp. Cond. 3% - D.D. and wow - 0.3° c. Field Testing Equipment used: Make Model Serial Number YSI 556 6054 Volume Time Removed Temp. pH Spec. Cond. DO (us%em) (mgt.) (mgt.) (m/V) (m	weather Londs: 105, f. cloudy	Co	ollector(s):	D. Babinea	w Brisenmett				
a. Total Well Length _35'.43 c. Length of Water Column _14.2 U (a-b) Casing Diameter/Material 2" PVC b. Water Table Depth _21.11 d. Calculated System Volume (see back)	1. WATER LEVEL DATA: (measured fro	m Top of Casing)						
b. Water Table Depth 21.11 d. Calculated System Volume (see back) 3.14/2 2" PVC 2. WELL PURGE DATA a. Purge Method: Peristil/c/Monsoon/Grundfus b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. - PH ±1.0 unit -ORP ± 10mV -Sp. Cond. 3% - Sp. Cond. 3% - Drawdown < Sistem Volume	• –	• •	•	(a-b)	Casing Diam	neter/Material			
b. Water Table Depth 21.11 d. Calculated System Volume (see back) 3.74 a. Purge Method: Peristalle/ Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH ± 1.0 unit - ORP ± 10mV - Sp. Cond. 3% - Drawdown < 0.3' c. Field Testing Equipment used: Make Model Serial Number YSI 556 (2054) Volume Time Removed Temp. pH Spec. Cond. DO ORP Turbidity Flow Rate Drawdown Color/Odor (Liters) (*C) (usion) (my) (mV) (mVm) (treat) 1525 1. 17.23 1.50 3.50 2.53 1.37.7 1.44 120 Methods Color/Odor 1529 2. 18.08 5.80 3.50 1.23 1.723 1.722 1.20 Methods Color/Odor 1529 2. 18.08 5.80 3.50 1.23 1.723 1.72 1.00 21.19 1.1 / 1.1				(~ 0)	-				
2. WELL PURGE DATA a. Purge Method: Peristalite/ Monsoon/ Grundfus b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH ±1.0 unit - ORP ±10mV - Sp. Cond. 3% Drawdown < 0.3' c. Field Testing Equipment used: Make Model Serial Number YSI 556 (054) Volume Time Removed Temp. pH Spec. Cond. DO (uslom) (my) ORP Turbidity Flow Rate Drawdown Color/Odor (uslom) (my) (NTU) (milmin) (Teet) 1515 11. 17,32. 15. 50 3.50 7.53 1.37.7 / V/4 100 Meteor/11 C/m 1520 2.1. 18.08 5. 80 3.60 1.23 1.42.2 100 21.19 1.1 / 1520 1.55 4-45.3 1.8.77 5.8(1 3550 1.37 1.495.2 12.0 0 21.70 1.1 / 1530 3.54. 18.09 5. 83 3.50 1.86 1.97.7 1.400 21.20 1.7 / 1545 1.55 1.8.78 3.55 3.50 1.86 1.97.7 1.400 21.20 1.7 / 1545 1.55 1.8.78 3.55 3.50 3.49 1.45.0 1.950 21.20 1.7 / 1545 1.55 1.8.78 3.55 3.50 3.49 1.86 1.97.7 1.400 21.20 1.7 / 1545 1.55 1.8.78 3.55 3.50 3.49 1.86 1.97.7 1.400 21.20 1.7 / Has required turbidity been reached Has required volume been removed I I I I I I I I I I I I I I I I I I I	b. Water Table Depth 21.17 d. Calo								
a. Purge Method: <u>Feristalite' Monsoon/ Grundfus</u> b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH ±1.0 unit - ORP ±10mV - Sp. Cond. 3% -Drawdown <0.3' c. Field Testing Equipment used: Make Model Serial Number <u>YSI 556 (6054</u>) Volume <u>Time Removed Temp. pH Spec. Cond. DO</u> ORP Turbidity Flow Rate Drawdown Color/Odor (Liters) (°C) <u>PH Spec. Cond. DO</u> (NTU) (mitrini) (Teet) 1515 1L /132 5.50 350 2.53 137.7 /1472 100 21.19 //1 //1 1525 2.L 18.08 5.30 350 1.37 1/42.2 120 21.19 //1 //1 1525 4.5L 18.7H 5.5H 350 1.37 1/45.0 200 21.20 // //1 1530 3.5L 18.7H 5.5H 350 1.86 1/45.7 120 21.20 // //1 1545 3.5L 18.7H 5.7H 350 1.86 1/45.7 120 21.20 // //1 1545 3.5L 18.7H 5.7H 350 1.86 1/45.7 120 21.20 // //1 1545 4.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.30 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 5.7D 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.4B 1/20 3 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.5L 18.4B 1/20 3 340 7 1.66 1/47.7T // 200 21.20 // //1 1545 3.5L 18.5L 18.5									
b. Acceptance Criteria defined (see workplan) Temperature 3% -D.0. 10% pH ± 1.0 unit - ORP $\pm 10mV$ - Sp. Cond. 3% - Drawdown < 0.3' c. Field Testing Equipment used: Make Model Serial Number <u>YSI</u> 556 (6054) Volume Time Removed Temp. pH Spec. Cond DO ORP Turbidity Flow Rate Drawdown Color/Odor (Liters) (°C) + Spec. Cond (mgt.) (mV) (mVmin) (Teet) 1515 IL 19.72 5:00 350 2:53 137.7 $1/14$ Do $4002/15$ $ckm / mmr.$ 1520 2. 18.08 5:80 350 1:23 $1/22$ $1/20$ 21.19 1: /* 1525 1.5775 1.5775 3.570 3.570 1.377 $1/1472$ 100 21.19 1.77 /* 1530 $3.5c$ 18.08 5.82 3.50 1.377 $1/1472$ 100 21.20 1.70 1.77 1545 3.52 1.877 3.57 1.20 1.77 1.77 Has required of Ume been removed 1.560 1175.77 1.200 21.20 1.777 Has required of Ume been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Ume been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Ume been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Under been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Under been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Under been removed 1.560 1177.71 1.200 21.20 1.777 Has required of Under been removed 1.560 1177.71 1.200 21.20 1.777 1.775 Sample ID Container Type No. of Containers Preservation Analysis Req. Time $3260B$ 7550		/ Grundfus							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1				
- Sp. Cond. $\overline{3\%}$ - Drawdown < 0.3' c. Field Testing Equipment used: Make Model Serial Number YSI 556 10054 Volume Time Removed Temp. pH Spec. Cond. DO (us/cm) (mgL) (my) Turbidity Flow Rate Drawdown Color/Odor (us/cm) (mgL) (my) (NTU) (m/min) (Teet) 1515 1L 19.72 5.80 350 2.53 137.7 V/1 100 46021,11 c/cr / nem. 1520 2.L 18.08 5.80 350 1.23 142.2 100 21.19 11 / 11 / 11 1525 1.5 18.08 5.82 350 1.37 147.2 100 21.19 11 / 11 / 11 1525 1.5 18.08 5.82 350 1.37 147.2 100 21.10 / 11 / 11 1530 3.5 18.08 5.82 350 1.84 145.0 120 21.20 11 / 11 1545 5.5 18.24 5.70 349 1.86 145.7 1 200 21.20 11 / 11 1545 5.5 18.24 5.70 349 1.86 145.7 1 200 21.20 11 / 11 1545 5.5 18.24 5.70 349 1.86 145.7 1 200 21.20 11 / 11 d. Acceptance criteria pass/fail Yes No Has required turbidity been reached Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below. 3. SAMPLE COLLECTION: Method: 1075 Preservation Analysis Req. Time 48.MW-48 40ml VOA 3 HC1 8260B 75.0	•		,						
c. Field Testing Equipment used: Make YSI Model 556 Serial Number (a 054) Volume Time Removed Temp. pH Spec. Cond. DO (us%(m) (mgL) (mV) (NTU) (mV/mIn) (relet) 1515 12 17.2 5.80 350 2.53 137.7 N/4 Boo Mee 21, 11 c/or / merce 1525 12 18.08 5.80 350 1.23 142.2 100 21.19 11 /// /// 1525 12.18.08 5.80 350 1.23 142.2 100 21.19 11 /// /// 1525 13.08 5.80 350 1.37 149.2 100 21.19 11 /// 1525 13.08 5.82 357 1.70 1452 100 21.20 11 // // 1530 3.52 18.00 1.95 9.72 3.00 1.86 195.7 1.00 21.20 11 // // 1545 5.5 18.34 5.70 3.49 1.86 197.7 100 21.20 11 //	· —		1						
YSI556 6054 VolumeTime (24hr)Removed Temp. (Liters)pHSpec. Cond. (Lisern)DO (mgl.)ORP (NTU)Turbidity (NTU)Flow Rate (NTU)Drawdown (Color/Odor (Infilmin)Color/Odor (Liters)15151L17.225.803502.53137.7 $1/4$ 200 $A#02/1.11$ $clev / none.$ 15202L. (24hr)18.085.803501.23 $1/42.2$ 100 21.19 11 11 1525 $4-52$ 18.08 5.82357 1.70 1452 2.00 21.19 11 11 1525 $4-52$ 18.08 5.82 357 1.70 1452 2.00 21.20 $11/11$ 1530 $5.5.$ 18.24 5.83 350 1.86 1957 1200 21.20 $11/11$ 1540 $5.5.$ 18.34 5.70 349 1.86 1977 1200 21.20 $11/11$ 1545 $5.5.$ 18.34 5.70 349 1.86 1977 1200 21.20 $11/11$ 1545 $5.5.$ 18.34 5.70 349 1.86 1977 1200 21.20 $11/11$ 1545 $5.5.$ 18.34 5.70 349 1.86 1977 1200 21.20 $11/11$ 1545 $5.5.$ 18.34 5.70 349 1.86 1977 1200 21.20 $11/11$ H	- 5p. Conu. 5% - Drav	vuowii < 0.3							
VolumeTime Termoved Temp. (24hr)pHSpec. Cond. (µ.S/cm)DO (mgL)ORP (myL)Turbidity (mV)Flow Rate (mV)Drawdown (Color/Odor (MTU)Color/Odor1515117.25.803502.53137.7 $V/4$ DoMeD 2/.11 c/cv $rawcown$ 15202118.085.803501.23142.2 100 21.19 11 $/11$ 1520318.045.81350 1.37 142.2 100 21.19 11 $/11$ 15305.5.18.045.82357 1.70 145.2 2.00 21.20 11 $/11$ 15305.5.18.045.82350 1.89 145.0 1400 21.20 11 $/11$ 15405.18.245.83350 1.86 147.7 1200 21.20 11 $/11$ 15405.18.345.80350 34.9 1.86 147.7 1200 21.20 11 $/11$ 15405.18.345.8034.9 1.86 147.7 1200 21.20 11 $/11$ 15405.18.345.8034.9 1.86 147.7 1200 21.20 11 $/11$ 15405.18.345.8034.9 1.86 147.7 1200 21.20 11 $/11$ 154018.3518.3418.3418.3418.3418.34 <td>c. Field Testing Equipment used:</td> <td>Make</td> <td>М</td> <td>lodel</td> <td></td> <td></td>	c. Field Testing Equipment used:	Make	М	lodel					
Time (24hr)Removed Temp. (Liters)pHSpec. Cond. (μ S/cm)OR (mg/L)Turbidity (mV)Flow Rate (NTU)Drawdown ($mWmin$)Color/Odor1515119.255.603502.53137.7 V/A 100 $H = 02/15$ $c low / muc.$ 15202 L_{10} 18.085.803501.23 142.2 200 21.19 $11.1/7$ 1520 J_{2-1} 18.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.20 $11.1/7$ 15303.518.085.82350 1.86 195.7 200 21.20 $11.1/7$ 15405.18.745.83350 1.86 195.7 200 21.20 $11.1/7$ 15455.518.845.70 34.9 1.86 197.7 1200 21.20 $11.1/7$ 15455.518.345.70 34.9 1.86 197.7 1200 21.20 $11.1/7$ 15455.518.345.70 34.9 1.86 197.7 200 21.20 $11.1/7$ 16Acceptance criteria pass/failYesNoNo	·	YSI		556		6054			
Time (24hr)Removed Temp. (Liters)pHSpec. Cond. (μ S/cm)OR (mg/L)Turbidity (mV)Flow Rate (NTU)Drawdown ($mWmin$)Color/Odor1515119.255.603502.53137.7 V/A 100 $H = 02/15$ $c low / muc.$ 15202 L_{10} 18.085.803501.23 142.2 200 21.19 $11.1/7$ 1520 J_{2-1} 18.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.19 $11.1/7$ 15303.518.085.82350 1.37 147.2 100 21.20 $11.1/7$ 15303.518.085.82350 1.86 195.7 200 21.20 $11.1/7$ 15405.18.745.83350 1.86 195.7 200 21.20 $11.1/7$ 15455.518.845.70 34.9 1.86 197.7 1200 21.20 $11.1/7$ 15455.518.345.70 34.9 1.86 197.7 1200 21.20 $11.1/7$ 15455.518.345.70 34.9 1.86 197.7 200 21.20 $11.1/7$ 16Acceptance criteria pass/failYesNoNo									
(24hn) (Liters) (°C) (µS/cm) (mg/L) (mV) (NTU) (ml/min) (feet) (515 1 ////2 ////2 200 21.19 1/ ////2 1520 2 1 18.08 5.80 350 1.23 1/22 200 21.19 1/ /// 1520 2 $\frac{18.08}{7}$ 5.80 350 1.37 1/4/2 100 21.19 1/ /// 1520 2 $\frac{18.07}{5.81}$ 5.80 350 1.37 1/4/2 100 21.19 1/ /// 1530 3.5 18.06 5.81 350 1.37 1/4/2 100 21.20 1/ /// 1530 3.5 18.06 5.82 3.50 1.86 145.0 200 21.20 1/ /// /// 1545 5.5 18.36 5.90 3.49 1.86 147.71 1200 21.20 1/ /// /// 1545 5.5 18.36 5.90 3.49 1.86 147.71		Cond DO		rhidity Flow Rate	Drawdown	Color/Odor			
1515 1 17.2 5.80 350 2.53 137.9 NA 100 He02/.1 c/mm 1625 2									
1525 $4-533$ 18.77 581 350 1.37 1442 100 21.19 17.74 1530 3.51 18.08 5.82 357 1.70 1452 200 21.20 $11/11$ 1530 3.51 18.08 5.82 357 1.89 1450 $7b0$ 21.20 $11/11$ 1545 5.21 18.24 5.83 350 1.86 145.7 700 21.20 $11/11$ 1545 5.51 18.34 5.70 349 1.66 147.7 700 21.20 $11/11$ 1545 5.52 18.34 5.70 349 1.66 147.7 700 21.20 $11/11$ 1545 5.52 18.34 5.70 349 1.66 147.7 700 21.20 $11/11$ 148 required volume been removed 1.96 147.7 700 21.20 11.70 11.60 148 required turbidity been reached 1.96 147.7 100 100 </td <td>1515 12 19.2 5.80 35</td> <td>D Z.53</td> <td>137.9 A</td> <td>14 200</td> <td></td> <td>clear / non</td>	1515 12 19.2 5.80 35	D Z.53	137.9 A	14 200		clear / non			
1530 3.5 18.08 5.82 3.51 1.70 14.52 20.0 21.20 $11/1$ 1535 4.5L 18.49 5.82 3.50 1.89 145.0 $2b0$ 21.20 $11/1$ 1540 5. 18.24 5.83 350 1.86 145.0 $2b0$ 21.20 $11/1$ 1540 5. 18.30 5.83 350 1.86 145.7 $2b0$ 21.20 $11/1$ 1545 5. 18.30 5.70 3.49 1.86 147.7 200 21.20 $11/1$ d. Acceptance criteria pass/fail Yes No N/A 1000 21.20 $11/1$ d. Acceptance criteria pass/fail Yes No N/A 1000 21.20 21.20 $11/1$ d. Acceptance criteria pass/fail Yes No N/A 1000 21.20 $11/100$ 1000 21.20 $11/100$ d. Acceptance turbidity been reached Image: Ima			142.2	-+					
1535 1.5.4 1.5.4 1.5.4 1.5.4 1.6.9 145.0 160 21.20 1.1.7 1540 5 18.24 5.83 350 1.86 145.7 7 1200 21.20 1.1.7 11.1.7 1540 5 18.34 5.70 349 1.86 145.7 7 1200 21.20 1.1.7 11.1.7 1545 5.5 18.34 5.70 349 1.86 147.7 1200 21.20 1.1.7 11.1.7 d. Acceptance criteria pass/fail Yes No NA (continued and the sequence) (continued and the sequence) (continued and the sequence) Has required turbidity been reached Image: Container stabilized Image: Container sequence) Ima									
1540 5. 18.24 5.83 350 1.86 145.7 200 21.20 1.171 1545 3.52 18.34 5.70 349 1.86 147.7 100 21.20 1171 d. Acceptance criteria pass/fail Yes No N/A (continued as back) Has required volume been removed Image: continued as back Image: continued as back (continued as back) Has required turbidity been reached Image: continued as back Image: continued as back (continued as back) Have parameters stabilized Image: continued as back Image: continued as back Image: continued as back (continued as back) 3. SAMPLE COLLECTION: Method: Image: containers Preservation Analysis Req. Time 48 MW · 4R 40ml VOA 3 HC1 8260B 7550									
1545 55 18.34 5.70 34.9 1.86 17.7 200 21.20 11.7 11.7 d. Acceptance criteria pass/fail Yes No N/A (continued on back) Has required volume been removed Image: continued on back) Image: continued on back) (continued on back) Has required turbidity been reached Image: continued on back) Image: continued on back) (continued on back) Have parameters stabilized Image: continued on back) Image: continued on back) (continued on back) Have parameters stabilized Image: continued on back) Image: continued on back) (continued on back) 3. SAMPLE COLLECTION: Method: Image: continued on back) (continued on back) 3. Sample ID Container Type No. of Containers Preservation Analysis Req. Time 48MW 4R 40ml VOA 3 HC1 8260B 7550									
d. Acceptance criteria pass/fail Yes No N/A Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below. 3. SAMPLE COLLECTION: Method: <u>fur:Str.Hti c</u> Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW-44</u> 40ml VOA 3 HCl 8260B 1550									
Has required volume been removed Has required turbidity been reached Have parameters stabilized Image: Constant of the constant				V					
Have parameters stabilized If no or N/A - Explain below. 3. SAMPLE COLLECTION: Method: <u>Icrista Hi c</u> Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW · 4K</u> 40ml VOA 3 HCl 8260B	Has required volume been removed		X						
If no or N/A - Explain below. 3. SAMPLE COLLECTION: Method: <u>fcr:str/Hi c</u> Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW-4A</u> 40ml VOA 3 HC1 8260B 1550	• •		X						
3. SAMPLE COLLECTION: Method: Icristantic Sample ID Container Type No. of Containers Preservation Analysis Req. Time USMW-UK 40ml VOA 3 HCl 8260B 1550	•								
Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW-42</u> 40ml VOA 3 HCl 8260B	If no or N/A - Explain below.								
Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW-42</u> 40ml VOA 3 HCl 8260B				·					
Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>48MW-42</u> 40ml VOA 3 HCl 8260B	3. SAMPLE COLLECTION: Method:	1 cristalti	c						
<u>48MW-42 40ml VOA 3 HC1 8260B</u>						· · · · ·			
				on Analys		Time			
Comments	<u>48 MW · YK</u> 40ml VOA	3	HCl		8260B	0<5			
Comments									
Comments				<u> </u>					
	Comments								
· · · · · · · · · · · · · · · · · · ·				····· ,					
1 1A 11		<u> </u>			.11	<u>.</u>			
Signature Date Date	Signature	· ••• -•••		Date	4/20/10				
					// //				

	_
Client: NCDOT - Pittsboro	Date: 4/ 27 2010 Time: Start 1105 am/pm
Project No: 601541	105.3 Finish 1200 am/pm
Site Location: <u>Pittsboro, NC</u>	
Weather Conds: 605p. cloudy	Collector(s): D. Babinear B.Bennett
1. WATER LEVEL DATA: (measured from Top of	Casing)
•	
a. Total Well Length <u>34.7</u> c. Length of Wa	ater Column <u>11:14</u> (a-b) 2" PVC
b. Water Table Depth 23 62 d. Calculated Sy	
2. WELL PURGE DATA	
a. Purge Method:, Peristaltig Monsoon/ Grundfus	s
a. I uige weinor, I ensiand wonsoon orundra	5
b. Acceptance Criteria defined (see workplan)	
- Temperature 3% -D.O.	10%
- pH ± 1.0 unit - ORP	± 10mV
- Sp. Cond. 3% - Drawdown	< 0.3'
c. Field Testing Equipment used: Make	Model Serial Number
YSI	556 6054
Volume	
<u>Time</u> <u>Removed Temp.</u> <u>pH</u> <u>Spec. Cond.</u> (24hr) (Liters) (°C) (µS/cm)	DO (mg/L) (mV) Turbidity Flow Rate Drawdown Color/Odor (ml/min) (feet)
	8.91 21.6 NA 100 23.03 clear more
	0.96 -0.6 1 100 23.06 11 11
1125 21 20.30 6.52 186 (0.58 -10.2 100 23.05 11 / 11
1135 2-SL 20.95 6.29 223	1-75 -40.8 100 23.10 11 / 11
1140 31 20.33 6.12 279	2-4/ -46.4 100 23.11 ,1 / 11
	1.18 51.7 100 23.13 11 /
	1.10 -53.4 V 100 23.15 1. 7.
d. Acceptance criteria pass/fail Yes Has required volume been removed	s No N/A (continued on back)
Has required turbidity been reached	
Have parameters stabilized	
If no or N/A - Explain below.	
••••••••••••••••••••••••••••••••••••••	
	<i>A v</i>
3. SAMPLE COLLECTION: Method:	Peristaltic
Sample ID Container Type No. of Container	ers Preservation Analysis Reg. Time
4 g/MW - 5 40 mi VOA 3	HCl $8260B$ $1/55$
Comments 1127 - battery died for peris	staltic 1132 - opristaltic restarted
2 100	Data 4/27/10
SignatureK	Date724/70

48MW-5

VOLUME TEMP ett SPEC 4.56 19.92 6.06 310 1.18 - 54.6 Тіме 1155 23.14 cleer Inere FLOW NATE 100

Client: NCDOT - Pittsboro	Date:	4/ 27 /2010	Time	: Start	1015	am/pm
Project No: 60154105.3				Finish		am/pm
Site Location: <u>Pittsboro, NC</u>						
Weather Conds: 603, p. cloudy	Collector(s)	D.]	Babinear B.	Bennett)		
1. WATER LEVEL DATA: (measured from Top of Cas			0			4! - 1
a. Total Well Length <u>39.66</u> c. Length of Water C	olumn <u>14.5</u>			asing Diar 2'	neter/ivia ' PVC	teriai
b. Water Table Depth <u>24.96</u> d. Calculated System	ו Volume (see	back) 9	L			
a. Purge Method: Peristaltic/ Monsoon/ Grundfus						
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- ORP+10- Sp. Cond.3%- Drawdown< 0.3	DmV				×	
c. Field Testing Equipment used: Make YSI		Model 556			l Numbe <i>6054</i>	
· · · · · · · · · · · · · · · · · · ·				à		
Volume <u>Time Removed Temp. pH Spec. Cond. DO</u>	ORP	Turbidity Fl	low Rate	Drawdown	Color	/Odor
(24hr) (Liters) (°C) (µS/cm) (mg/L)) (mV)	(NTU) (ml/min)	(teet)		,,
1025 IL 17.64 5.86 135 2.90			100	25.43	cler	- Junion
1030 1.52 1803 5.94 134 2.5				25.45	- "	"
1035 2 18.10 5.91 134 2.	55 218.3			25.49	11/	11
1040 2.50 1801 5.81 132 18				25.49		1,
1045 32 17.89 5.71 130 1.7. 1050 3.52 17.98 5.63 130 1.75				<u>25.49</u> 25.48		11
1050 3.5- 7.98 5.63 30 1.73	- 630-1			23.90	· · · · · · · · · · · · · · · · · · ·	
Has required volume been removed		2	-		_(continued	Lon back).
Have parameters stabilized If no or N/A - Explain below.						
3. SAMPLE COLLECTION: Method: PERISTIC	れし	· · · ·				
Sample ID Container Type No. of Containers	Prese	rvation	Analysis I	Req.	Tim	е
48MW-10 40ml VOA 3	H	C1	82	60B	10	55
		· · ·				
Comments	<u> </u>	·····				
Signature 5 15.0			Date	4/2	7/10	
		- <u> </u>				

Well ID: 48MW-10

Client: NCDOT - Pittsboro Project No: 60154105.3	Date: 4/2 7/2010		Time: Start <u>0735</u> am/pm		
Project No:60154105.3Site Location:Pittsboro, NCWeather Conds:60's partly cloudy	Collector(s):D.]	Finish <u>100.5</u> Babineau/B.Bennett	sam/pm		
 WATER LEVEL DATA: (measured from Top of Casi a. Total Well Length <u>29.50</u> c. Length of Water Co b. Water Table Depth <u>28.07</u> d. Calculated System 	olumn <u>143</u> (a-b)	Casing Diameter			
2. WELL PURGE DATA a. Purge Method: Peristality/ Monsoon/ Grundfus		· · · · · ·			
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.3	ImV 3'				
c. Field Testing Equipment used: Make YSI	Model 556	Serial Nur 603			
Has required volume been removed	(mV) (NTU) (1 8 217.3 NK 7 216.7	ml/min) (feet) /(D) 28.60 Cl 100 28.67 // 00 28.70 //			
3. SAMPLE COLLECTION: Method: Sample ID Container Type No. of Containers 48 MN - III- 40ml VOA 3	Preservation HCl	Analysis Req. 8260B	Time 1905		
Comments WELL HANNE TRUBE PUTTING INC	, SEEMS TO BE LOW	C DRY GIMPLENT	of STABIL 12		
Signature 75 Brad		Date <u>4/29/13</u>			

ΔΞ	ECO	M							Well ID:	48Mw-1
			low (Ground	Water	Samp	e Coll	ection	Record	1520
Client: Project N	NCDOT -	- Pittsbor	:0	60	D154105.3)ate:	4/ F7 /2010	Tin	ne: Start	SB am/pr
Site Loca Veather	ation: <u>Pi</u> Conds:	ttsboro, \mathbb{I}	NC S°¥Se			Collector(s));	D. Babineau/	- - -	*
a. Tot	tal Well Le	ngth <u>3</u> ,	2.24	red from To c. Length o d. Calculate	f Water Col	umn <u>24</u> ;	,	5,20	Casing Diam	eter/Material PVC
	L PURGE I		ristaltic/ N	Monsoon Gru	ndfus					
- Terr - pH - Sp.	ceptance (nperature Cond.	3% <u>+</u> 1 3%	.0 unit	- Drawdow d: N	10% <u>+</u> 10m n < 0.3' Make	١V	Model		A .	Number
					YSI		556	<u> </u>	/39	ୖଌ
Ha Ha Ha	Volume <u>Removed</u> (Liters) I mi), w[3 ,0 4 ,0 5 ,0 6 ,0 c ceptance of as required as required ave parame If no or N PLE COLL	(°C) /6.31 /5.4 /5.4 /6.17 /6.17 /6.17 /6.17 /6.17 /6.17 /6.17 /6.31 /6.77 /6.31 /6.77 /6.31 /6.31 /6.31 /6.31 /5.4 /6.31 /5.4 /6.31 /6.31 /5.4 /6.31 /	7.28 7.20 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22	eached	(mg/L) 5,47 3,70 3,60 3,20 3,20 3,21 Yes N U	ORP (mV) 150. ₹ 157. 6 157. 1 154. 9 155. 7 0 N/. 0 N/.		Flow Rate (ml/min)	Drawdown (feet) (λ.λ.] iλ.δ.7 iλ.40 iλ.45 iλ.50	Color/Odor Clear/ware Clear/ware Clear/ware Clear/ware (continued on bac
Sample I	-	ontainer 40ml V	• •	No. of Con	tainers		ervation ICl	Analysi	s Req. 8260B	Time ISSO
Commen	nts				· · · · · · · · · · · · · · · · · · ·		(W ^E):	· · · · · · · · · · · · · · · · · · ·		
	······				/		· · · · · · · · · · · · · · · · · · ·	<u> </u>	······	
										/

	• • • • • • • • • • • • • • • • • • •	
Client: NCDOT - Pittsboro	Date: 4/27/2010	Time: Start
Project No: 60154105.3		Finish /6/ 0 am/pm
Site Location: Pittsboro, NC		
Weather Conds: 705, p. Cloudy	Collector(s): D. Babin	eau/B.Bennett
1. WATER LEVEL DATA: (measured from Top of Cas	ina)	
		Casing Diameter/Material
a. Total Well Length <u>27.5</u> c. Length of Water C		2" PVC
b. Water Table Depth <u>19.55</u> d. Calculated System	N Volume (see back) 4.86L	
2. WELL PURGE DATA a. Purge Method: Peristal C/ Monsoon/ Grundfus		
b. Acceptance Criteria defined (see workplan)		
- Temperature 3% -D.O. 10%		
$-pH$ ± 1.0 unit $-ORP$ ± 10		
- Sp. Cond. 3% - Drawdown < 0.	3'	
c. Field Testing Equipment used: Make	Model	Serial Number
YSI	556	6054
		,
Volume		
<u>Time</u> <u>Removed</u> <u>Temp.</u> <u>pH</u> <u>Spec. Cond.</u> <u>DO</u> (24hr) (Liters) (°C) (µS/cm) (mg/L)) ORP <u>Turbidity</u> Flow R (mV) (NTU) (ml/mi	
1545 1L 14.00 4.71 232 5.15	759 NA 100	21.25 clost pare
1550 1.50 16.00 6.72 233 4.8		21.14 11/0
1555 Zi 16.12 6.72 Z33 4.73	5 80.5 100	28.30 4 14
1600 Z-SL 16.40 6.72 Z33 4.8	4 82-7 100	22.72 " / "
• •	No N/A	(consider on bask)
Has required volume been removed		
Has required turbidity been reached		
If no or N/A - Explain below.		
3. SAMPLE COLLECTION: Method: Peris	ta lt. 2	
	~~~~	
Sample ID Container Type No. of Containers		lysis Req. Time
4811 WOA 3	HCl	8260B 1605
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Commente		
Comments		
······································		
		(
O CAT		ul-li
Signature B	Date	9 7/271/0



_ow Flow	Ground	Water	Sample	Collection	Record
----------	--------	-------	--------	------------	--------

Client: NCDOT - Pittsboro	Date: 4/27/2010	Time: Start <u>1443</u> am/pm
Project No: 60154105.3		Finisham/pm
Site Location: <u>Pittsboro, NC</u> Weather Conds: <u>COS</u> , <u>ONE</u> CAS +	Collector(a): D. Bahin	agu/B Denat
Weather Conds: 60's, put cas f	Collector(s): D. Babin	eau B.Hennett
1. WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length $\int \frac{4}{\sqrt{2}} \mathcal{T}$ c. Length of Water C		Casing Diameter/Material 2" PVC
b. Water Table Depth 8.7L d. Calculated System	Volume (see back) 3, 37,	
2. WELL PURGE DATA a. Purge Method: Peristaltic Monsoon/ Grundfus		
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.	)mV	
c. Field Testing Equipment used: Make YSI	Model 556	Serial Number
Volume <u>Time</u> <u>Removed</u> <u>Temp.</u> <u>pH</u> <u>Spec. Cond.</u> <u>DO</u> (24hr) (Liters) (°C) (µS/cm) (mg/L	) (mV) <u>Turbidity</u> <u>Flow R</u> (mV) (NTU) (ml/mi	
1450 IL 13,70 6.06 231 0.82	- 76.1 NA 100	9.21 clear / none
1455 1.52 13.93605 227 1.17		9.30 11 / 11
1500 26 13.90 6.04 221 2.77		9.36 11 11
1505 2.5L 1313 6.03 230 0.81		1.10
1510 3, 13.98 6.02 230 0.89 1515 3.5 H.08 6.00 231 0.7		9.45 11 /11
1313 3.30 4.00 0 031 01		
d. Acceptance criteria pass/fail Yes	No NA	Teoffilmed or tack)
Has required volume been removed		
Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.		
3. SAMPLE COLLECTION: Method: Perisa	44	<u></u>
		······
Sample ID Container Type No. of Containers <u>48/Mhr-15</u> <u>40ml VOA</u> <u>3</u>	Preservation Ana HCl	Ilysis Req.Time8260B1515
		······
Comments	· · · · · · · · · · · · · · · · · · ·	
	the state state.	<u></u>
SignatureB	Date	e <u>4/27/10</u>



Client					 Da	 te:	7/9/10	Tim	e: Start 1	60 am/pm
Client: NCDOT - Pittsboro Project No: 60154105.6				Du				Finish 12	50 am/pm	
Site Locat		sboro, N								
	Conds:				Co	ollector(s):		D. Babir	ieau	
				Tan	of Cooing	\				
1. WATE		)ATA: (	measur	ed from Top	of Casing	) 72	(a b)	· (	Casing Diam	eter/Material
a. Tota	al Well Leng	gth	45'	c. Length of V	Vater Colur	mn <u>7.3</u>	(a-b)		2"/	PVC
h Wat	er Toblo D	onth 3	7.76	d. Calculated	System Vo	olume (see t	back) 4	51		
				u. ou.ol	-,-					
	PURGE D		A	and						
	ge Method	, .								
b. Acc	eptance Ci			see workplan)	400/					
	perature	3%		-D.O.	10% + 10m\					
- pH Sn (	Cond.	<u>+</u> 1. 3%	.0 unit	- ORP - Drawdown	< 0.3'	v				
- Sp. (	JUNA.	570							Sorial	Number
c. Fiel	d Testing E	Equipme	ent used				Model 556			
			-	YS	51		550			
	Volume		_						v	
Time	Removed	Temp.	<u>рН</u> –	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Odor
(24hr)	(Liters)	(°C)		(μS/cm)	(mg/L)	(mV)	(NTU)	(ml/min) iso	(feet) 38.00	dour /Non
1210	Indial	19.11		195	0,40	304,2	NA	150	38.02	Tan/ Non
1213	62	19.01		<u>193</u> 194	0,35	305.5			38.05	cloudy/wore
1216	82	18.39	6.06 6.01	193	0.34	304.4			38.06	doutifiere
1222	124		5.99	193	0.34	303.0		<u>↓ ↓</u>	38.05	deatine
1225	142		5.98	192	0.33	303.4			38.05	Cleature
L		<u> </u>	15 - 11		Yes No	 o N//				(continued on back)
d. Ac	ceptance	criteria p	boon r	emoved						
Ha	as required	l turbidit	v been i	reached		<u>.</u>				
	ave param				(\$7 ⊏	] 🗆				
	If no or N			ow.	•}					
	<u> </u>				·					
3 6AM		FOTIO	NI+	Method:	A					
J. JAIVI	PLE COLL	ECHO	IN.	Method91	<u></u>					
Sample	ID C	ontaine	r Type	No. of Cont	ainers		ervation	Analys	sis Req.	Time /ఎ3 <i>5</i>
<u>48MW-</u>	16	VO	A	3		H	ICL		8260B	1000
<b>.</b>										
		. <u> </u>						· · · ·		
nme	nts									· · · · · · · · · · · · · · · · · · ·
					1					
		$- \langle$	7-						7/2/	
<b>u</b>	re	The	Sec					Date	7/2/10	J
4	<u> </u>	1		Ro						
Ĩ.										



Client: NCDOT - Pittsboro	Date: 7/ 9/10	Time: Start 100 am/pm
Project No: 60154105.6	-	Finish <u>1145</u> am/pm
Site Location: <u>Pittsboro, NC</u>		
Weather Conds: ~95° &Sunm	Collector(s): D.	Babineau
1. WATER LEVEL DATA: (measured from Top of Cas	ing)	
a. Total Well Length <u>35'</u> c. Length of Water C	· · · ·	Casing Diameter/Material
		2"/PVC
b. Water Table Depth 16.69 d. Calculated System	n Volume (see back)	
2. WELL PURGE DATA a. Purge Method:		·
b. Acceptance Criteria defined (see workplan)		
- Temperature 3% -D.O. 10%		•
	OmV	
- Sp. Cond. 3% - Drawdown < 0.	3	
c. Field Testing Equipment used: Make	Model	Serial Number
YSI	556	2013
Volume	·····	· · · · · · · · · · · · · · · · · · ·
Time Removed Temp. pH Spec. Cond. DO	ORP Turbidity Flow F	Rate Drawdown Color/Odor
(24hr) (Liters) (°C) (µS/cm) (mg/L	.) (mV) (NTU) (ml/m	nin) (teet)
1110 2010 16.35 3.00 233 2.47		18.50 Cloudy/None
1113 42 16.75 3.23 220 2,27 1116 62 16.10 3.93 202 2,07		19.35 Clady/ Non
1119 32 15.91 4.03 201 2.07		19.62 claut the
1122 10L 15.86 4.07 2.00 2.09		19.95 da Ime
d. Acceptance criteria pass/fail Yes	No N/A	
d. Acceptance criteria pass/fail Yes Has required volume been removed	No N/A	(continued on back)
Has required turbidity been reached		
Have parameters stabilized		
If no or N/A - Explain below.		
3. SAMPLE COLLECTION: Method: Grad		· · · · ·
Sample ID Container Type No. of Containers	Preservation Ana	alysis Req. Time
48MW-17 VOA 3	HCL	8260B <b>// 3</b> 0
Comments		·
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	_	7/01
Signature	Da	te <u>7/7/10</u>

Appendix E

Laboratory Analytical Reports and Chain of Custody



Michael Dail AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-69

Client Project: NCDOT

Dear Michael Dail,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

FMai Project Manager Barbara Hager

#### List of Reporting Abbreviations And Data Qualifiers

- B = Compound also detected in batch blank
- BQL = Below Quantification Limit (RL or MDL)

DF = Dilution Factor

Dup = Duplicate

- D = Detected, but RPD is > 40% between results in dual column method.
- E = Estimated concentration, exceeds calibration range.
- J = Estimated concentration, below calibration range and above MDL
- LCS(D) = Laboratory Control Spike (Duplicate)
- MDL = Method Detection Limit
- MS(D) = Matrix Spike (Duplicate)
- PQL = Practical Quantitation Limit
- RL/CL = Reporting Limit / Control Limit
- RPD = Relative Percent Difference
- mg/kg = milligram per kilogram, ppm, parts per million
- ug/kg = micrograms per kilogram, ppb, parts per billion
- mg/L = milligram per liter, ppm, parts per million
- ug/L = micrograms per liter, ppb, parts per billion
- % Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

MI34.021808.4

# Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-1 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-1A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.32 g %Solids: 74.7

Report Name	Result MG/KG	Quantitation Limit MG/KG	Dilution Factor	Date Analyzad
Compound			Factor	<b>Analyzed</b> 4/28/2010
Acetone	BQL BQL	0.0628 0.00628	1	4/28/2010
Benzene	BQL		1	4/28/2010
Bromobenzene	BQL	0.00628 0.00628	1	4/28/2010
Bromochloromethane	BQL		1	4/28/2010
Bromodichloromethane		0.00628	1	4/28/2010
Bromoform	BQL	0.00628	1	
Bromomethane	BQL	0.00628	1	4/28/2010 4/28/2010
2-Butanone	BQL	0.0314 0.00628	1	4/28/2010
n-Butylbenzene	BQL		1	
sec-Butylbenzene	BQL	0.00628		4/28/2010
tert-Butylbenzene	BQL	0.00628	1	4/28/2010
Carbon disulfide	BQL	0.00628	1	4/28/2010
Carbon tetrachloride	BQL	0.00628	1	4/28/2010
Chlorobenzene	BQL	0.00628	1	4/28/2010
Chloroethane	BQL	0.00628	1	4/28/2010
Chloroform	BQL	0.00628	1	4/28/2010
Chloromethane	BQL	0.00628	1	4/28/2010
2-Chlorotoluene	BQL	0.00628	1	4/28/2010
4-Chlorotoluene	BQL	0.00628	1	4/28/2010
Dibromochloromethane	BQL	0.00628	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0314	1	4/28/2010
Dibromomethane	BQL	0.00628	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00628	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00628	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00628	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00628	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0314	1	4/28/2010
1,1-Dichloroethane	BQL	0.00628	1	4/28/2010
1,1-Dichloroethene	BQL	0.00628	1	4/28/2010
1,2-Dichloroethane	BQL	0.00628	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00628	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00628	1	4/28/2010
1,2-Dichloropropane	BQL	0.00628	1	4/28/2010
1,3-Dichloropropane	BQL	0.00628	1	4/28/2010
2,2-Dichloropropane	BQL	0.00628	1	4/28/2010
1,1-Dichloropropene	BQL	0.00628	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00628	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00628	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00628	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00628	· 1	4/28/2010
Ethylbenzene	BQL	0.00628	1	4/28/2010
Hexachlorobutadiene	BQL	0.00628	1	4/28/2010
2-Hexanone	BQL	0.0157	1	4/28/2010
lodomethane	BQL	0.00628	1	4/28/2010

# Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-1 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-1A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.32 g %Solids: 74.7

Report Name	Result MG/KG	Quantitation Limit MG/KG		Dilution Factor	Date
Compound	BQL	0.00628		Factor	<b>Analyzed</b> 4/28/2010
	BQL			1	
4-Isopropyltoluene		0.00628		1	4/28/2010
Methylene chloride	BQL	0.0251		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0157		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00628		1	4/28/2010
Naphthalene	BQL	0.00628		1	4/28/2010
n-Propyl benzene	BQL	0.00628		1	4/28/2010
Styrene	BQL	0.00628		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00628		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00628		1	4/28/2010
Tetrachloroethene	BQL	0.00628		1	4/28/2010
Toluene	BQL	0.00628		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00628		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00628		1	4/28/2010
Trichloroethene	BQL	0.00628		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00628		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00628		1	4/28/2010
Trichlorofluoromethane	BQL	0.00628		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00628		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00628		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00628		1	4/28/2010
Vinyl chloride	BQL	0.00628		1	4/28/2010
m-,p-Xylene	BQL	0.0126		1	4/28/2010
o-Xylene	BQL	0.00628		1	4/28/2010
	,2			·	
		Spike Added	Spike Result	Percent Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0626	125
Toluene-d8	0.05	0.0467	93
4-Bromofluorobenzene	0.05	0.0432	86

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: <u>DVD</u>

Reviewed By: <u>MB</u>

## Results for Volatiles by GCMS 8260-5035

Client Sample ID: SB-2 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-2A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.55 g %Solids: 72.7

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0618	1	4/28/2010
Benzene	BQL	0.00618	1	4/28/2010
Bromobenzene	BQL	0.00618	1	4/28/2010
Bromochloromethane	BQL	0.00618	1	4/28/2010
Bromodichloromethane	BQL	0.00618	1	4/28/2010
Bromoform	BQL	0.00618	1	4/28/2010
Bromomethane	BQL	0.00618	1	4/28/2010
2-Butanone	BQL	0.0309	1	4/28/2010
n-Butylbenzene	BQL	0.00618	1	4/28/2010
sec-Butylbenzene	BQL	0.00618	1	4/28/2010
tert-Butylbenzene	BQL	0.00618	. 1	4/28/2010
Carbon disulfide	BQL	0.00618	1	4/28/2010
Carbon tetrachloride	BQL	0.00618	1	4/28/2010
Chlorobenzene	BQL	0.00618	1	4/28/2010
Chloroethane	BQL	0.00618	1	4/28/2010
Chloroform	BQL	0.00618	1	4/28/2010
Chloromethane	BQL	0.00618	1	4/28/2010
2-Chlorotoluene	BQL	0.00618	1	4/28/2010
4-Chlorotoluene	BQL	0.00618	1	4/28/2010
Dibromochloromethane	BQL	0.00618	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0309	1	4/28/2010
Dibromomethane	BQL	0.00618	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00618	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00618	_1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00618	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00618	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0309	1	4/28/2010
1,1-Dichloroethane	BQL	0.00618	1	4/28/2010
1,1-Dichloroethene	BQL	0.00618	1	4/28/2010
1,2-Dichloroethane	BQL	0.00618	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00618	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00618	1	4/28/2010
1,2-Dichloropropane	BQL	0.00618	1	4/28/2010
1,3-Dichloropropane	BQL	0.00618	1	4/28/2010
2,2-Dichloropropane	BQL	0.00618	1	4/28/2010
1,1-Dichloropropene	BQL	0.00618	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00618	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00618	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00618	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00618	1	4/28/2010
Ethylbenzene	BQL	0.00618	1	4/28/2010
Hexachlorobutadiene	BQL	0.00618	. 1	4/28/2010
2-Hexanone	BQL	0.0155	1	4/28/2010
lodomethane	BQL	0.00618	1	4/28/2010

Client Sample ID: SB-2 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-2A Lab Project ID: G1037-69 Report Basis: Dry Weight

ł

Analyzed By: CLP Date Collected: 04-19-2010 09:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.55 g %Solids: 72.7

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00618		1	4/28/2010
4-Isopropyltoluene	BQL	0.00618		1	4/28/2010
Methylene chloride	BQL	0.0247		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0155		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00618		1	4/28/2010
Naphthalene	BQL	0.00618		1	4/28/2010
n-Propyl benzene	BQL	0.00618		1	4/28/2010
Styrene	BQL	0.00618		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00618		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00618		1	4/28/2010
Tetrachloroethene	BQL	0.00618		1	4/28/2010
Toluene	BQL	0.00618		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00618		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00618		1	4/28/2010
Trichloroethene	BQL	0.00618		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00618		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00618		1	4/28/2010
Trichlorofluoromethane	BQL	0.00618		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00618		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00618		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00618		1	4/28/2010
Vinyl chloride	BQL	0.00618		1	4/28/2010
m-,p-Xylene	BQL	0.0124		1	4/28/2010
o-Xylene	BQL	0.00618		1	4/28/2010
		Spike	Spike	Percent	

Added	Result	Recovered	
0.05	0.0625	125	
0.05	0.0462	92	
0.05	0.0434	87	
	0.05 0.05	AddedResult0.050.06250.050.0462	AddedResultRecovered0.050.06251250.050.046292

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: 0V0

Reviewed By: ______

Client Sample ID: SB-3 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-3A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.26 g %Solids: 73.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0647	1	4/28/2010
Benzene	BQL	0.00647	1	4/28/2010
Bromobenzene	BQL	0.00647	1	4/28/2010
Bromochloromethane	BQL	0.00647	1	4/28/2010
Bromodichloromethane	BQL	0.00647	1	4/28/2010
Bromoform	BQL	0.00647	1	4/28/2010
Bromomethane	BQL	0.00647	1	4/28/2010
2-Butanone	BQL	0.0324	1	4/28/2010
n-Butylbenzene	BQL	0.00647	1	4/28/2010
sec-Butylbenzene	BQL	0.00647	1	4/28/2010
tert-Butylbenzene	BQL	0.00647	1	4/28/2010
Carbon disulfide	BQL	0.00647	1	4/28/2010
Carbon tetrachloride	BQL	0.00647	1	4/28/2010
Chlorobenzene	BQL	0.00647	1	4/28/2010
Chloroethane	BQL	0.00647	1	4/28/2010
Chloroform	BQL	0.00647	1	4/28/2010
Chloromethane	BQL	0.00647	1	4/28/2010
2-Chlorotoluene	BQL	0.00647	1	4/28/2010
4-Chlorotoluene	BQL	0.00647	1	4/28/2010
Dibromochloromethane	BQL	0.00647	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0324	1	4/28/2010
Dibromomethane	BQL	0.00647	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00647	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00647	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00647	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00647	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0324	1	4/28/2010
1,1-Dichloroethane	BQL	0.00647	1	4/28/2010
1,1-Dichloroethene	BQL	0.00647	1	4/28/2010
1,2-Dichloroethane	BQL	0.00647	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00647	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00647	1	4/28/2010
1,2-Dichloropropane	BQL	0.00647	1	4/28/2010
1,3-Dichloropropane	BQL	0.00647	1	4/28/2010
2,2-Dichloropropane	BQL	0.00647	1	4/28/2010
1,1-Dichloropropene	BQL	0.00647	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00647	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00647	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00647	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00647	1	4/28/2010
Ethylbenzene	BQL	0.00647	1	4/28/2010
Hexachlorobutadiene	BQL	0.00647	1	4/28/2010
2-Hexanone	BQL	0.0162	1	4/28/2010
lodomethane	BQL	0.00647	1	4/28/2010

Client Sample ID: SB-3 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-3A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.26 g %Solids: 73.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00647		1	4/28/2010
4-Isopropyltoluene	BQL	0.00647		1	4/28/2010
Methylene chloride	BQL	0.0259		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0162		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00647		1	4/28/2010
Naphthalene	BQL	0.00647		1	4/28/2010
n-Propyl benzene	BQL	0.00647		1	4/28/2010
Styrene	BQL	0.00647		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00647		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00647		1	4/28/2010
Tetrachloroethene	BQL	0.00647		1	4/28/2010
Toluene	BQL	0.00647		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00647		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00647		1	4/28/2010
Trichloroethene	BQL	0.00647		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00647		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00647		1	4/28/2010
Trichlorofluoromethane	BQL	0.00647		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00647		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00647		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00647		1	4/28/2010
Vinyl chloride	BQL	0.00647		1	4/28/2010
m-,p-Xylene	BQL	0.0129		1	4/28/2010
o-Xylene	BQL	0.00647		1	4/28/2010
		Spike	Spike	Percent	

Added	Result	Recovered	
0.05	0.0615	123	
0.05	0.0467	93	
0.05	0.0441	88	
	Added 0.05 0.05	AddedResult0.050.06150.050.0467	AddedResultRecovered0.050.06151230.050.046793

#### Comments:

Flags:

BQL = Below Quantitation Limits.

Analyst: _____0∨0

Reviewed By: 79

Client Sample ID: SB-4 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-4A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.19 g %Solids: 72.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0823	1	4/28/2010
Benzene	BQL	0.00823	1	4/28/2010
Bromobenzene	BQL	0.00823	1	4/28/2010
Bromochloromethane	BQL	0.00823	1	4/28/2010
Bromodichloromethane	BQL	0.00823	1	4/28/2010
Bromoform	BQL	0.00823	1	4/28/2010
Bromomethane	BQL	0.00823	1	4/28/2010
2-Butanone	BQL	0.0411	1	4/28/2010
n-Butylbenzene	BQL	0.00823	1	4/28/2010
sec-Butylbenzene	BQL	0.00823	1	4/28/2010
tert-Butylbenzene	BQL	0.00823	1	4/28/2010
Carbon disulfide	BQL	0.00823	1	4/28/2010
Carbon tetrachloride	BQL	0.00823	1	4/28/2010
Chlorobenzene	BQL	0.00823	1	4/28/2010
Chloroethane	BQL	0.00823	1	4/28/2010
Chloroform	BQL	0.00823	1	4/28/2010
Chloromethane	BQL	0.00823	1	4/28/2010
2-Chlorotoluene	BQL	0.00823	1	4/28/2010
4-Chlorotoluene	BQL	0.00823	1	4/28/2010
Dibromochloromethane	BQL	0.00823	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0411	1	4/28/2010
Dibromomethane	BQL	0.00823	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00823	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00823	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00823	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00823	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0411	1	4/28/2010
1,1-Dichloroethane	BQL	0.00823	1	4/28/2010
1,1-Dichloroethene	BQL	0.00823	1	4/28/2010
1,2-Dichloroethane	BQL	0.00823	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00823	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00823	1	4/28/2010
1,2-Dichloropropane	BQL	0.00823	1	4/28/2010
1,3-Dichloropropane	BQL	0.00823	1	4/28/2010
2,2-Dichloropropane	BQL	0.00823	1	4/28/2010
1,1-Dichloropropene	BQL	0.00823	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00823	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00823	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00823	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00823	1	4/28/2010
Ethylbenzene	BQL	0.00823	1	4/28/2010
Hexachlorobutadiene	BQL	0.00823	1	4/28/2010
2-Hexanone	BQL	0.0206	1	4/28/2010
lodomethane	BQL	0.00823	1	4/28/2010

Client Sample ID: SB-4 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-4A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 09:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.19 g %Solids: 72.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00823		1	4/28/2010
4-Isopropyltoluene	BQL	0.00823		1	4/28/2010
Methylene chloride	BQL	0.0329		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0206		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00823		1	4/28/2010
Naphthalene	BQL	0.00823		1	4/28/2010
n-Propyl benzene	BQL	0.00823		1	4/28/2010
Styrene	BQL	0.00823		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00823		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00823		1	4/28/2010
Tetrachloroethene	BQL	0.00823		1	4/28/2010
Toluene	BQL	0.00823		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00823		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00823		1	4/28/2010
Trichloroethene	0.120	0.00823		1	4/28/2010
1,1,1-Trichloroethane	0.0162	0.00823		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00823		1	4/28/2010
Trichlorofluoromethane	BQL	0.00823		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00823		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00823		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00823		1	4/28/2010
Vinyl chloride	BQL	0.00823		1	4/28/2010
m-,p-Xylene	BQL	0.0165		1	4/28/2010
o-Xylene	BQL	0.00823		1	4/28/2010
		Spike	Spike	Percent	

•piiii	•pmo	1 0100111	
Added	Result	Recovered	
0.05	0.0611	122	
0.05	0.0464	93	
0.05	0.0441	88	
	Added 0.05 0.05	AddedResult0.050.06110.050.0464	AddedResultRecovered0.050.06111220.050.046493

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: _____/O

Reviewed By: <u>H9</u>

Client Sample ID: SB-4 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-5D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.31 g %Solids: 72.9

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.61	50	4/30/2010
Benzene	BQL	0.0646	50	4/30/2010
Bromobenzene	BQL	0.0646	50	4/30/2010
Bromochloromethane	BQL	0.0646	50	4/30/2010
Bromodichloromethane	BQL	0.0646	50	4/30/2010
Bromoform	BQL	0.0646	50	4/30/2010
Bromomethane	BQL	0.0646	50	4/30/2010
2-Butanone	BQL	1.61	50	4/30/2010
n-Butylbenzene	BQL	0.0646	50	4/30/2010
sec-Butylbenzene	BQL	0.0646	50	4/30/2010
tert-Butylbenzene	BQL	0.0646	50	4/30/2010
Carbon disulfide	BQL	0.0646	50	4/30/2010
Carbon tetrachloride	BQL	0.0646	50	4/30/2010
Chlorobenzene	BQL	0.0646	50	4/30/2010
Chloroethane	BQL	0.0646	50	4/30/2010
Chloroform	BQL	0.0646	50	4/30/2010
Chloromethane	BQL	0.0646	50	4/30/2010
2-Chlorotoluene	BQL	0.0646	50	4/30/2010
4-Chlorotoluene	BQL	0.0646	50	4/30/2010
Dibromochloromethane	BQL	0.0646	50	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.323	50	4/30/2010
Dibromomethane	BQL	0.0646	50	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.0646	50	4/30/2010
1,2-Dichlorobenzene	BQL	0.0646	50	4/30/2010
1,3-Dichlorobenzene	BQL	0.0646	50	4/30/2010
1,4-Dichlorobenzene	BQL	0.0646	50	4/30/2010
trans-1,4-Dichloro-2-butene	BQL BQL	0.323 0.0646	50 50	4/30/2010 4/30/2010
1,1-Dichloroethane	BQL	0.0646	50 50	4/30/2010
1,1-Dichloroethene	BQL	0.0646	50	4/30/2010
1,2-Dichloroethane	BQL	0.0646	50	4/30/2010
cis-1,2-Dichloroethene trans-1,2-dichloroethene	BQL	0.0646	50	4/30/2010
1,2-Dichloropropane	BQL	0.0646	50	4/30/2010
1,3-Dichloropropane	BQL	0.0646	50	4/30/2010
2,2-Dichloropropane	BQL	0.0646	50	4/30/2010
1,1-Dichloropropene	BQL	0.0646	50	4/30/2010
cis-1,3-Dichloropropene	BQL	0.0646	50	4/30/2010
trans-1,3-Dichloropropene	BQL	0.0646	50	4/30/2010
Dichlorodifluoromethane	BQL	0.323	50	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.0646	50	4/30/2010
Ethylbenzene	BQL	0.0646	50	4/30/2010
Hexachlorobutadiene	BQL	0.0646	50	4/30/2010
2-Hexanone	BQL	0.323	50	4/30/2010
Iodomethane	BQL	0.0646	50	4/30/2010
lsopropylbenzene	BQL	0.0646	50	4/30/2010

Client Sample ID: SB-4 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-5D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.31 g %Solids: 72.9

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0646		50	4/30/2010
Methylene chloride	BQL	0.323		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.323		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0646		50	4/30/2010
Naphthalene	BQL	0.0646		50	4/30/2010
n-Propyl benzene	BQL	0.0646		50	4/30/2010
Styrene	BQL	0.0646		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0646		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0646		50	4/30/2010
Tetrachloroethene	BQL	0.0646		50	4/30/2010
Toluene	BQL	0.0646		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0646		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0646		50	4/30/2010
Trichloroethene	0.394	0.0646		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0646		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0646		50	4/30/2010
Trichlorofluoromethane	BQL	0.0646		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0646		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0646		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0646		50	4/30/2010
Vinyl chloride	BQL	0.0646		50	4/30/2010
m-,p-Xylene	BQL	0.129		50	4/30/2010
o-Xylene	BQL	0.0646		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0316	105	
Toluene-d8		0.03	0.0275	92	

### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: for Cop

4-Bromofluorobenzene

Reviewed By:

0.03

0.0288

96

Client Sample ID: SB-4 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-6A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.96 g %Solids: 74.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0562	1	4/28/2010
Benzene	BQL	0.00562	1	4/28/2010
Bromobenzene	BQL	0.00562	1	4/28/2010
Bromochloromethane	BQL	0.00562	1	4/28/2010
Bromodichloromethane	BQL	0.00562	1	4/28/2010
Bromoform	BQL	0.00562	1	4/28/2010
Bromomethane	BQL	0.00562	1	4/28/2010
2-Butanone	BQL	0.0281	1	4/28/2010
n-Butylbenzene	BQL	0.00562	1	4/28/2010
sec-Butylbenzene	BQL	0.00562	1	4/28/2010
tert-Butylbenzene	BQL	0.00562	1	4/28/2010
Carbon disulfide	BQL	0.00562	1	4/28/2010
Carbon tetrachloride	BQL	0.00562	1	4/28/2010
Chlorobenzene	BQL	0.00562	1	4/28/2010
Chloroethane	BQL	0.00562	. 1	4/28/2010
Chloroform	BQL	0.00562	1	4/28/2010
Chloromethane	BQL	0.00562	1	4/28/2010
2-Chlorotoluene	BQL	0.00562	1	4/28/2010
4-Chlorotoluene	BQL	0.00562	1	4/28/2010
Dibromochloromethane	BQL	0.00562	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0281	1	4/28/2010
Dibromomethane	BQL	0.00562	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00562	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00562	. 1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00562	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00562	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0281	1	4/28/2010
1,1-Dichloroethane	BQL	0.00562	1	4/28/2010
1,1-Dichloroethene	BQL	0.00562	1	4/28/2010
1,2-Dichloroethane	BQL	0.00562	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00562	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00562	1	4/28/2010
1,2-Dichloropropane	BQL	0.00562	<u>1</u>	4/28/2010
1,3-Dichloropropane	BQL	0.00562	1	4/28/2010
2,2-Dichloropropane	BQL	0.00562	1	4/28/2010
1,1-Dichloropropene	BQL	0.00562	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00562	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00562	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00562	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00562	1	4/28/2010
Ethylbenzene	BQL	0.00562	1	4/28/2010
Hexachlorobutadiene	BQL	0.00562	1	4/28/2010
2-Hexanone	BQL	0.0140	1	4/28/2010
lodomethane	BQL	0.00562	1	4/28/2010

Client Sample ID: SB-4 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-6A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.96 g %Solids: 74.5

Report Name	Result MG/KG	Quantitation Limit MG/KG		Dilution	Date
Compound				Factor	Analyzed
Isopropylbenzene	BQL	0.00562		1	4/28/2010
4-Isopropyltoluene	BQL	0.00562		1	4/28/2010
Methylene chloride	BQL	0.0225		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0140		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00562		1	4/28/2010
Naphthalene	BQL	0.00562		1	4/28/2010
n-Propyl benzene	BQL	0.00562		1	4/28/2010
Styrene	BQL	0.00562		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00562		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00562		1	4/28/2010
Tetrachloroethene	BQL	0.00562		. 1	4/28/2010
Toluene	BQL	0.00562		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00562		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00562		1	4/28/2010
Trichloroethene	0.0290	0.00562		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00562		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00562		1	4/28/2010
Trichlorofluoromethane	BQL	0.00562		⁻ 1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00562		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00562		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00562		1	4/28/2010
Vinyl chloride	BQL	0.00562		1	4/28/2010
m-,p-Xylene	BQL	0.0112		1	4/28/2010
o-Xylene	BQL	0.00562		1	4/28/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0623	125
Toluene-d8	0.05	0.0466	93
4-Bromofluorobenzene	0.05	0.0434	87

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: _____0いひ

Reviewed By:

Client Sample ID: SB-5 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-7A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 10:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 80.1

Compound         MG/KG         Limit MG/KG         Factor         Analyzed           Acetone         BQL         0.0511         1         4/28/2010           Benzene         BQL         0.00511         1         4/28/2010           Bromochoromethane         BQL         0.00511         1         4/28/2010           Bromochoromethane         BQL         0.00511         1         4/28/2010           Bromosthane         BQL         0.00511         1         4/28/2010           Bromosthane         BQL         0.00511         1         4/28/2010           Promosthane         BQL         0.00511         1         4/28/2010           Protection         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Chiorobenzene         BQL	Report Name	Result	Quantitation	Dilution	Date
Benzene         BQL         0.00511         1         4/28/2010           Bromochoromethane         BQL         0.00511         1         4/28/2010           Bromochoromethane         BQL         0.00511         1         4/28/2010           Bromodichloromethane         BQL         0.00511         1         4/28/2010           Bromoform         BQL         0.00511         1         4/28/2010           Seromothane         BQL         0.00511         1         4/28/2010           Sec-Butybenzene         BQL         0.00511         1         4/28/2010           sec-Butybenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Chiorobenzene	Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Bromobenzene         BQL         0.00511         1         4/28/2010           Bromochloromethane         BQL         0.00511         1         4/28/2010           Bromodichloromethane         BQL         0.00511         1         4/28/2010           Bromodichloromethane         BQL         0.00511         1         4/28/2010           Bromone         BQL         0.0256         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorotoluene         BQL         0.00511         1         4/28/2010           Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010	Acetone	BQL	0.0511	1	4/28/2010
Bromochloromethane         BQL         0.00511         1         4/28/2010           Bromodichloromethane         BQL         0.00511         1         4/28/2010           Bromoform         BQL         0.00511         1         4/28/2010           Dromomethane         BQL         0.00511         1         4/28/2010           2-Butanone         BQL         0.00511         1         4/28/2010           n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           12-Dibromochane (EDB)         BQL         0.00511         1         4/28/2010           12-Dibromochane	Benzene	BQL	0.00511	1	4/28/2010
Bromodichloromethane         BQL         0.00511         1         4/28/2010           Bromomethane         BQL         0.00511         1         4/28/2010           2-Butanone         BQL         0.0256         1         4/28/2010           n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1	Bromobenzene	BQL	0.00511	1	4/28/2010
Bromoform         BQL         0.00511         1         4/28/2010           Bromomethane         BQL         0.0256         1         4/28/2010           n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           12-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           12-Dibromoethane         BQL         0.00511         1         4/28/2010           1,2-Dichlor	Bromochloromethane	BQL	0.00511	1	4/28/2010
Bromomethane         BQL         0.00511         1         4/28/2010           2-Butanone         BQL         0.0256         1         4/28/2010           n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           tert-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Chlorothane         BQL         0.00511         1         4/28/2010           Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1_2-Dibromoethane         BQL         0.00511         1         4/28/2010           1_2-Dichlorobenzene<	Bromodichloromethane	BQL	0.00511	1	4/28/2010
2-Butanone         BQL         0.0256         1         4/28/2010           n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           12-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           12-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           12-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010	Bromoform	BQL	0.00511	1	4/28/2010
n-Butylbenzene         BQL         0.00511         1         4/28/2010           sec-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobthane         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           1/2-Dibromo-3-chtoropropane         BQL         0.00511         1         4/28/2010           1/2-Dibromoethane         EQL         0.00511         1         4/28/2010           1/2-Dibromoethane         EQL         0.00511         1         4/28/2010           1/2-Dibromoethane         EQL         0.00511         1         4/28/2010           1/	Bromomethane	BQL	0.00511	1	4/28/2010
sec-Butylbenzene         BQL         0.00511         1         4/28/2010           tert-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichlorobenzene         BQL         0.00511         1         4/28/2010      <	2-Butanone	BQL	0.0256	1	4/28/2010
tert-Butylbenzene         BQL         0.00511         1         4/28/2010           Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloronethane         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-thane (EDB)         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,1-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,1-Dichlorobenzene         BQL         0.00511         1         4/28/2010 </td <td>n-Butylbenzene</td> <td>BQL</td> <td>0.00511</td> <td>1</td> <td>4/28/2010</td>	n-Butylbenzene	BQL	0.00511	1	4/28/2010
Carbon disulfide         BQL         0.00511         1         4/28/2010           Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroethane         BQL         0.00511         1         4/28/2010           Chloroethane         BQL         0.00511         1         4/28/2010           Chloroethane         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichloro-benzene         BQL         0.00511         1         4/28/2010	sec-Butylbenzene	BQL	0.00511	1	4/28/2010
Carbon tetrachloride         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorobenzene         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chlorotoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           1.2-Dibromo-shoromethane         BQL         0.00511         1         4/28/2010           1.2-Dibromo-shoromethane         BQL         0.00511         1         4/28/2010           Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1.2-Dichorobenzene         BQL         0.00511         1         4/28/2010           1.3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.1-Dichloroethane         BQL         0.00511         1         4/28/2010	tert-Butylbenzene	BQL	0.00511	1	4/28/2010
Chlorobenzene         BQL         0.00511         1         4/28/2010           Chlorothane         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chlorontoluene         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           12-Dibromo-sh-chloropropane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-sh-chloropropane         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010<	Carbon disulfide	BQL	0.00511	1	4/28/2010
Chloroethane         BQL         0.00511         1         4/28/2010           Chloroform         BQL         0.00511         1         4/28/2010           Chloromethane         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           1.2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1.2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1.2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1.2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1.4-Dichloroethane         BQL         0.00511         1         4/28/2010           1.4-Dichloroethane         BQL         0.00511         1         4/28/2010           1.4-Dichloroethene         BQL         0.00511         1         4/28/2010<	Carbon tetrachloride	BQL	0.00511	1	4/28/2010
Chloroform         BQL         0.00511         1         4/28/2010           Chloromethane         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.0256         1         4/28/2010           1,2-Dibromoethane         EQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010 <td>Chlorobenzene</td> <td>BQL</td> <td>0.00511</td> <td>1</td> <td>4/28/2010</td>	Chlorobenzene	BQL	0.00511	1	4/28/2010
Chloromethane         BQL         0.00511         1         4/28/2010           2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           Dibromo-3-chloropropane         BQL         0.0256         1         4/28/2010           Dibromoethane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/20	Chloroethane	BQL	0.00511	1	4/28/2010
2-Chlorotoluene         BQL         0.00511         1         4/28/2010           4-Chlorotoluene         BQL         0.00511         1         4/28/2010           Dibromochloromethane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.0256         1         4/28/2010           1,2-Dibromoethane         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloropthane         BQL         0.00511         1 <t< td=""><td>Chloroform</td><td>BQL</td><td>0.00511</td><td>1</td><td>4/28/2010</td></t<>	Chloroform	BQL	0.00511	1	4/28/2010
4-Chlorotoluene       BQL       0.00511       1       4/28/2010         Dibromochloromethane       BQL       0.00511       1       4/28/2010         1,2-Dibromo-3-chloropropane       BQL       0.0256       1       4/28/2010         Dibromomethane       BQL       0.00511       1       4/28/2010         1,2-Dibromoethane (EDB)       BQL       0.00511       1       4/28/2010         1,2-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,3-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,4-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,4-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,1-Dichloroethane       BQL       0.00511       1       4/28/2010         1,1-Dichloroethane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethane       BQL       0.00511       1       4/28/2010         cis-1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         cis-1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,3-Dichloropropane       BQL       0.00511	Chloromethane	BQL	0.00511	1	4/28/2010
Dibromochloromethane         BQL         0.00511         1         4/28/2010           1,2-Dibromo-3-chloropropane         BQL         0.0256         1         4/28/2010           Dibromomethane         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloro-2-butene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloroptopane         BQL         0.00511         1	2-Chlorotoluene	BQL	0.00511	1	4/28/2010
1,2-Dibromo-3-chloropropane       BQL       0.0256       1       4/28/2010         Dibromomethane       BQL       0.00511       1       4/28/2010         1,2-Dibromoethane (EDB)       BQL       0.00511       1       4/28/2010         1,2-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,3-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,4-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,1-Dichloro-2-butene       BQL       0.00511       1       4/28/2010         1,1-Dichloro-2-butene       BQL       0.00511       1       4/28/2010         1,1-Dichloro-2-butene       BQL       0.00511       1       4/28/2010         1,1-Dichloro-thane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,2-Dichloropropane       BQL       0.00511       1       4/28/2010         2,2-Dichloropropane       BQL       0.00511 <t< td=""><td>4-Chlorotoluene</td><td>BQL</td><td>0.00511</td><td>1</td><td>4/28/2010</td></t<>	4-Chlorotoluene	BQL	0.00511	1	4/28/2010
Dibromomethane         BQL         0.00511         1         4/28/2010           1,2-Dibromoethane (EDB)         BQL         0.00511         1         4/28/2010           1,2-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,3-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,4-Dichlorobenzene         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,1-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethane         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloroethene         BQL         0.00511         1         4/28/2010           1,2-Dichloropropane         BQL         0.00511         1         4/28/2010           1,3-Dichloropropane         BQL         0.00511         1         4/28	Dibromochloromethane	BQL	0.00511	1	4/28/2010
1,2-Dibromoethane (EDB)       BQL       0.00511       1       4/28/2010         1,2-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,3-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,4-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,4-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,1-Dichlorobenzene       BQL       0.00511       1       4/28/2010         1,1-Dichloroethane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethane       BQL       0.00511       1       4/28/2010         1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,2-Dichloroethene       BQL       0.00511       1       4/28/2010         1,2-Dichloroptopane       BQL       0.00511       1       4/28/2010         1,3-Dichloropropane       BQL       0.00511       1       4/28/2010         2,2-Dichloropropene       BQL       0.00511       1	1,2-Dibromo-3-chloropropane	BQL	0.0256	1	4/28/2010
1,2-DichlorobenzeneBQL0.0051114/28/20101,3-DichlorobenzeneBQL0.0051114/28/20101,4-DichlorobenzeneBQL0.0051114/28/2010trans-1,4-Dichloro-2-buteneBQL0.025614/28/20101,1-DichloroethaneBQL0.0051114/28/20101,1-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/20101,2-DichloroetheneBQL0.0051114/28/20101,2-DichloroetheneBQL0.0051114/28/20101,2-DichloroetheneBQL0.0051114/28/20101,2-DichloroptopaneBQL0.0051114/28/20101,2-DichloroptopaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/2010<	Dibromomethane	BQL	0.00511	1	4/28/2010
1,3-DichlorobenzeneBQL0.0051114/28/20101,4-DichlorobenzeneBQL0.0051114/28/2010trans-1,4-Dichloro-2-buteneBQL0.025614/28/20101,1-DichloroethaneBQL0.0051114/28/20101,1-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.0051114/28/20101,3-DichloropropeneBQL0.005111	1,2-Dibromoethane (EDB)	BQL	0.00511	1	4/28/2010
1,4-DichlorobenzeneBQL0.0051114/28/2010trans-1,4-Dichloro-2-buteneBQL0.025614/28/20101,1-DichloroethaneBQL0.0051114/28/20101,1-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,2-Dichlorobenzene	BQL	0.00511	1	4/28/2010
trans-1,4-Dichloro-2-buteneBQL0.025614/28/20101,1-DichloroethaneBQL0.0051114/28/20101,1-DichloroethaneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloroptopaneBQL0.0051114/28/20101,2-DichloroptopaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.0051114/28/2010	1,3-Dichlorobenzene	BQL	0.00511	1	4/28/2010
1,1-DichloroethaneBQL0.0051114/28/20101,1-DichloroetheneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101DichlorodifluoromethaneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,4-Dichlorobenzene	BQL	0.00511	1	4/28/2010
1,1-DichloroetheneBQL0.0051114/28/20101,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	trans-1,4-Dichloro-2-butene	BQL	0.0256	1	4/28/2010
1,2-DichloroethaneBQL0.0051114/28/2010cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,1-Dichloroethane	BQL	0.00511	1	4/28/2010
cis-1,2-DichloroetheneBQL0.0051114/28/2010trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,1-Dichloroethene	BQL	0.00511	1	4/28/2010
trans-1,2-dichloroetheneBQL0.0051114/28/20101,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,2-Dichloroethane	BQL	0.00511	1	4/28/2010
1,2-DichloropropaneBQL0.0051114/28/20101,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	cis-1,2-Dichloroethene	BQL	0.00511	1	4/28/2010
1,3-DichloropropaneBQL0.0051114/28/20102,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	trans-1,2-dichloroethene	BQL	0.00511	1	4/28/2010
2,2-DichloropropaneBQL0.0051114/28/20101,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Disopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,2-Dichloropropane	BQL	0.00511	1	4/28/2010
1,1-DichloropropeneBQL0.0051114/28/2010cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,3-Dichloropropane	BQL	0.00511	1	4/28/2010
cis-1,3-DichloropropeneBQL0.0051114/28/2010trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	2,2-Dichloropropane	BQL	0.00511	1	4/28/2010
trans-1,3-DichloropropeneBQL0.0051114/28/2010DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	1,1-Dichloropropene	BQL	0.00511	1	4/28/2010
DichlorodifluoromethaneBQL0.0051114/28/2010Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	cis-1,3-Dichloropropene	BQL	0.00511	1	4/28/2010
Diisopropyl ether (DIPE)BQL0.0051114/28/2010EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	trans-1,3-Dichloropropene	BQL	0.00511	1	4/28/2010
EthylbenzeneBQL0.0051114/28/2010HexachlorobutadieneBQL0.0051114/28/20102-HexanoneBQL0.012814/28/2010	Dichlorodifluoromethane	BQL	0.00511	1	4/28/2010
Hexachlorobutadiene         BQL         0.00511         1         4/28/2010           2-Hexanone         BQL         0.0128         1         4/28/2010	Diisopropyl ether (DIPE)	BQL	0.00511	1	4/28/2010
Hexachlorobutadiene         BQL         0.00511         1         4/28/2010           2-Hexanone         BQL         0.0128         1         4/28/2010	Ethylbenzene	BQL	0.00511	1	4/28/2010
		BQL	0.00511	1	4/28/2010
lodomethane BQL 0.00511 1 4/28/2010	2-Hexanone	BQL	0.0128	1	4/28/2010
	lodomethane	BQL	0.00511	1	4/28/2010

Client Sample ID: SB-5 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-7A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 80.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00511		1	4/28/2010
4-Isopropyltoluene	BQL	0.00511		1	4/28/2010
Methylene chloride	BQL	0.0205		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0128		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00511		1	4/28/2010
Naphthalene	BQL	0.00511		1	4/28/2010
n-Propyl benzene	BQL	0.00511		1	4/28/2010
Styrene	BQL	0.00511		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00511		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00511		1	4/28/2010
Tetrachloroethene	BQL	0.00511		1	4/28/2010
Toluene	BQL	0.00511		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00511		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00511		1	4/28/2010
Trichloroethene	0.0870	0.00511		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00511		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00511		1	4/28/2010
Trichlorofluoromethane	BQL	0.00511		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00511		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00511		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00511		1	4/28/2010
Vinyl chloride	BQL	0.00511		1	4/28/2010
m-,p-Xylene	BQL	0.0102		1	4/28/2010
o-Xylene	BQL	0.00511		1	4/28/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.0655	131	
<b>T</b> 1 10					

Toluene-d8 4-Bromofluorobenzene

### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Reviewed By: 90

0.05

0.05

0.0464

0.0426

93

85

Client Sample ID: SB-6 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-8A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.88 g %Solids: 72.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0586	1	4/28/2010
Benzene	BQL	0.00586	1	4/28/2010
Bromobenzene	BQL	0.00586	1	4/28/2010
Bromochloromethane	BQL	0.00586	1	4/28/2010
Bromodichloromethane	BQL	0.00586	1	4/28/2010
Bromoform	BQL	0.00586	1	4/28/2010
Bromomethane	BQL	0.00586	1	4/28/2010
2-Butanone	BQL	0.0293	1	4/28/2010
n-Butylbenzene	BQL	0.00586	1	4/28/2010
sec-Butylbenzene	BQL	0.00586	1	4/28/2010
tert-Butylbenzene	BQL	0.00586	1	4/28/2010
Carbon disulfide	BQL	0.00586	1	4/28/2010
Carbon tetrachloride	BQL	0.00586	1	4/28/2010
Chlorobenzene	BQL	0.00586	1	4/28/2010
Chloroethane	BQL	0.00586	1	4/28/2010
Chloroform	BQL	0.00586	1	4/28/2010
Chloromethane	BQL	0.00586	1	4/28/2010
2-Chlorotoluene	BQL	0.00586	1	4/28/2010
4-Chlorotoluene	BQL	0.00586	1	4/28/2010
Dibromochloromethane	BQL	0.00586	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0293	1	4/28/2010
Dibromomethane	BQL	0.00586	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00586	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00586	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00586	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00586	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0293	1	4/28/2010
1,1-Dichloroethane	BQL	0.00586	1	4/28/2010
1,1-Dichloroethene	BQL	0.00586	1	4/28/2010
1,2-Dichloroethane	BQL	0.00586	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00586	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00586	1	4/28/2010
1,2-Dichloropropane	BQL	0.00586	1	4/28/2010
1,3-Dichloropropane	BQL	0.00586	1	4/28/2010
2,2-Dichloropropane	BQL	0.00586	1	4/28/2010
1,1-Dichloropropene	BQL	0.00586	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00586	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00586	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00586	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00586	1	4/28/2010
Ethylbenzene	BQL	0.00586	1	4/28/2010
Hexachlorobutadiene	BQL	0.00586	1	4/28/2010
2-Hexanone	BQL	0.0147	1	4/28/2010
lodomethane	BQL	0.00586	. 1	4/28/2010

Client Sample ID: SB-6 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-8A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 10:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.88 g %Solids: 72.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00586		· 1	4/28/2010
4-Isopropyltoluene	BQL	0.00586		1	4/28/2010
Methylene chloride	BQL	0.0235		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0147		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00586		1	4/28/2010
Naphthalene	BQL	0.00586		1	4/28/2010
n-Propyl benzene	BQL	0.00586		1	4/28/2010
Styrene	BQL	0.00586		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00586		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00586		1	4/28/2010
Tetrachloroethene	BQL	0.00586		1	4/28/2010
Toluene	BQL	0.00586		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00586		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00586		· 1	4/28/2010
Trichloroethene	BQL	0.00586		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00586		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00586		1	4/28/2010
Trichlorofluoromethane	BQL	0.00586		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00586		. 1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00586		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00586		1	4/28/2010
Vinyl chloride	BQL	0.00586		1	4/28/2010
m-,p-Xylene	BQL	0.0117		1	4/28/2010
o-Xylene	BQL	0.00586		1	4/28/2010
		Spike	Spike	Percent	

Added	Result	Recovered	
0.05	0.0628	126	
0.05	0.0462	92	
0.05	0.0444	89	
	Added 0.05 0.05	AddedResult0.050.06280.050.0462	AddedResultRecovered0.050.06281260.050.046292

#### Comments:

Flags:

BQL = Below Quantitation Limits.

0V0 Analyst:

Reviewed By: _____

Client Sample ID: SB-7 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-9D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 10.7 g %Solids: 78.6

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.740	50	4/30/2010
Benzene	BQL	0.0296	50	4/30/2010
Bromobenzene	BQL	0.0296	50	4/30/2010
Bromochloromethane	BQL	0.0296	50	4/30/2010
Bromodichloromethane	BQL	0.0296	50	4/30/2010
Bromoform	BQL	0.0296	50	4/30/2010
Bromomethane	BQL	0.0296	50	4/30/2010
2-Butanone	BQL	0.740	50	4/30/2010
n-Butylbenzene	BQL	0.0296	50	4/30/2010
sec-Butylbenzene	BQL	0.0296	50	4/30/2010
tert-Butylbenzene	BQL	0.0296	50	4/30/2010
Carbon disulfide	BQL	0.0296	50	4/30/2010
Carbon tetrachloride	BQL	0.0296	50	4/30/2010
Chlorobenzene Chloroethane	BQL	0.0296	50	4/30/2010
Chloroform	BQL BQL	0.0296	50	4/30/2010
	BQL	0.0296	50	4/30/2010
Chloromethane 2-Chlorotoluene	BQL	0.0296	50	4/30/2010
4-Chlorotoluene	BQL	0.0296 0.0296	50 50	4/30/2010
Dibromochloromethane	BQL	0.0296	50	4/30/2010 4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.148	50	4/30/2010
Dibromomethane	BQL	0.0296	50	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.0296	50	4/30/2010
1,2-Dichlorobenzene	BQL	0.0296	50	4/30/2010
1,3-Dichlorobenzene	BQL	0.0296	50	4/30/2010
1,4-Dichlorobenzene	BQL	0.0296	50	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.148	50	4/30/2010
1,1-Dichloroethane	BQL	0.0296	50	4/30/2010
1,1-Dichloroethene	BQL	0.0296	50	4/30/2010
1,2-Dichloroethane	BQL	0.0296	50	4/30/2010
cis-1,2-Dichloroethene	BQL	0.0296	50	4/30/2010
trans-1,2-dichloroethene	BQL	0.0296	50	4/30/2010
1,2-Dichloropropane	BQL	0.0296	50	4/30/2010
1,3-Dichloropropane	BQL	0.0296	50	4/30/2010
2,2-Dichloropropane	BQL	0.0296	50	4/30/2010
1,1-Dichloropropene	BQL	0.0296	50	4/30/2010
cis-1,3-Dichloropropene	BQL	0.0296	50	4/30/2010
trans-1,3-Dichloropropene	BQL	0.0296	50	4/30/2010
Dichlorodifluoromethane	BQL	0.148	50	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.0296	50	4/30/2010
Ethylbenzene	BQL	0.0296	50	4/30/2010
Hexachlorobutadiene	BQL	0.0296	50	4/30/2010
2-Hexanone	BQL	0.148	50	4/30/2010
lodomethane	BQL	0.0296	50	4/30/2010
lsopropylbenzene	BQL	0.0296	50	4/30/2010

Client Sample ID: SB-7 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-9D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 10.7 g %Solids: 78.6

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0296		50	4/30/2010
Methylene chloride	BQL	0.148		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.148		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0296		50	4/30/2010
Naphthalene	BQL	0.0296		50	4/30/2010
n-Propyl benzene	BQL	0.0296		50	4/30/2010
Styrene	BQL	0.0296		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0296		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0296		50	4/30/2010
Tetrachloroethene	BQL	0.0296		50	4/30/2010
Toluene	BQL	0.0296		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0296		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0296		50	4/30/2010
Trichloroethene	0.256	0.0296		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0296		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0296		50	4/30/2010
Trichlorofluoromethane	BQL	0.0296		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0296		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0296		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0296		50	4/30/2010
Vinyl chloride	BQL	0.0296		50	4/30/2010
m-,p-Xylene	BQL	0.0592		50	4/30/2010
o-Xylene	BQL	0.0296		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0317	105	
Toluene-d8		0.03	0.0277	92	
4-Bromofluorobenzene		0.03	0.0284	95	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: ______

Reviewed By: ______

Client Sample ID: SB-7 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-10A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 11:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.76 g %Solids: 85.1

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0509	1	4/28/2010
Benzene	BQL	0.00509	1	4/28/2010
Bromobenzene	BQL	0.00509	1	4/28/2010
Bromochloromethane	BQL	0.00509	1	4/28/2010
Bromodichloromethane	BQL	0.00509	1	4/28/2010
Bromoform	BQL	0.00509	1	4/28/2010
Bromomethane	BQL	0.00509	1	4/28/2010
2-Butanone	BQL	0.0255	1	4/28/2010
n-Butylbenzene	BQL	0.00509	1	4/28/2010
sec-Butylbenzene	BQL	0.00509	1	4/28/2010
tert-Butylbenzene	BQL	0.00509	. 1	4/28/2010
Carbon disulfide	BQL	0.00509	1	4/28/2010
Carbon tetrachloride	BQL	0.00509	1	4/28/2010
Chlorobenzene	BQL	0.00509	1	4/28/2010
Chloroethane	BQL	0.00509	1	4/28/2010
Chloroform	BQL	0.00509	1	4/28/2010
Chloromethane	BQL	0.00509	1	4/28/2010
2-Chlorotoluene	BQL	0.00509	1	4/28/2010
4-Chlorotoluene	BQL	0.00509	1	4/28/2010
Dibromochloromethane	BQL	0.00509	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0255	1	4/28/2010
Dibromomethane	BQL	0.00509	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00509	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00509	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00509	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00509	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0255	1	4/28/2010
1,1-Dichloroethane	BQL	0.00509	1	4/28/2010
1,1-Dichloroethene	BQL	0.00509	1	4/28/2010
1,2-Dichloroethane	BQL	0.00509	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00509	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00509	1	4/28/2010
1,2-Dichloropropane	BQL	0.00509	1	4/28/2010
1,3-Dichloropropane	BQL	0.00509	1	4/28/2010
2,2-Dichloropropane	BQL	0.00509	1	4/28/2010
1,1-Dichloropropene	BQL	0.00509	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00509	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00509	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00509	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00509	1	4/28/2010
Ethylbenzene	BQL	0.00509	1	4/28/2010
Hexachlorobutadiene	BQL	0.00509	1	4/28/2010
2-Hexanone	BQL	0.0127	1	4/28/2010
lodomethane	BQL	0.00509	1	4/28/2010

Client Sample ID: SB-7 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-10A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 11:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.76 g %Solids: 85.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00509		1	4/28/2010
4-Isopropyltoluene	BQL	0.00509		1	4/28/2010
Methylene chloride	BQL	0.0204		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0127		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00509		1	4/28/2010
Naphthalene	BQL	0.00509		1	4/28/2010
n-Propyl benzene	BQL	0.00509		1	4/28/2010
Styrene	BQL	0.00509		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00509		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00509		1	4/28/2010
Tetrachloroethene	BQL	0.00509		1	4/28/2010
Toluene	BQL	0.00509		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00509		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00509		1	4/28/2010
Trichloroethene	0.0869	0.00509		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00509		1	4/28/2010
1,1,2-Trichloroethane	0.0149	0.00509		1	4/28/2010
Trichlorofluoromethane	BQL	0.00509		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00509		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00509		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00509		1	4/28/2010
Vinyl chloride	BQL	0.00509		1	4/28/2010
m-,p-Xylene	BQL	0.0102		1	4/28/2010
o-Xylene	BQL	0.00509		1	4/28/2010
		Spike	Spike	Percent	

	<b>э</b> ріке	эріке	Percent		
	Added	Result	Recovered		
1,2-Dichloroethane-d4	0.05	0.0633	127		
Toluene-d8	0.05	0.0479	96		
4-Bromofluorobenzene	0.05	0.045	90		

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

JVD Analyst: _

Reviewed By:

Client Sample ID: SB-8 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-11D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.48 g %Solids: 74.8

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	6.10	200	4/30/2010
Benzene	BQL	0.244	200	4/30/2010
Bromobenzene	BQL	0.244	200	4/30/2010
Bromochloromethane	BQL	0.244	200	4/30/2010
Bromodichloromethane	BQL	0.244	200	4/30/2010
Bromoform	BQL	0.244	200	4/30/2010
Bromomethane	BQL	0.244	200	4/30/2010
2-Butanone	BQL	6.10	200	4/30/2010
n-Butylbenzene	BQL	0.244	200	4/30/2010
sec-Butylbenzene	BQL	0.244	200	4/30/2010
tert-Butylbenzene	BQL	0.244	200	4/30/2010
Carbon disulfide	BQL	0.244	200	4/30/2010
Carbon tetrachloride	BQL	0.244	200	4/30/2010
Chlorobenzene	BQL	0.244	200	4/30/2010
Chloroethane	BQL	0.244	200	4/30/2010
Chloroform	BQL	0.244	200	4/30/2010
Chloromethane	BQL	0.244	200	4/30/2010
2-Chlorotoluene	BQL	0.244	200	4/30/2010
4-Chlorotoluene	BQL	0.244	200	4/30/2010
Dibromochloromethane	BQL	0.244	200	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	1.22	200	4/30/2010
Dibromomethane	BQL	0.244	200	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.244	200	4/30/2010
1,2-Dichlorobenzene	BQL	0.244	200	4/30/2010
1,3-Dichlorobenzene	BQL	0.244	200	4/30/2010
1,4-Dichlorobenzene	BQL	0.244	200	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	1.22	200	4/30/2010
1,1-Dichloroethane	BQL	0.244	200	4/30/2010
1,1-Dichloroethene	BQL	0.244	200	4/30/2010
1,2-Dichloroethane	BQL	0.244	200	4/30/2010
cis-1,2-Dichloroethene	BQL	0.244	200	4/30/2010
trans-1,2-dichloroethene	BQL	0.244	200	4/30/2010
1,2-Dichloropropane	BQL	0.244	200	4/30/2010
1,3-Dichloropropane	BQL	0.244	200	4/30/2010
2,2-Dichloropropane	BQL	0.244	200	4/30/2010
1,1-Dichloropropene	BQL BQL	0.244 0.244	200	4/30/2010
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	BQL	0.244	200	4/30/2010 4/30/2010
Dichlorodifluoromethane	BQL	1.22	200 200	
Disopropyl ether (DIPE)	BQL	0.244	200	4/30/2010 4/30/2010
Ethylbenzene	BQL	0.244	200	
Hexachlorobutadiene	BQL	0.244	200	4/30/2010 4/30/2010
2-Hexanone	BQL	1.22	200	4/30/2010
lodomethane	BQL	0.244	200	4/30/2010
Isopropylbenzene	BQL	0.244	200	4/30/2010
		0.277	200	710012010

Client Sample ID: SB-8 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-11D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.48 g %Solids: 74.8

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.244		200	4/30/2010
Methylene chloride	BQL	1.22		200	4/30/2010
4-Methyl-2-pentanone	BQL	1.22		200	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.244		200	4/30/2010
Naphthalene	BQL	0.244		200	4/30/2010
n-Propyl benzene	BQL	0.244		200	4/30/2010
Styrene	BQL	0.244		200	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.244		200	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.244		200	4/30/2010
Tetrachloroethene	BQL	0.244		200	4/30/2010
Toluene	BQL	0.244		200	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.244		200	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.244		200	4/30/2010
Trichloroethene	3.32	0.244		200	4/30/2010
1,1,1-Trichloroethane	BQL	0.244		200	4/30/2010
1,1,2-Trichloroethane	BQL	0.244		200	4/30/2010
Trichlorofluoromethane	BQL	0.244		200	4/30/2010
1,2,3-Trichloropropane	BQL	0.244		200	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.244		200	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.244		200	4/30/2010
Vinyl chloride	BQL	0.244		200	4/30/2010
m-,p-Xylene	BQL	0.488		200	4/30/2010
o-Xylene	BQL	0.244		200	4/30/2010
		Spike Added	Spike Result	Percent Recovered	
1,2-Dichloroethane-d4		0.03	0.0314	105	
Toluene-d8		0.03	0.0275	92	
4-Bromofluorobenzene		0.03	0.0281	94	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: ____Û√Ù

Reviewed By: <u>999</u>

١

.

Client Sample ID: SB-8 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-12D Lab Project ID: G1037-69 Report Basis: Dry Weight

,

Analyzed By: CLP Date Collected: 4/19/2010 11:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.3 g %Solids: 73.2

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	2.71	100	4/30/2010
Benzene	BQL	0.108	100	4/30/2010
Bromobenzene	BQL	0.108	100	4/30/2010
Bromochloromethane	BQL	0.108	100	4/30/2010
Bromodichloromethane	BQL	0.108	100	4/30/2010
Bromoform	BQL	0.108	100	4/30/2010
Bromomethane	BQL	0.108	100	4/30/2010
2-Butanone	BQL	2.71	100	4/30/2010
n-Butylbenzene	BQL	0.108	100	4/30/2010
sec-Butylbenzene	BQL	0.108	100	4/30/2010
tert-Butylbenzene	BQL	0.108	100	4/30/2010
Carbon disulfide	BQL	0.108	100	4/30/2010
Carbon tetrachloride	BQL	0.108	100	4/30/2010
Chlorobenzene	BQL	0.108	100	4/30/2010
Chloroethane	BQL	0.108	100	4/30/2010
Chloroform	BQL	0.108	100	4/30/2010
Chloromethane	BQL	0.108	100	4/30/2010
2-Chlorotoluene	BQL	0.108	100	4/30/2010
4-Chlorotoluene	BQL	0.108	100	4/30/2010
Dibromochloromethane	BQL	0.108	100	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.542	100	4/30/2010
Dibromomethane	BQL	0.108	100	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.108	100	4/30/2010
1,2-Dichlorobenzene	BQL	0.108	100	4/30/2010
1,3-Dichlorobenzene	BQL	0.108	100	4/30/2010
1,4-Dichlorobenzene	BQL	0.108	100	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.542	100	4/30/2010
1,1-Dichloroethane	BQL	0.108	100	4/30/2010
1,1-Dichloroethene	BQL	0.108	100	4/30/2010
1,2-Dichloroethane	BQL	0.108	100	4/30/2010
cis-1,2-Dichloroethene	BQL	0.108	100	4/30/2010
trans-1,2-dichloroethene	BQL	0.108	100	4/30/2010
1,2-Dichloropropane	BQL	0.108	100	4/30/2010
1,3-Dichloropropane	BQL	0.108	100	4/30/2010
2,2-Dichloropropane	BQL	0.108	100	4/30/2010
1,1-Dichloropropene	BQL	0.108	100	4/30/2010
cis-1,3-Dichloropropene	BQL	0.108	100	4/30/2010
trans-1,3-Dichloropropene	BQL	0.108	100	4/30/2010
Dichlorodifluoromethane	BQL	0.542	100	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.108	100	4/30/2010
Ethylbenzene	BQL	0.108	100	4/30/2010
Hexachlorobutadiene	BQL	0.108	100	4/30/2010
2-Hexanone	BQL	0.542	100	4/30/2010
lodomethane	BQL	0.108	100	4/30/2010
lsopropylbenzene	BQL	0.108	100	4/30/2010

Client Sample ID: SB-8 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-12D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 11:45 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.3 g %Solids: 73.2

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.108		100	4/30/2010
Methylene chloride	BQL	0.542		100	4/30/2010
4-Methyl-2-pentanone	BQL	0.542		100	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.108		100	4/30/2010
Naphthalene	BQL	0.108		100	4/30/2010
n-Propyl benzene	BQL	0.108		100	4/30/2010
Styrene	BQL	0.108		100	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.108		100	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.108		100	4/30/2010
Tetrachloroethene	BQL	0.108		100	4/30/2010
Toluene	BQL	0.108		100	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.108		100	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.108		100	4/30/2010
Trichloroethene	0.897	0.108		100	4/30/2010
1,1,1-Trichloroethane	BQL	0.108		100	4/30/2010
1,1,2-Trichloroethane	BQL	0.108		100	4/30/2010
Trichlorofluoromethane	BQL	0.108		100	4/30/2010
1,2,3-Trichloropropane	BQL	0.108		100	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.108		100	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.108		100	4/30/2010
Vinyl chloride	BQL	0.108		100	4/30/2010
m-,p-Xylene	BQL	0.217		100	4/30/2010
o-Xylene	BQL	0.108		100	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0324	108	
Toluene-d8		0.03	0.0287	96	
4-Bromofluorobenzene		0.03	0.0281	94	

#### Comments:

### Flags:

BQL = Below Quantitation Limits.

Analyst: ____  $\Omega \sqrt{\mathcal{O}}$ 

Reviewed By: Man

Client Sample ID: SB-8 (18-20) **Client Project ID: NCDOT** Lab Sample ID: G1037-69-13D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 71.8

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	14.3	500	4/30/2010
Benzene	BQL	0.572	500	4/30/2010
Bromobenzene	BQL	0.572	500	4/30/2010
Bromochloromethane	BQL	0.572	500	4/30/2010
Bromodichloromethane	BQL	0.572	500	4/30/2010
Bromoform	BQL	0.572	500	4/30/2010
Bromomethane	BQL	0.572	500	4/30/2010
2-Butanone	BQL	14.3	500	4/30/2010
n-Butylbenzene	BQL	0.572	500	4/30/2010
sec-Butylbenzene	BQL	0.572	500	4/30/2010
tert-Butylbenzene	BQL	0.572	500	4/30/2010
Carbon disulfide	BQL	0.572	500	4/30/2010
Carbon tetrachloride	BQL	0.572	500	4/30/2010
Chlorobenzene	BQL	0.572	500	4/30/2010
Chloroethane	BQL	0.572	500	4/30/2010
Chloroform	BQL	0.572	500	4/30/2010
Chloromethane	BQL	0.572	500	4/30/2010
2-Chlorotoluene	BQL	0.572	500	4/30/2010
4-Chlorotoluene	BQL	0.572	500	4/30/2010
Dibromochloromethane	BQL	0.572	500	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	2.86	500	4/30/2010
Dibromomethane	BQL	0.572	500	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.572	500	4/30/2010
1,2-Dichlorobenzene	BQL BQL	0.572	500	4/30/2010
1,3-Dichlorobenzene 1,4-Dichlorobenzene	BQL	0.572 0.572	500 500	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	2.86	500	4/30/2010 4/30/2010
1,1-Dichloroethane	BQL	0.572	500	4/30/2010
1,1-Dichloroethene	BQL	0.572	500	4/30/2010
1,2-Dichloroethane	BQL	0.572	500	4/30/2010
cis-1,2-Dichloroethene	BQL	0.572	500	4/30/2010
trans-1,2-dichloroethene	BQL	0.572	500	4/30/2010
1,2-Dichloropropane	BQL	0.572	500	4/30/2010
1,3-Dichloropropane	BQL	0.572	500	4/30/2010
2,2-Dichloropropane	BQL	0.572	500	4/30/2010
1,1-Dichloropropene	BQL	0.572	500	4/30/2010
cis-1,3-Dichloropropene	BQL	0.572	500	4/30/2010
trans-1,3-Dichloropropene	BQL	0.572	500	4/30/2010
Dichlorodifluoromethane	BQL	2.86	500	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.572	500	4/30/2010
Ethylbenzene	BQL	0.572	500	4/30/2010
Hexachlorobutadiene	BQL	0.572	500	4/30/2010
2-Hexanone	BQL	2.86	500	4/30/2010
lodomethane	BQL	0.572	500	4/30/2010
lsopropylbenzene	BQL	0.572	500	4/30/2010

Client Sample ID: SB-8 (18-20) Client Project ID: NCDOT Lab Sample ID: G1037-69-13D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.09 g %Solids: 71.8

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.572		500	4/30/2010
Methylene chloride	BQL	2.86		500	4/30/2010
4-Methyl-2-pentanone	BQL	2.86		500	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.572		500	4/30/2010
Naphthalene	BQL	0.572		500	4/30/2010
n-Propyl benzene	BQL	0.572		500	4/30/2010
Styrene	BQL	0.572		500	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.572		500	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.572		500	4/30/2010
Tetrachloroethene	BQL	0.572		500	4/30/2010
Toluene	BQL	0.572		500	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.572		500	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.572		500	4/30/2010
Trichloroethene	5.71	0.572		500	4/30/2010
1,1,1-Trichloroethane	BQL	0.572		500	4/30/2010
1,1,2-Trichloroethane	BQL	0.572		500	4/30/2010
Trichlorofluoromethane	BQL	0.572		500	4/30/2010
1,2,3-Trichloropropane	BQL	0.572		500	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.572		500	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.572		500	4/30/2010
Vinyl chloride	BQL	0.572		500	4/30/2010
m-,p-Xylene	BQL	1.14		500	4/30/2010
o-Xylene	BQL	0.572		500	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0317	106	
Toluene-d8		0.03	0.0281	94	

Toluene-d8 4-Bromofluorobenzene

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: _____0ö___

Reviewed By: ______

0.03

0.0283

94

Client Sample ID: SB-9 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-14A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 12:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.09 g %Solids: 71.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0688	1	4/28/2010
Benzene	BQL	0.00688	1	4/28/2010
Bromobenzene	BQL	0.00688	1	4/28/2010
Bromochloromethane	BQL	0.00688	1	4/28/2010
Bromodichloromethane	BQL	0.00688	1	4/28/2010
Bromoform	BQL	0.00688	1	4/28/2010
Bromomethane	BQL	0.00688	1	4/28/2010
2-Butanone	BQL	0.0344	1	4/28/2010
n-Butylbenzene	BQL	0.00688	1	4/28/2010
sec-Butylbenzene	BQL	0.00688	1	4/28/2010
tert-Butylbenzene	BQL	0.00688	1	4/28/2010
Carbon disulfide	BQL	0.00688	1	4/28/2010
Carbon tetrachloride	BQL	0.00688	1	4/28/2010
Chlorobenzene	BQL	0.00688	1	4/28/2010
Chloroethane	BQL	0.00688	1	4/28/2010
Chloroform	BQL	0.00688	1	4/28/2010
Chloromethane	BQL	0.00688	1	4/28/2010
2-Chlorotoluene	BQL	0.00688	1	4/28/2010
4-Chlorotoluene	BQL	0.00688	1	4/28/2010
Dibromochloromethane	BQL	0.00688	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0344	1	4/28/2010
Dibromomethane	BQL	0.00688	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00688	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00688	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00688	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00688	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0344	1	4/28/2010
1,1-Dichloroethane	BQL	0.00688	1	4/28/2010
1,1-Dichloroethene	BQL	0.00688	1	4/28/2010
1,2-Dichloroethane	BQL	0.00688	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00688	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00688	1	4/28/2010
1,2-Dichloropropane	BQL	0.00688	1	4/28/2010
1,3-Dichloropropane	BQL	0.00688	1	4/28/2010
2,2-Dichloropropane	BQL	0.00688	1	4/28/2010
1,1-Dichloropropene	BQL	0.00688	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00688	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00688	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00688	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00688	1	4/28/2010
Ethylbenzene	BQL	0.00688	1	4/28/2010
Hexachlorobutadiene	BQL	0.00688	1	4/28/2010
2-Hexanone	BQL	0.0172	1	4/28/2010
lodomethane	BQL	0.00688	1	4/28/2010

Client Sample ID: SB-9 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-14A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-19-2010 12:15 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.09 g %Solids: 71.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00688		1	4/28/2010
4-Isopropyltoluene	BQL	0.00688		1	4/28/2010
Methylene chloride	BQL	0.0275		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0172		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00688		1	4/28/2010
Naphthalene	BQL	0.00688		1	4/28/2010
n-Propyl benzene	BQL	0.00688		1	4/28/2010
Styrene	BQL	0.00688		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00688		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00688		1	4/28/2010
Tetrachloroethene	BQL	0.00688		1	4/28/2010
Toluene	BQL	0.00688		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00688		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00688		1	4/28/2010
Trichloroethene	BQL	0.00688		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00688		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00688		1	4/28/2010
Trichlorofluoromethane	BQL	0.00688		_1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00688		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00688		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00688		1	4/28/2010
Vinyl chloride	BQL	0.00688		1	4/28/2010
m-,p-Xylene	BQL	0.0138		1	4/28/2010
o-Xylene	BQL	0.00688		1	4/28/2010
		Spike Added	Spike Result	Percent Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0603	121
Toluene-d8	0.05	0.0475	95
4-Bromofluorobenzene	0.05	0.045	90

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: ____ <u>NVU</u>

Reviewed By:

Client Sample ID: SB-10 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-15D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/19/2010 12:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.17 g %Solids: 75.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.61	50	4/30/2010
Benzene	BQL	0.0644	50	4/30/2010
Bromobenzene	BQL	0.0644	50	4/30/2010
Bromochloromethane	BQL	0.0644	50	4/30/2010
Bromodichloromethane	BQL	0.0644	50	4/30/2010
Bromoform	BQL	0.0644	50	4/30/2010
Bromomethane	BQL	0.0644	50	4/30/2010
2-Butanone	BQL	1.61	50	4/30/2010
n-Butylbenzene	BQL	0.0644	50	4/30/2010
sec-Butylbenzene	BQL	0.0644	50	4/30/2010
tert-Butylbenzene	BQL	0.0644	50	4/30/2010
Carbon disulfide	BQL	0.0644	50	4/30/2010
Carbon tetrachloride	BQL	0.0644	50	4/30/2010
Chlorobenzene	BQL	0.0644	50	4/30/2010
Chloroethane	BQL	0.0644	50	4/30/2010
Chloroform	BQL	0.0644	50	4/30/2010
Chloromethane	BQL	0.0644	50	4/30/2010
2-Chlorotoluene	BQL	0.0644	50	4/30/2010
4-Chlorotoluene	BQL	0.0644	50	4/30/2010
Dibromochloromethane	BQL	0.0644	50	4/30/2010
1,2-Dibromo-3-chloropropane	BQL	0.322	50	4/30/2010
Dibromomethane	BQL	0.0644	50	4/30/2010
1,2-Dibromoethane (EDB)	BQL	0.0644	50	4/30/2010
1,2-Dichlorobenzene	BQL	0.0644	50	4/30/2010
1,3-Dichlorobenzene	BQL	0.0644	50	4/30/2010
1,4-Dichlorobenzene	BQL	0.0644	50	4/30/2010
trans-1,4-Dichloro-2-butene	BQL	0.322	50	4/30/2010
1,1-Dichloroethane	BQL	0.0644	50	4/30/2010
1,1-Dichloroethene	BQL	0.0644	50	4/30/2010
1,2-Dichloroethane	BQL	0.0644	50	4/30/2010
cis-1,2-Dichloroethene	BQL	0.0644	50	4/30/2010
trans-1,2-dichloroethene	BQL	0.0644	50	4/30/2010
1,2-Dichloropropane	BQL	0.0644	50	4/30/2010
1,3-Dichloropropane	BQL	0.0644	50	4/30/2010
2,2-Dichloropropane 1,1-Dichloropropene	BQL	0.0644	50	4/30/2010
· · ·	BQL	0.0644	50	4/30/2010
cis-1,3-Dichloropropene	BQL	0.0644	50	4/30/2010
trans-1,3-Dichloropropene Dichlorodifluoromethane	BQL BQL	0.0644	50	4/30/2010
Diisopropyl ether (DIPE)	BQL	0.322 0.0644	50	4/30/2010
Ethylbenzene	BQL	0.0644	50	4/30/2010
Hexachlorobutadiene	BQL	0.0644	50 50	4/30/2010
2-Hexanone	BQL	0.322	50 50	4/30/2010
lodomethane	BQL	0.0644	50	4/30/2010 4/30/2010
Isopropylbenzene	BQL	0.0644	50	4/30/2010
		0.0044	50	4/30/2010

Client Sample ID: SB-10 (8-10) Client Project ID: NCDOT Lab Sample ID: G1037-69-15D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/19/2010 12:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.17 g %Solids: 75.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0644		50	4/30/2010
Methylene chloride	BQL	0.322		50	4/30/2010
4-Methyl-2-pentanone	BQL	0.322		50	4/30/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0644		50	4/30/2010
Naphthalene	BQL	0.0644		50	4/30/2010
n-Propyl benzene	BQL	0.0644		50	4/30/2010
Styrene	BQL	0.0644		50	4/30/2010
1,1,1,2-Tetrachloroethane	BQL	0.0644		50	4/30/2010
1,1,2,2-Tetrachloroethane	BQL	0.0644		50	4/30/2010
Tetrachloroethene	BQL	0.0644		50	4/30/2010
Toluene	BQL	0.0644		50	4/30/2010
1,2,3-Trichlorobenzene	BQL	0.0644		50	4/30/2010
1,2,4-Trichlorobenzene	BQL	0.0644		50	4/30/2010
Trichloroethene	0.341	0.0644		50	4/30/2010
1,1,1-Trichloroethane	BQL	0.0644		50	4/30/2010
1,1,2-Trichloroethane	BQL	0.0644		50	4/30/2010
Trichlorofluoromethane	BQL	0.0644		50	4/30/2010
1,2,3-Trichloropropane	BQL	0.0644		50	4/30/2010
1,2,4-Trimethylbenzene	BQL	0.0644		50	4/30/2010
1,3,5-Trimethylbenzene	BQL	0.0644		50	4/30/2010
Vinyl chloride	BQL	0.0644		50	4/30/2010
m-,p-Xylene	BQL	0.129		50	4/30/2010
o-Xylene	BQL	0.0644		50	4/30/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0343	114	
Toluene-d8		0.03	0.028 <del>9</del>	96	

Toluene-d8 4-Bromofluorobenzene

#### **Comments:**

#### Flags:

BQL = Below Quantitation Limits.

Analyst: <u>0</u>VO

Reviewed By: ______

0.03

0.0284

95

Client Sample ID: SB-11 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-16A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 13:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.34 g %Solids: 73.2

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0785	1	4/28/2010
Benzene	BQL	0.00785	1	4/28/2010
Bromobenzene	BQL	0.00785	1	4/28/2010
Bromochloromethane	BQL	0.00785	1	4/28/2010
Bromodichloromethane	BQL	0.00785	1	4/28/2010
Bromoform	BQL	0.00785	1	4/28/2010
Bromomethane	BQL	0.00785	1	4/28/2010
2-Butanone	BQL	0.0392	1	4/28/2010
n-Butylbenzene	BQL	0.00785	1	4/28/2010
sec-Butylbenzene	BQL	0.00785	1	4/28/2010
tert-Butylbenzene	BQL	0.00785	1	4/28/2010
Carbon disulfide	BQL	0.00785	1	4/28/2010
Carbon tetrachloride	BQL	0.00785	1	4/28/2010
Chlorobenzene	BQL	0.00785	1	4/28/2010
Chloroethane	BQL	0.00785	1	4/28/2010
Chloroform	BQL	0.00785	1	4/28/2010
Chloromethane	BQL	0.00785	1	4/28/2010
2-Chlorotoluene	BQL	0.00785	1	4/28/2010
4-Chlorotoluene	BQL	0.00785	1	4/28/2010
Dibromochloromethane	BQL	0.00785	1	4/28/2010
1,2-Dibromo-3-chloropropane	BQL	0.0392	1	4/28/2010
Dibromomethane	BQL	0.00785	1	4/28/2010
1,2-Dibromoethane (EDB)	BQL	0.00785	1	4/28/2010
1,2-Dichlorobenzene	BQL	0.00785	1	4/28/2010
1,3-Dichlorobenzene	BQL	0.00785	1	4/28/2010
1,4-Dichlorobenzene	BQL	0.00785	1	4/28/2010
trans-1,4-Dichloro-2-butene	BQL	0.0392	1	4/28/2010
1,1-Dichloroethane	BQL	0.00785	1	4/28/2010
1,1-Dichloroethene	BQL	0.00785	1	4/28/2010
1,2-Dichloroethane	BQL	0.00785	1	4/28/2010
cis-1,2-Dichloroethene	BQL	0.00785	1	4/28/2010
trans-1,2-dichloroethene	BQL	0.00785	1	4/28/2010
1,2-Dichloropropane	BQL	0.00785	1	4/28/2010
1,3-Dichloropropane	BQL	0.00785	1	4/28/2010
2,2-Dichloropropane	BQL	0.00785	1	4/28/2010
1,1-Dichloropropene	BQL	0.00785	1	4/28/2010
cis-1,3-Dichloropropene	BQL	0.00785	1	4/28/2010
trans-1,3-Dichloropropene	BQL	0.00785	1	4/28/2010
Dichlorodifluoromethane	BQL	0.00785	1	4/28/2010
Diisopropyl ether (DIPE)	BQL	0.00785	1	4/28/2010
Ethylbenzene	BQL	0.00785	1	4/28/2010
Hexachlorobutadiene	BQL	0.00785	1	4/28/2010
2-Hexanone	BQL	0.0196	1	4/28/2010
lodomethane	BQL	0.00785	1	4/28/2010

Client Sample ID: SB-11 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-16A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-19-2010 13:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.34 g %Solids: 73.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00785		1	4/28/2010
4-Isopropyltoluene	BQL	0.00785		1	4/28/2010
Methylene chloride	BQL	0.0314		1	4/28/2010
4-Methyl-2-pentanone	BQL	0.0196		1	4/28/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00785		1	4/28/2010
Naphthalene	BQL	0.00785		1	4/28/2010
n-Propyl benzene	BQL	0.00785		1	4/28/2010
Styrene	BQL	0.00785		1	4/28/2010
1,1,1,2-Tetrachloroethane	BQL	0.00785		1	4/28/2010
1,1,2,2-Tetrachloroethane	BQL	0.00785		1	4/28/2010
Tetrachloroethene	BQL	0.00785		1	4/28/2010
Toluene	BQL	0.00785		1	4/28/2010
1,2,3-Trichlorobenzene	BQL	0.00785		1	4/28/2010
1,2,4-Trichlorobenzene	BQL	0.00785		1	4/28/2010
Trichloroethene	0.0257	0.00785		1	4/28/2010
1,1,1-Trichloroethane	BQL	0.00785		1	4/28/2010
1,1,2-Trichloroethane	BQL	0.00785		1	4/28/2010
Trichlorofluoromethane	BQL	0.00785		1	4/28/2010
1,2,3-Trichloropropane	BQL	0.00785		1	4/28/2010
1,2,4-Trimethylbenzene	BQL	0.00785		1	4/28/2010
1,3,5-Trimethylbenzene	BQL	0.00785		1	4/28/2010
Vinyl chloride	BQL	0.00785		1	4/28/2010
m-,p-Xylene	BQL	0.0157		1	4/28/2010
o-Xylene	BQL	0.00785		1	4/28/2010
		Spike	Spike	Percent	
		babbΔ	Result	Recovered	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.064	128	
Toluene-d8	0.05	0.0476	95	
4-Bromofluorobenzene	0.05	0.0452	90	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

OVO Analyst:

Reviewed By:

.

Client Sample ID: SB-12 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-17A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4 g %Solids: 77.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0807	1	4/29/2010
Benzene	BQL	0.00807	1	4/29/2010
Bromobenzene	BQL	0.00807	1	4/29/2010
Bromochloromethane	BQL	0.00807	. 1	4/29/2010
Bromodichloromethane	BQL	0.00807	1	4/29/2010
Bromoform	BQL	0.00807	1	4/29/2010
Bromomethane	BQL	0.00807	1	4/29/2010
2-Butanone	BQL	0.0403	1	4/29/2010
n-Butylbenzene	BQL	0.00807	1	4/29/2010
sec-Butylbenzene	BQL	0.00807	1	4/29/2010
tert-Butylbenzene	BQL	0.00807	1	4/29/2010
Carbon disulfide	BQL	0.00807	1	4/29/2010
Carbon tetrachloride	BQL	0.00807	. 1	4/29/2010
Chlorobenzene	BQL	0.00807	1	4/29/2010
Chloroethane	BQL	0.00807	1	4/29/2010
Chloroform	BQL	0.00807	1	4/29/2010
Chloromethane	BQL	0.00807	1	4/29/2010
2-Chlorotoluene	BQL	0.00807	1	4/29/2010
4-Chlorotoluene	BQL	0.00807	1	4/29/2010
Dibromochloromethane	BQL	0.00807	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0403	1	4/29/2010
Dibromomethane	BQL	0.00807	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00807	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00807	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00807	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00807	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0403	1	4/29/2010
1,1-Dichloroethane	BQL	0.00807	1	4/29/2010
1,1-Dichloroethene	BQL	0.00807	1	4/29/2010
1,2-Dichloroethane	BQL	0.00807	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00807	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00807	1	4/29/2010
1,2-Dichloropropane	BQL	0.00807	1	4/29/2010
1,3-Dichloropropane	BQL	0.00807	1	4/29/2010
2,2-Dichloropropane	BQL	0.00807	1	4/29/2010
1,1-Dichloropropene	BQL	0.00807	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00807	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00807	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00807	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00807	1	4/29/2010
Ethylbenzene	BQL	0.00807	1	4/29/2010
Hexachlorobutadiene	BQL	0.00807	1	4/29/2010
2-Hexanone	BQL	0.0202	1	4/29/2010
lodomethane	BQL	0.00807	1	4/29/2010

Client Sample ID: SB-12 (4-6) Client Project ID: NCDOT Lab Sample ID G1037-69-17A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 10:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4 g %Solids: 77.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00807		1	4/29/2010
4-Isopropyltoluene	BQL	0.00807		1	4/29/2010
Methylene chloride	BQL	0.0323		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0202		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00807		1	4/29/2010
Naphthalene	BQL	0.00807		1	4/29/2010
n-Propyl benzene	BQL	0.00807		1	4/29/2010
Styrene	BQL	0.00807		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00807		· <b>1</b>	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00807		1	4/29/2010
Tetrachloroethene	BQL	0.00807		1	4/29/2010
Toluene	BQL	0.00807		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00807		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00807		1	4/29/2010
Trichloroethene	0.0118	0.00807		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00807		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00807		1	4/29/2010
Trichlorofluoromethane	BQL	0.00807		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00807		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00807		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00807		1	4/29/2010
Vinyl chloride	BQL	0.00807		1	4/29/2010
m-,p-Xylene	BQL	0.0161		1	4/29/2010
o-Xylene	BQL	0.00807		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

	Added	Result	Recovered
1,2-Dichloroethane-d4	0.05	0.0614	123
Toluene-d8	0.05	0.0472	94
4-Bromofluorobenzene	0.05	0.0443	89

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

(JVO) Analyst:

Reviewed By:

Client Sample ID: SB-13 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-18D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 10:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.46 g %Solids: 77.5

ResultQuantitationDilutionDateCompoundMG/KGLimit MG/KGFactorAnalyzedAcetoneBQL1.25505/4/2010BenzeneBQL0.0500505/4/2010BromobenzeneBQL0.0500505/4/2010BromochloromethaneBQL0.0500505/4/2010BromodichloromethaneBQL0.0500505/4/2010BromodichloromethaneBQL0.0500505/4/2010BromomethaneBQL0.0500505/4/2010BromomethaneBQL0.0500505/4/2010BromomethaneBQL0.0500505/4/2010PartanoneBQL0.0500505/4/2010n-ButylbenzeneBQL0.0500505/4/2010carbon tetrachlorideBQL0.0500505/4/2010Carbon tetrachlorideBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChlorobenzeneBQL0.0500
Acetone         BQL         1.25         50         5/4/2010           Benzene         BQL         0.0500         50         5/4/2010           Bromobenzene         BQL         0.0500         50         5/4/2010           Bromochloromethane         BQL         0.0500         50         5/4/2010           Bromochloromethane         BQL         0.0500         50         5/4/2010           Bromodichloromethane         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           Promomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         0.0500         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chlorobenane         BQL
Benzene         BQL         0.0500         50         5/4/2010           Bromobenzene         BQL         0.0500         50         5/4/2010           Bromochloromethane         BQL         0.0500         50         5/4/2010           Bromodichloromethane         BQL         0.0500         50         5/4/2010           Bromodichloromethane         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chlorothane         BQL         0.0500         50         5/4/2010           Chlorotoluene         B
Bromochloromethane         BQL         0.0500         50         5/4/2010           Bromodichloromethane         BQL         0.0500         50         5/4/2010           Bromoform         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL
Bromodichloromethane         BQL         0.0500         50         5/4/2010           Bromoform         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           tert-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chlorotoluene         BQL
Bromoform         BQL         0.0500         50         5/4/2010           Bromomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           tert-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           1/2-Dibromo-3-chloropropane
Bromomethane         BQL         0.0500         50         5/4/2010           2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           tert-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chlorotoluene         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromo-3-chloropropane <t< td=""></t<>
2-Butanone         BQL         1.25         50         5/4/2010           n-Butylbenzene         BQL         0.0500         50         5/4/2010           sec-Butylbenzene         BQL         0.0500         50         5/4/2010           tert-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroethane         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chlorotoluene         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.0500         50         5/4/2010           Dibromoethane
n-ButylbenzeneBQL0.0500505/4/2010sec-ButylbenzeneBQL0.0500505/4/2010tert-ButylbenzeneBQL0.0500505/4/2010Carbon disulfideBQL0.0500505/4/2010Carbon tetrachlorideBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChloroethaneBQL0.0500505/4/2010ChloroformBQL0.0500505/4/2010ChloroformBQL0.0500505/4/2010ChlorotolueneBQL0.0500505/4/20102-ChlorotolueneBQL0.0500505/4/20104-ChlorotolueneBQL0.0500505/4/2010DibromochloromethaneBQL0.0500505/4/20101,2-Dibromo-3-chloropropaneBQL0.250505/4/20101,2-Dibromoethane (EDB)BQL0.0500505/4/2010
sec-Butylbenzene         BQL         0.0500         50         5/4/2010           tert-Butylbenzene         BQL         0.0500         50         5/4/2010           Carbon disulfide         BQL         0.0500         50         5/4/2010           Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroethane         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane (EDB
tert-ButylbenzeneBQL0.0500505/4/2010Carbon disulfideBQL0.0500505/4/2010Carbon tetrachlorideBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChloroethaneBQL0.0500505/4/2010ChloroformBQL0.0500505/4/2010ChloromethaneBQL0.0500505/4/2010ChlorotolueneBQL0.0500505/4/20102-ChlorotolueneBQL0.0500505/4/20104-ChlorotolueneBQL0.0500505/4/2010DibromochloromethaneBQL0.0500505/4/20101,2-Dibromo-3-chloropropaneBQL0.250505/4/2010J2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010J,2-DibromoethaneBQL0.0500505/4/2010
Carbon disulfideBQL0.0500505/4/2010Carbon tetrachlorideBQL0.0500505/4/2010ChlorobenzeneBQL0.0500505/4/2010ChloroethaneBQL0.0500505/4/2010ChloroformBQL0.0500505/4/2010ChloromethaneBQL0.0500505/4/2010ChloronethaneBQL0.0500505/4/2010ChlorotolueneBQL0.0500505/4/20102-ChlorotolueneBQL0.0500505/4/2010J.2-Dibromo-3-chloropropaneBQL0.250505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010J.2-DibromoethaneBQL0.0500505/4/2010
Carbon tetrachloride         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroethane         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           Chlorotoluene         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
Chlorobenzene         BQL         0.0500         50         5/4/2010           Chloroethane         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
Chloroethane         BQL         0.0500         50         5/4/2010           Chloroform         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010
Chloroform         BQL         0.0500         50         5/4/2010           Chloromethane         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
Chloromethane         BQL         0.0500         50         5/4/2010           2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010
2-Chlorotoluene         BQL         0.0500         50         5/4/2010           4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
4-Chlorotoluene         BQL         0.0500         50         5/4/2010           Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.250         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           Dibromoethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
Dibromochloromethane         BQL         0.0500         50         5/4/2010           1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromomethane         BQL         0.0500         50         5/4/2010           Dibromomethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
1,2-Dibromo-3-chloropropane         BQL         0.250         50         5/4/2010           Dibromomethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
Dibromomethane         BQL         0.0500         50         5/4/2010           1,2-Dibromoethane (EDB)         BQL         0.0500         50         5/4/2010
1,2-Dibromoethane (EDB) BQL 0.0500 50 5/4/2010
1,2-Dichlorobenzene BQL 0.0500 50 5/4/2010
1,3-DichlorobenzeneBQL0.0500505/4/20101,4-DichlorobenzeneBQL0.0500505/4/2010
trans-1,4-Dichloro-2-butene BQL 0.250 50 5/4/2010
1,1-Dichloroethane BQL 0.0500 50 5/4/2010
1,1-Dichloroethene BQL 0.0500 50 5/4/2010
1,2-Dichloroethane BQL 0.0500 50 5/4/2010
cis-1,2-Dichloroethene BQL 0.0500 50 5/4/2010
trans-1,2-dichloroethene BQL 0.0500 50 5/4/2010
1,2-Dichloropropane BQL 0.0500 50 5/4/2010
1,3-Dichloropropane BQL 0.0500 50 5/4/2010
2,2-Dichloropropane BQL 0.0500 50 5/4/2010
1,1-Dichloropropene BQL 0.0500 50 5/4/2010
cis-1,3-Dichloropropene BQL 0.0500 50 5/4/2010
trans-1,3-Dichloropropene BQL 0.0500 50 5/4/2010
Dichlorodifluoromethane BQL 0.250 50 5/4/2010
Diisopropyl ether (DIPE) BQL 0.0500 50 5/4/2010
Ethylbenzene BQL 0.0500 50 5/4/2010
Hexachlorobutadiene BQL 0.0500 50 5/4/2010
2-Hexanone BQL 0.250 50 5/4/2010
lodomethane BQL 0.0500 50 5/4/2010
Isopropylbenzene BQL 0.0500 50 5/4/2010

Client Sample ID: SB-13 (14-16) Client Project ID: NCDOT Lab Sample ID: G1037-69-18D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/20/2010 10:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.46 g %Solids: 77.5

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0500		50	5/4/2010
Methylene chloride	BQL	0.250		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.250		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0500		50	5/4/2010
Naphthalene	BQL	0.0500		50	5/4/2010
n-Propyl benzene	BQL	0.0500		50	5/4/2010
Styrene	BQL	0.0500		50	5/4 <b>/</b> 2010
1,1,1,2-Tetrachloroethane	BQL	0.0500		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0500		50	5/4/2010
Tetrachloroethene	BQL	0.0500		50	5/4/2010
Toluene	BQL	0.0500		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0500		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0500		50	5/4/2010
Trichloroethene	0.255	0.0500		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0500		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0500		50	5/4/2010
Trichlorofluoromethane	BQL	0.0500		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0500		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0500		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0500		50	5/4/2010
Vinyl chloride	BQL	0.0500		50	5/4/2010
m-,p-Xylene	BQL	0.0999		50	5/4/2010
o-Xylene	BQL '	0.0500		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0327	109	
Toluene-d8		0.03	0.0284	95	
4-Bromofluorobenzene		0.03	0.0295	98	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: <u>)</u>VO

Reviewed By:

Client Sample ID: SB-14 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-19D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.06 g %Solids: 73.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.41	50	5/4/2010
Benzene	BQL	0.0565	50	5/4/2010
Bromobenzene	BQL	0.0565	50	5/4/2010
Bromochloromethane	BQL	0.0565	50	5/4/2010
Bromodichloromethane	BQL	0.0565	50	5/4/2010
Bromoform	BQL	0.0565	50	5/4/2010
Bromomethane	BQL	0.0565	50	5/4/2010
2-Butanone	BQL	1.41	50	5/4/2010
n-Butylbenzene	BQL	0.0565	50	5/4/2010
sec-Butylbenzene	BQL	0.0565	50	5/4/2010
tert-Butylbenzene	BQL	0.0565	50	5/4/2010
Carbon disulfide	BQL	0.0565	50	5/4/2010
Carbon tetrachloride	BQL	0.0565	50	5/4/2010
Chlorobenzene	BQL	0.0565	50	5/4/2010
Chloroethane	BQL	0.0565	50	5/4/2010
Chloroform	BQL	0.0565	50	5/4/2010
Chloromethane	BQL	0.0565	50	5/4/2010
2-Chlorotoluene	BQL	0.0565	50	5/4/2010
4-Chlorotoluene	BQL	0.0565	50	5/4/2010
Dibromochloromethane	BQL	0.0565	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.283	50	5/4/2010
Dibromomethane	BQL	0.0565	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0565	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0565	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0565	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0565	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.283	50	5/4/2010
1,1-Dichloroethane	BQL	0.0565	50	5/4/2010
1,1-Dichloroethene	BQL	0.0565	50	5/4/2010
1,2-Dichloroethane	BQL	0.0565	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0565	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0565	50	5/4/2010
1,2-Dichloropropane	BQL	0.0565	50	5/4/2010
1,3-Dichloropropane	BQL	0.0565	50	5/4/2010
2,2-Dichloropropane	BQL	0.0565	50	5/4/2010
1,1-Dichloropropene	BQL	0.0565	50 50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0565	50	5/4/2010
trans-1,3-Dichloropropene Dichlorodifluoromethane	BQL	0.0565	50	5/4/2010
	BQL BQL	0.283 0.0565	50 50	5/4/2010 5/4/2010
Diisopropyl ether (DIPE) Ethylbenzene	BQL	0.0565	50 50	
Hexachlorobutadiene	BQL	0.0565	50	5/4/2010
2-Hexanone	BQL	0.283	50 50	5/4/2010 5/4/2010
lodomethane	BQL	0.285	50	5/4/2010 5/4/2010
Isopropylbenzene	BQL	0.0565	50	5/4/2010 5/4/2010
130410491061126116		0.0000	50	JI4/2010

Client Sample ID: SB-14 (10-12) Client Project ID: NCDOT Lab Sample ID: G1037-69-19D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.06 g %Solids: 73.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0565		50	5/4/2010
Methylene chloride	BQL	0.283		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.283		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0565		50	5/4/2010
Naphthalene	BQL	0.0565		50	5/4/2010
n-Propyl benzene	BQL	0.0565		50	5/4/2010
Styrene	BQL	0.0565		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0565		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0565		50	5/4/2010
Tetrachloroethene	BQL	0.0565		50	5/4/2010
Toluene	BQL	0.0565		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0565		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0565		50	5/4/2010
Trichloroethene	0.995	0.0565		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0565		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0565		50	5/4/2010
Trichlorofluoromethane	BQL	0.0565		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0565		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0565		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0565		50	5/4/2010
Vinyl chloride	BQL	0.0565		50	5/4/2010
m-,p-Xylene	BQL	0.113		50	5/4/2010
o-Xylene	BQL	0.0565		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0318	106	
Toluene-d8		0.03	0.0274	91	

4-Bromofluorobenzene

### Comments:

### Flags:

BQL = Below Quantitation Limits.

Analyst: _____QVO

Reviewed By: 77

0.03

0.0288

96

Client Sample ID: SB-14 (16-18) Client Project ID: NCDOT Lab Sample ID: G1037-69-20D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 11:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.5 g %Solids: 71.0

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	5.41	200	5/4/2010
Benzene	BQL	0.217	200	5/4/2010
Bromobenzene	BQL	0.217	200	5/4/2010
Bromochloromethane	BQL	0.217	200	5/4/2010
Bromodichloromethane	BQL	0.217	200	5/4/2010
Bromoform	BQL	0.217	200	5/4/2010
Bromomethane	BQL	0.217	200	5/4/2010
2-Butanone	BQL	5.41	200	5/4/2010
n-Butylbenzene	BQL	0.217	200	5/4/2010
sec-Butylbenzene	BQL	0.217	200	5/4/2010
tert-Butylbenzene	BQL	0.217	200	5/4/2010
Carbon disulfide	BQL	0.217	200	5/4/2010
Carbon tetrachloride	BQL	0.217	200	5/4/2010
Chlorobenzene	BQL	0.217	200	5/4/2010
Chloroethane	BQL	0.217	200	5/4/2010
Chloroform	BQL	0.217	200	5/4/2010
Chloromethane	BQL	0.217	200	5/4/2010
2-Chlorotoluene	BQL	0.217	200	5/4/2010
4-Chlorotoluene	BQL	0.217	200	5/4/2010
Dibromochloromethane	BQL	0.217	200	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	1.08	200	5/4/2010
Dibromomethane	BQL	0.217	200	5/4/2010
1,2-Dibromoethane (EDB)	BQL BQL	0.217	200	5/4/2010
1,2-Dichlorobenzene 1,3-Dichlorobenzene	BQL	0.217 0.217	200	5/4/2010
1,4-Dichlorobenzene	BQL	0.217	200 200	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	1.08	200	5/4/2010 5/4/2010
1,1-Dichloroethane	BQL	0.217	200	5/4/2010
1,1-Dichloroethene	BQL	0.217	200	5/4/2010
1,2-Dichloroethane	BQL	0.217	200	5/4/2010
cis-1,2-Dichloroethene	BQL	0.217	200	5/4/2010
trans-1,2-dichloroethene	BQL	0.217	200	5/4/2010
1,2-Dichloropropane	BQL	0.217	200	5/4/2010
1,3-Dichloropropane	BQL	0.217	200	5/4/2010
2,2-Dichloropropane	BQL	0.217	200	5/4/2010
1,1-Dichloropropene	BQL	0.217	200	5/4/2010
cis-1,3-Dichloropropene	BQL	0.217	200	5/4/2010
trans-1,3-Dichloropropene	BQL	0.217	200	5/4/2010
Dichlorodifluoromethane	BQL	1.08	200	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.217	200	5/4/2010
Ethylbenzene	BQL	0.217	200	5/4/2010
Hexachlorobutadiene	BQL	0.217	200	5/4/2010
2-Hexanone	BQL	1.08	200	5/4/2010
lodomethane	BQL	0.217	200	5/4/2010
Isopropylbenzene	BQL	0.217	200	5/4/2010

Client Sample ID: SB-14 (16-18) Client Project ID: NCDOT Lab Sample ID: G1037-69-20D Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 4/20/2010 11:10 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.5 g %Solids: 71.0

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.217		200	5/4/2010
Methylene chloride	BQL	1.08		200	5/4/2010
4-Methyl-2-pentanone	BQL	1.08		200	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.217		200	5/4/2010
Naphthalene	BQL	0.217		200	5/4/2010
n-Propyl benzene	BQL	0.217		200	5/4/2010
Styrene	BQL	0.217		200	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.217		200	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.217		200	5/4/2010
Tetrachloroethene	BQL	0.217		200	5/4/2010
Toluene	BQL	0.217		200	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.217		200	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.217		200	5/4/2010
Trichloroethene	2.89	0.217		200	5/4/2010
1,1,1-Trichloroethane	BQL	0.217		200	5/4/2010
1,1,2-Trichloroethane	BQL	0.217		200	5/4/2010
Trichlorofluoromethane	BQL	0.217		200	5/4/2010
1,2,3-Trichloropropane	BQL	0.217		200	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.217		200	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.217		200	5/4/2010
Vinyl chloride	BQL	0.217		200	5/4/2010
m-,p-Xylene	BQL	0.433		200	5/4/2010
o-Xylene	BQL	0.217		200	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0318	106	
Toluene-d8		0.03	0.0276	92	

4-Bromofluorobenzene

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: ______0\d

Reviewed By: 200

0.03

0.03

100

Client Sample ID: SB-15 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-21A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.01 g %Solids: 82.2

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0505	1	4/29/2010
Benzene	BQL	0.00505	1	4/29/2010
Bromobenzene	BQL	0.00505	1	4/29/2010
Bromochloromethane	BQL	0.00505	1	4/29/2010
Bromodichloromethane	BQL	0.00505	1	4/29/2010
Bromoform	BQL	0.00505	1	4/29/2010
Bromomethane	BQL	0.00505	1	4/29/2010
2-Butanone	BQL	0.0253	1	4/29/2010
n-Butylbenzene	BQL	0.00505	1	4/29/2010
sec-Butylbenzene	BQL	0.00505	1	4/29/2010
tert-Butylbenzene	BQL	0.00505	1 .	4/29/2010
Carbon disulfide	BQL	0.00505	1	4/29/2010
Carbon tetrachloride	BQL	0.00505	1	4/29/2010
Chlorobenzene	BQL	0.00505	1	4/29/2010
Chloroethane	BQL	0.00505	1	4/29/2010
Chloroform	BQL	0.00505	1	4/29/2010
Chloromethane	BQL	0.00505	1	4/29/2010
2-Chlorotoluene	BQL	0.00505	1	4/29/2010
4-Chlorotoluene	BQL	0.00505	1	4/29/2010
Dibromochloromethane	BQL	0.00505	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0253	1	4/29/2010
Dibromomethane	BQL	0.00505	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00505	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00505	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00505	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00505	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0253	1	4/29/2010
1,1-Dichloroethane	BQL	0.00505	1	4/29/2010
1,1-Dichloroethene	BQL	0.00505	1	4/29/2010
1,2-Dichloroethane	BQL	0.00505	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00505	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00505	1	4/29/2010
1,2-Dichloropropane	BQL	0.00505	1	4/29/2010
1,3-Dichloropropane	BQL	0.00505	1	4/29/2010
2,2-Dichloropropane	BQL	0.00505	1	4/29/2010
1,1-Dichloropropene	BQL	0.00505	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00505	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00505	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00505	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00505	1	4/29/2010
Ethylbenzene	BQL	0.00505	1	4/29/2010
Hexachlorobutadiene	BQL	0.00505	1	4/29/2010
2-Hexanone	BQL	0.0126	1	4/29/2010
lodomethane	BQL	0.00505	1	4/29/2010

Client Sample ID: SB-15 (12-14) Client Project ID: NCDOT Lab Sample ID G1037-69-21A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 11:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.01 g %Solids: 82.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00505		1	4/29/2010
4-Isopropyltoluene	BQL	0.00505		1	4/29/2010
Methylene chloride	BQL	0.0202		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0126		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00505		1	4/29/2010
Naphthalene	BQL	0.00505		1	4/29/2010
n-Propyl benzene	BQL	0.00505		1	4/29/2010
Styrene	BQL	0.00505		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00505		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00505		1	4/29/2010
Tetrachloroethene	BQL	0.00505		1	4/29/2010
Toluene	BQL	0.00505		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00505		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00505		1	4/29/2010
Trichloroethene	BQL	0.00505		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00505		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00505		1	4/29/2010
Trichlorofluoromethane	BQL	0.00505		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00505		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00505		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00505		1	4/29/2010
Vinyl chloride	BQL	0.00505		1	4/29/2010
m-,p-Xylene	BQL	0.0101		1	4/29/2010
o-Xylene	BQL	0.00505		1	4/29/2010
		Spike	Spike	Percent	

Added	Result	Recovered	
0.05	0.0647	129	
0.05	0.0474	95	
0.05	0.0444	89	
	0.05 0.05	0.05 0.0647 0.05 0.0474	0.05 0.0647 129 0.05 0.0474 95

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

DVO Analyst:

Reviewed By: ______

Client Sample ID: SB-16 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-22A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 12:20 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 3.42 g %Solids: 75.4

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0969	1	4/29/2010
Benzene	BQL	0.00969	1	4/29/2010
Bromobenzene	BQL	0.00969	1	4/29/2010
Bromochloromethane	BQL	0.00969	1	4/29/2010
Bromodichloromethane	BQL	0.00969	1	4/29/2010
Bromoform	BQL	0.00969	1	4/29/2010
Bromomethane	BQL	0.00969	1	4/29/2010
2-Butanone	BQL	0.0485	1	4/29/2010
n-Butylbenzene	BQL	0.00969	1	4/29/2010
sec-Butylbenzene	BQL	0.00969	1	4/29/2010
tert-Butylbenzene	BQL	0.00969	1	4/29/2010
Carbon disulfide	BQL	0.00969	.1	4/29/2010
Carbon tetrachloride	BQL	0.00969	1	4/29/2010
Chlorobenzene	BQL	0.00969	1	4/29/2010
Chloroethane	BQL	0.00969	1	4/29/2010
Chloroform	BQL	0.00969	1	4/29/2010
Chloromethane	BQL	0.00969	1	4/29/2010
2-Chlorotoluene	BQL	0.00969	1	4/29/2010
4-Chlorotoluene	BQL	0.00969	1	4/29/2010
Dibromochloromethane	BQL	0.00969	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0485	1	4/29/2010
Dibromomethane	BQL	0.00969	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00969	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00969	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00969	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00969	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0485	1	4/29/2010
1,1-Dichloroethane	BQL	0.00969	1	4/29/2010
1,1-Dichloroethene	BQL	0.00969	1	4/29/2010
1,2-Dichloroethane	BQL	0.00969	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00969	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00969	1	4/29/2010
1,2-Dichloropropane	BQL	0.00969	1	4/29/2010
1,3-Dichloropropane	BQL	0.00969	1	4/29/2010
2,2-Dichloropropane	BQL	0.00969	1	4/29/2010
1,1-Dichloropropene	BQL	0.00969	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00969	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00969	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00969	· 1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00969	1	4/29/2010
Ethylbenzene	BQL	0.00969	1	4/29/2010
Hexachlorobutadiene	BQL	0.00969	1	4/29/2010
2-Hexanone	BQL	0.0242	1	4/29/2010
lodomethane	BQL	0.00969	1	4/29/2010

Client Sample ID: SB-16 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-22A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 12:20 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 3.42 g %Solids: 75.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00969		1	4/29/2010
4-Isopropyltoluene	BQL	0.00969		1	4/29/2010
Methylene chloride	BQL	0.0388		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0242		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00969		1	4/29/2010
Naphthalene	BQL	0.00969		1	4/29/2010
n-Propyl benzene	BQL	0.00969		1	4/29/2010
Styrene	BQL	0.00969		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00969		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00969		1	4/29/2010
Tetrachloroethene	BQL	0.00969		1	4/29/2010
Toluene	BQL	0.00969		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00969		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00969		1	4/29/2010
Trichloroethene	BQL	0.00969		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00969		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00969		1	4/29/2010
Trichlorofluoromethane	BQL	0.00969		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00969		ຸ 1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00969		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00969		1	4/29/2010
Vinyl chloride	BQL	0.00969		1	4/29/2010
m-,p-Xylene	BQL	0.0194		1	4/29/2010
o-Xylene	BQL	0.00969		1	4/29/2010
		Spike	Spike Bosult	Percent	

Added	Result	Recovered	
0.05	0.0636	127	
0.05	0.0473	95	
0.05	0.0426	85	
	Added 0.05 0.05	AddedResult0.050.06360.050.0473	AddedResultRecovered0.050.06361270.050.047395

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

0v0 Analyst: ____

Reviewed By: 700

Client Sample ID: SB-17 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-23A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 13:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.67 g %Solids: 77.1

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0571	1	4/29/2010
Benzene	BQL	0.00571	1	4/29/2010
Bromobenzene	BQL	0.00571	1	4/29/2010
Bromochloromethane	BQL	0.00571	1	4/29/2010
Bromodichloromethane	BQL	0.00571	1	4/29/2010
Bromoform	BQL	0.00571	1	4/29/2010
Bromomethane	BQL	0.00571	1	4/29/2010
2-Butanone	BQL	0.0285	. 1	4/29/2010
n-Butylbenzene	BQL	0.00571	1	4/29/2010
sec-Butylbenzene	BQL	0.00571	1	4/29/2010
tert-Butylbenzene	BQL	0.00571	1	4/29/2010
Carbon disulfide	BQL	0.00571	1	4/29/2010
Carbon tetrachloride	BQL	0.00571	1	4/29/2010
Chlorobenzene	BQL	0.00571	1	4/29/2010
Chloroethane	BQL	0.00571	1	4/29/2010
Chloroform	BQL	0.00571	1	4/29/2010
Chloromethane	BQL	0.00571	1	4/29/2010
2-Chlorotoluene	BQL	0.00571	1	4/29/2010
4-Chlorotoluene	BQL	0.00571	1	4/29/2010
Dibromochloromethane	BQL	0.00571	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0285	. 1	4/29/2010
Dibromomethane	BQL	0.00571	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00571	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00571	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00571	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00571	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0285	1	4/29/2010
1,1-Dichloroethane	BQL	0.00571	1	4/29/2010
1,1-Dichloroethene	BQL	0.00571	1	4/29/2010
1,2-Dichloroethane	BQL	0.00571	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00571	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00571	1	4/29/2010
1,2-Dichloropropane	BQL	0.00571	1	4/29/2010
1,3-Dichloropropane	BQL	0.00571	1	4/29/2010
2,2-Dichloropropane	BQL	0.00571	1	4/29/2010
1,1-Dichloropropene	BQL	0.00571	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00571	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00571	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00571	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00571	1	4/29/2010
Ethylbenzene	BQL	0.00571	1	4/29/2010
Hexachlorobutadiene	BQL	0.00571	1	4/29/2010
2-Hexanone	BQL	0.0143	1	4/29/2010
lodomethane	BQL	0.00571	1	4/29/2010

Client Sample ID: SB-17 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-23A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 13:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.67 g %Solids: 77.1

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00571		1	4/29/2010
4-Isopropyltoluene	BQL	0.00571		· 1	4/29/2010
Methylene chloride	BQL	0.0228		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0143		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00571		1	4/29/2010
Naphthalene	BQL	0.00571		1	4/29/2010
n-Propyl benzene	BQL	0.00571		1	4/29/2010
Styrene	BQL	0.00571		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00571		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00571		1	4/29/2010
Tetrachloroethene	BQL	0.00571		1	4/29/2010
Toluene	BQL	0.00571		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00571		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00571		1	4/29/2010
Trichloroethene	BQL	0.00571		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00571		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00571		1	4/29/2010
Trichlorofluoromethane	BQL	0.00571		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00571		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00571		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00571		1	4/29/2010
Vinyl chloride	BQL	0.00571		1	4/29/2010
m-,p-Xylene	BQL	0.0114		1	4/29/2010
o-Xylene	BQL	0.00571		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

1

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: 0/0

Reviewed By: _____

Client Sample ID: SB-18 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-24A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 14:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.11 g %Solids: 73.4

Compound         MG/KG         Limit MG/KG         Factor         Analyzed           Acetone         BQL         0.00667         1         4/29/2010           Bromochoromethane         BQL         0.00667         1         4/29/2010           Sec-Butylbenzene         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Chorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroto	Report Name	Result	Quantitation	Dilution	Date
Acetone         BQL         0.0667         1         4/29/2010           Benzene         BQL         0.00667         1         4/29/2010           Bromobenzene         BQL         0.00667         1         4/29/2010           Bromochloromethane         BQL         0.00667         1         4/29/2010           Bromofichloromethane         BQL         0.00667         1         4/29/2010           Bromoform         BQL         0.00667         1         4/29/2010           Statuance         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Chorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chloroform         BQL		MG/KG	Limit MG/KG	Factor	
Bromobenzene         BQL         0.00667         1         4/29/2010           Bromochloromethane         BQL         0.00667         1         4/29/2010           Bromodihoromethane         BQL         0.00667         1         4/29/2010           Bromodihoromethane         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroothane         BQL         0.00667         1         4/29/2010           Chloroothane         BQL         0.00667         1         4/29/2010           Chloroothane         BQL         0.00667         1         4/29/2010           L2-Diotonomethane <td>Acetone</td> <td>BQL</td> <td>0.0667</td> <td>1</td> <td>-</td>	Acetone	BQL	0.0667	1	-
Bromochloromethane         BQL         0.00667         1         4/29/2010           Bromodichloromethane         BQL         0.00667         1         4/29/2010           Bromoform         BQL         0.00667         1         4/29/2010           Bromomethane         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorotomethane         BQL         0.00667         1         4/29/2010           Chlorotoluene         BQL         0.00667         1         4/29/2010           1_2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1_2-Dibromo-dhloromethane         BQL         0.00667         1         4/29/2010	Benzene	BQL	0.00667	1	4/29/2010
Bromodichloromethane         BQL         0.00667         1         4/29/2010           Bromonform         BQL         0.00667         1         4/29/2010           Bromomethane         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobluene         BQL         0.00667         1         4/29/2010           Chlorobluene         BQL         0.00667         1         4/29/2010           J2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           J2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010 <td< td=""><td>Bromobenzene</td><td>BQL</td><td>0.00667</td><td>1</td><td>4/29/2010</td></td<>	Bromobenzene	BQL	0.00667	1	4/29/2010
Bromoform         BQL         0.00667         1         4/29/2010           Bromomethane         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.0333         1         4/29/2010           n-Butylbenzene         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           Jbibromochloromethane         BQL         0.00667         1         4/29/2010           Jbibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromob	Bromochloromethane	BQL	0.00667	1	4/29/2010
Bromomethane         BQL         0.00667         1         4/29/2010           2-Butanone         BQL         0.0333         1         4/29/2010           n-Butylbenzene         BQL         0.00667         1         4/29/2010           n-Butylbenzene         BQL         0.00667         1         4/29/2010           tert-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010 <t< td=""><td>Bromodichloromethane</td><td>BQL</td><td>0.00667</td><td>1</td><td>4/29/2010</td></t<>	Bromodichloromethane	BQL	0.00667	1	4/29/2010
2-Butanone         BQL         0.0333         1         4/29/2010           n-Butylbenzene         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobtane         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibrono-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010	Bromoform	BQL	0.00667	1	4/29/2010
n-Butylbenzene         BQL         0.00667         1         4/29/2010           sec-Butylbenzene         BQL         0.00667         1         4/29/2010           tert-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorothane         BQL         0.00667         1         4/29/2010           Chlorothane         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           1/2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1/2-Dibromo-4-ane (EDB)         BQL         0.00667         1         4/29/2010           1/2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1/3-Dichlorobenzene         BQL         0.00667         1         4/29/2010	Bromomethane	BQL	0.00667	1	4/29/2010
sec-Butylbenzene         BQL         0.00667         1         4/29/2010           tert-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroburethane         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/201	2-Butanone	BQL	0.0333	1	4/29/2010
tert-Butylbenzene         BQL         0.00667         1         4/29/2010           Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenane         BQL         0.00667         1         4/29/2010           Chlorothane         BQL         0.00667         1         4/29/2010           Chlorothuene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           1.2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1.2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1.2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1.3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1.4-Dichloro-2-butene         BQL         0.00667         1         4/29/2010 <td>n-Butylbenzene</td> <td>BQL</td> <td>0.00667</td> <td>1</td> <td>4/29/2010</td>	n-Butylbenzene	BQL	0.00667	1	4/29/2010
Carbon disulfide         BQL         0.00667         1         4/29/2010           Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-thane (EDB)         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichloro-2-butene         BQL         0.00667         1         4/29/2010 </td <td>sec-Butylbenzene</td> <td>BQL</td> <td>0.00667</td> <td>1</td> <td>4/29/2010</td>	sec-Butylbenzene	BQL	0.00667	1	4/29/2010
Carbon tetrachloride         BQL         0.00667         1         4/29/2010           Chlorobenzene         BQL         0.00667         1         4/29/2010           Chloroethane         BQL         0.00667         1         4/29/2010           Chloromthane         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           Dibromomethane         BQL         0.00667         1         4/29/2010           1,2-Diblorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichloro-2-butene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010	tert-Butylbenzene	BQL	0.00667	1	4/29/2010
Chlorobenzene         BQL         0.00667         1         4/29/2010           Chlorofethane         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichloro-2-butene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethane         BQL         0.00667         1         4/29/2010 <td>Carbon disulfide</td> <td>BQL</td> <td>0.00667</td> <td>1</td> <td>4/29/2010</td>	Carbon disulfide	BQL	0.00667	1	4/29/2010
Chloroethane         BQL         0.00667         1         4/29/2010           Chloroform         BQL         0.00667         1         4/29/2010           Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00333         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichloroethane         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010	Carbon tetrachloride	BQL	0.00667	1	4/29/2010
Chloroform         BQL         0.00667         1         4/29/2010           Chloromethane         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethane         BQL         0.00667         1         4/29/2010<	Chlorobenzene	BQL	0.00667	1	4/29/2010
Chloromethane         BQL         0.00667         1         4/29/2010           2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4	Chloroethane	BQL	0.00667	1	4/29/2010
2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.0333         1         4/29/2010           1,2-Dibromo-s-a-chloropropane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichloro-2-butene         BQL         0.00667         1         4/29/2010           1,1-Dichloro-2-butene         BQL         0.00667         1         4/29/2010           1,1-Dichloro-2-butene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667 <td< td=""><td>Chloroform</td><td>BQL</td><td>0.00667</td><td>1</td><td>4/29/2010</td></td<>	Chloroform	BQL	0.00667	1	4/29/2010
2-Chlorotoluene         BQL         0.00667         1         4/29/2010           4-Chlorotoluene         BQL         0.00667         1         4/29/2010           Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.0333         1         4/29/2010           Dibromoethane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/2	Chloromethane	BQL	0.00667	1	4/29/2010
4-Chlorotoluene       BQL       0.00667       1       4/29/2010         Dibromochloromethane       BQL       0.00667       1       4/29/2010         1,2-Dibromo-3-chloropropane       BQL       0.0333       1       4/29/2010         Dibromoethane       BQL       0.00667       1       4/29/2010         1,2-Dibromoethane (EDB)       BQL       0.00667       1       4/29/2010         1,2-Dichlorobenzene       BQL       0.00667       1       4/29/2010         1,3-Dichlorobenzene       BQL       0.00667       1       4/29/2010         1,4-Dichlorobenzene       BQL       0.00667       1       4/29/2010         1,1-Dichlorobenzene       BQL       0.00667       1       4/29/2010         1,1-Dichloroethane       BQL       0.00667       1       4/29/2010         1,1-Dichloroethane       BQL       0.00667       1       4/29/2010         1,2-Dichloroethane       BQL       0.00667       1       4/29/2010         1,2-Dichloroethane       BQL       0.00667       1       4/29/2010         1,2-Dichloroethane       BQL       0.00667       1       4/29/2010         1,3-Dichloroptopane       BQL       0.00667       1	2-Chlorotoluene	BQL	0.00667	1	
Dibromochloromethane         BQL         0.00667         1         4/29/2010           1,2-Dibromo-3-chloropropane         BQL         0.0333         1         4/29/2010           Dibromomethane         BQL         0.00667         1         4/29/2010           1,2-Dibromoethane (EDB)         BQL         0.00667         1         4/29/2010           1,2-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,3-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,4-Dichlorobenzene         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,1-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethane         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloroethene         BQL         0.00667         1         4/29/2010           1,2-Dichloropropane         BQL         0.00667         1	4-Chlorotoluene	BQL	0.00667	1	
1,2-Dibromo-3-chloropropaneBQL0.033314/29/2010DibromomethaneBQL0.0066714/29/20101,2-Dibromoethane (EDB)BQL0.0066714/29/20101,2-DichlorobenzeneBQL0.0066714/29/20101,3-DichlorobenzeneBQL0.0066714/29/20101,4-DichlorobenzeneBQL0.0066714/29/20101,4-DichlorobenzeneBQL0.0066714/29/20101,1-Dichloro-2-buteneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/2010<	Dibromochloromethane	BQL	0.00667	1	
1,2-Dibromoethane (EDB)BQL0.0066714/29/20101,2-DichlorobenzeneBQL0.0066714/29/20101,3-DichlorobenzeneBQL0.0066714/29/20101,4-DichlorobenzeneBQL0.0066714/29/2010trans-1,4-Dichloro-2-buteneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.006671 <td< td=""><td>1,2-Dibromo-3-chloropropane</td><td>BQL</td><td>0.0333</td><td>1</td><td>4/29/2010</td></td<>	1,2-Dibromo-3-chloropropane	BQL	0.0333	1	4/29/2010
1,2-DichlorobenzeneBQL0.0066714/29/20101,3-DichlorobenzeneBQL0.0066714/29/20101,4-DichlorobenzeneBQL0.0066714/29/2010trans-1,4-Dichloro-2-buteneBQL0.033314/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29	Dibromomethane	BQL	0.00667	1	4/29/2010
1,2-DichlorobenzeneBQL0.0066714/29/20101,3-DichlorobenzeneBQL0.0066714/29/20101,4-DichlorobenzeneBQL0.0066714/29/2010trans-1,4-Dichloro-2-buteneBQL0.033314/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29	1,2-Dibromoethane (EDB)	BQL	0.00667	1	
1,4-DichlorobenzeneBQL0.0066714/29/2010trans-1,4-Dichloro-2-buteneBQL0.033314/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroetheneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/20101,2-DichloroetheneBQL0.0066714/29/2010cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.006671		BQL	0.00667	1	4/29/2010
trans-1,4-Dichloro-2-buteneBQL0.033314/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/2010cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/2010	1,3-Dichlorobenzene	BQL	0.00667	1	4/29/2010
trans-1,4-Dichloro-2-buteneBQL0.033314/29/20101,1-DichloroethaneBQL0.0066714/29/20101,1-DichloroethaneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/2010cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,2-DichloropropeneBQL0.0066714/29/2010	1,4-Dichlorobenzene	BQL	0.00667	1	4/29/2010
1,1-DichloroetheneBQL0.0066714/29/20101,2-DichloroethaneBQL0.0066714/29/2010cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/20101,3-DichloropropeneBQL0.0066714/29/2010	trans-1,4-Dichloro-2-butene	BQL	0.0333	1	
1,2-DichloroethaneBQL0.0066714/29/2010cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	1,1-Dichloroethane	BQL	0.00667	1	4/29/2010
cis-1,2-DichloroetheneBQL0.0066714/29/2010trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	1,1-Dichloroethene	BQL	0.00667	1	4/29/2010
trans-1,2-dichloroetheneBQL0.0066714/29/20101,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	1,2-Dichloroethane	BQL	0.00667	1	4/29/2010
1,2-DichloropropaneBQL0.0066714/29/20101,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	cis-1,2-Dichloroethene	BQL	0.00667	1	4/29/2010
1,3-DichloropropaneBQL0.0066714/29/20102,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	trans-1,2-dichloroethene	BQL	0.00667	1	4/29/2010
2,2-DichloropropaneBQL0.0066714/29/20101,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	1,2-Dichloropropane	BQL	0.00667	1	4/29/2010
1,1-DichloropropeneBQL0.0066714/29/2010cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	1,3-Dichloropropane	BQL	0.00667	1	4/29/2010
cis-1,3-DichloropropeneBQL0.0066714/29/2010trans-1,3-DichloropropeneBQL0.0066714/29/2010	2,2-Dichloropropane	BQL	0.00667	1	4/29/2010
trans-1,3-Dichloropropene BQL 0.00667 1 4/29/2010	1,1-Dichloropropene	BQL	0.00667	1	4/29/2010
	cis-1,3-Dichloropropene	BQL	0.00667	1	4/29/2010
Dichlorodifluoromethane BQL 0.00667 1 4/29/2010	trans-1,3-Dichloropropene	BQL	0.00667	1	4/29/2010
	Dichlorodifluoromethane	BQL	0.00667	1	4/29/2010
Diisopropyl ether (DIPE)         BQL         0.00667         1         4/29/2010	Diisopropyl ether (DIPE)	BQL	0.00667	1	4/29/2010
Ethylbenzene BQL 0.00667 1 4/29/2010	Ethylbenzene	BQL	0.00667	1	4/29/2010
Hexachlorobutadiene BQL 0.00667 1 4/29/2010	Hexachlorobutadiene	BQL	0.00667	1	4/29/2010
2-Hexanone BQL 0.0167 1 4/29/2010	2-Hexanone	BQL	0.0167	1	4/29/2010
lodomethane BQL 0.00667 1 4/29/2010	lodomethane	BQL	0.00667	1	4/29/2010

Client Sample ID: SB-18 (8-10) Client Project ID: NCDOT Lab Sample ID G1037-69-24A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 14:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.11 g %Solids: 73.4

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00667		1	4/29/2010
4-Isopropyltoluene	BQL	0.00667		1	4/29/2010
Methylene chloride	BQL	0.0267		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0167		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00667		1	4/29/2010
Naphthalene	BQL	0.00667		1	4/29/2010
n-Propyl benzene	BQL	0.00667		1	4/29/2010
Styrene	BQL	0.00667		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00667		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00667		1	4/29/2010
Tetrachloroethene	BQL	0.00667		1	4/29/2010
Toluene	BQL	0.00667		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00667		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00667		1	4/29/2010
Trichloroethene	BQL	0.00667		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00667		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00667		1	4/29/2010
Trichlorofluoromethane	BQL	0.00667		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00667		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00667		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00667		1	4/29/2010
Vinyl chloride	BQL	0.00667		1	4/29/2010
m-,p-Xylene	BQL	0.0133		1	4/29/2010
o-Xylene	BQL	0.00667		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.064	128	
Toluene-d8		0.05	0.047	94	

Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: ____0UD

4-Bromofluorobenzene

Reviewed By:

0.05

0.0431

86

Client Sample ID: SB-19 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-25A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 14:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.98 g %Solids: 70.2

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0715	1	4/29/2010
Benzene	BQL	0.00715	1	4/29/2010
Bromobenzene	BQL	0.00715	1	4/29/2010
Bromochloromethane	BQL	0.00715	1	4/29/2010
Bromodichloromethane	BQL	0.00715	1	4/29/2010
Bromoform	BQL	0.00715	1	4/29/2010
Bromomethane	BQL	0.00715	1	4/29/2010
2-Butanone	BQL	0.0357	1	4/29/2010
n-Butylbenzene	BQL	0.00715	1	4/29/2010
sec-Butylbenzene	BQL	0.00715	1	4/29/2010
tert-Butylbenzene	BQL	0.00715	1	4/29/2010
Carbon disulfide	BQL	0.00715	1	4/29/2010
Carbon tetrachloride	BQL	0.00715	1	4/29/2010
Chlorobenzene	BQL	0.00715	1	4/29/2010
Chloroethane	BQL	0.00715	1	4/29/2010
Chloroform	BQL	0.00715	1	4/29/2010
Chloromethane	BQL	0.00715	1	4/29/2010
2-Chlorotoluene	BQL	0.00715	1	4/29/2010
4-Chlorotoluene	BQL	0.00715	1	4/29/2010
Dibromochloromethane	BQL	0.00715	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0357	1	4/29/2010
Dibromomethane	BQL	0.00715	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00715	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00715	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00715	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00715	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0357	1	4/29/2010
1,1-Dichloroethane	BQL	0.00715	1	4/29/2010
1,1-Dichloroethene	BQL	0.00715	1	4/29/2010
1,2-Dichloroethane	BQL	0.00715	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00715	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00715	1	4/29/2010
1,2-Dichloropropane	BQL	0.00715	1	4/29/2010
1,3-Dichloropropane	BQL	0.00715	1	4/29/2010
2,2-Dichloropropane	BQL	0.00715	1	4/29/2010
1,1-Dichloropropene	BQL	0.00715	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00715	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00715	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00715	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00715	1	4/29/2010
Ethylbenzene	BQL	0.00715	1	4/29/2010
Hexachlorobutadiene	BQL	0.00715	1	4/29/2010
2-Hexanone	BQL	0.0179	1	4/29/2010
lodomethane	BQL	0.00715	1	4/29/2010
		0.00110	,	

Client Sample ID: SB-19 (20-22) Client Project ID: NCDOT Lab Sample ID G1037-69-25A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 14:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 4.98 g %Solids: 70.2

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00715		1	4/29/2010
4-Isopropyltoluene	BQL	0.00715		1	4/29/2010
Methylene chloride	BQL	0.0286		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0179		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00715		1	4/29/2010
Naphthalene	BQL	0.00715		1	4/29/2010
n-Propyl benzene	BQL	0.00715		1	4/29/2010
Styrene	BQL	0.00715		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00715		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00715		1	4/29/2010
Tetrachloroethene	BQL	0.00715		1	4/29/2010
Toluene	0.00905	0.00715		· 1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00715		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00715		1	4/29/2010
Trichloroethene	BQL	0.00715		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00715		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00715		1	4/29/2010
Trichlorofluoromethane	BQL	0.00715		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00715		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00715		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00715		1	4/29/2010
Vinyl chloride	BQL	0.00715		1	4/29/2010
m-,p-Xylene	BQL	0.0143		1	4/29/2010
o-Xylene	BQL	0.00715		1	4/29/2010
		Spike Added	Spike Result	Percent Recovered	
1,2-Dichloroethane-d4		0.05	0.0628	126	

	Auueu	Result	Recove
1,2-Dichloroethane-d4	0.05	0.0628	126
Toluene-d8	0.05	0.0469	94
4-Bromofluorobenzene	0.05	0.044	88

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

OVO Analyst: ___

Reviewed By:

Client Sample ID: SB-20 (6-8) Client Project ID: NCDOT Lab Sample ID: G1037-69-26D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 69.7

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.67	50	5/4/2010
Benzene	BQL	0.0669	50	5/4/2010
Bromobenzene	BQL	0.0669	50	5/4/2010
Bromochloromethane	BQL	0.0669	50	5/4/2010
Bromodichloromethane	BQL	0.0669	50	5/4/2010
Bromoform	BQL	0.0669	50	5/4/2010
Bromomethane	BQL	0.0669	50	5/4/2010
2-Butanone	BQL	1.67	50	5/4/2010
n-Butylbenzene	BQL	0.0669	50	5/4/2010
sec-Butylbenzene	BQL	0.0669	50	5/4/2010
tert-Butylbenzene	BQL	0.0669	50	5/4/2010
Carbon disulfide	BQL	0.0669	50	5/4/2010
Carbon tetrachloride	BQL	0.0669	50	5/4/2010
Chlorobenzene	BQL	0.0669	50	5/4/2010
Chloroethane	BQL	0.0669	50	5/4/2010
Chloroform	BQL	0.0669	50	5/4/2010
Chloromethane	BQL	0.0669	50	5/4/2010
2-Chlorotoluene	BQL	0.0669	50	5/4/2010
4-Chlorotoluene	BQL	0.0669	50	5/4/2010
Dibromochloromethane	BQL	0.0669	50	5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.334	50	5/4/2010
Dibromomethane	BQL	0.0669	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0669	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0669	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0669	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0669	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.334	50	5/4/2010
1,1-Dichloroethane	BQL	0.0669	50	5/4/2010
1,1-Dichloroethene	BQL	0.0669	50	5/4/2010
1,2-Dichloroethane	BQL	0.0669	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0669	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0669	50	5/4/2010
1,2-Dichloropropane	BQL	0.0669	50	5/4/2010
1,3-Dichloropropane	BQL	0.0669	50	5/4/2010
2,2-Dichloropropane	BQL	0.0669	50	5/4/2010
1,1-Dichloropropene	BQL	0.0669	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0669	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0669	50	5/4/2010
Dichlorodifluoromethane	BQL	0.334	50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0669	50	5/4/2010
Ethylbenzene	BQL	0.0669	50	5/4/2010
Hexachlorobutadiene	BQL	0.0669	50	5/4/2010
2-Hexanone	BQL	0.334	50	5/4/2010
lodomethane	BQL	0.0669	50	5/4/2010
lsopropylbenzene	BQL	0.0669	50	5/4/2010

Client Sample ID: SB-20 (6-8) Client Project ID: NCDOT Lab Sample ID: G1037-69-26D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 69.7

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0669		50	5/4/2010
Methylene chloride	BQL	0.334		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.334		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0669		50	5/4/2010
Naphthalene	BQL	0.0669		50	5/4/2010
n-Propyl benzene	BQL	0.0669		50	5/4/2010
Styrene	BQL	0.0669		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0669		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0669		50	5/4/2010
Tetrachloroethene	0.625	0.0669		50	5/4/2010
Toluene	BQL	0.0669		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0669		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0669		50	5/4/2010
Trichloroethene	BQL	0.0669		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0669		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0669		50	5/4/2010
Trichlorofluoromethane	BQL	0.0669		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0669		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0669		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0669		50	5/4/2010
Vinyl chloride	BQL	0.0669		50	5/4/2010
m-,p-Xylene	BQL	0.134		50	5/4/2010
o-Xylene	BQL	0.0669		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0331	110	
Toluene-d8		0.03	0.028	93	

Toluene-d8 4-Bromofluorobenzene

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst:  $0\sqrt{0}$ 

Reviewed By: ______

0.03

0.0295

98

Client Sample ID: SB-20 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-27D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.03 g %Solids: 72.4

	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	1.43	50	5/4/2010
Benzene	BQL	0.0572	50	5/4/2010
Bromobenzene	BQL	0.0572	50	5/4/2010
Bromochloromethane	BQL	0.0572	50	5/4/2010
Bromodichloromethane	BQL	0.0572	50	5/4/2010
Bromoform	BQL	0.0572	50	5/4/2010
Bromomethane	BQL	0.0572	50	5/4/2010
2-Butanone	BQL	1.43	50	5/4/2010
n-Butylbenzene	BQL	0.0572	50	5/4/2010
sec-Butylbenzene	BQL	0.0572	50	5/4/2010
tert-Butylbenzene	BQL	0.0572	50	5/4/2010
Carbon disulfide Carbon tetrachloride	BQL	0.0572	50	5/4/2010
Chlorobenzene	BQL	0.0572	50	5/4/2010
Chloroethane	BQL	0.0572	50	5/4/2010
Chloroform	BQL BQL	0.0572	50	5/4/2010
Chloromethane	BQL	0.0572	50	5/4/2010
2-Chlorotoluene	BQL	0.0572 0.0572	50	5/4/2010
4-Chlorotoluene	BQL	0.0572	50 50	5/4/2010
Dibromochloromethane	BQL	0.0572	50	5/4/2010 5/4/2010
1,2-Dibromo-3-chloropropane	BQL	0.286	50	5/4/2010
Dibromomethane	BQL	0.0572	50	5/4/2010
1,2-Dibromoethane (EDB)	BQL	0.0572	50	5/4/2010
1,2-Dichlorobenzene	BQL	0.0572	50	5/4/2010
1,3-Dichlorobenzene	BQL	0.0572	50	5/4/2010
1,4-Dichlorobenzene	BQL	0.0572	50	5/4/2010
trans-1,4-Dichloro-2-butene	BQL	0.286	50	5/4/2010
1,1-Dichloroethane	BQL	0.0572	50	5/4/2010
1,1-Dichloroethene	BQL	0.0572	50	5/4/2010
1,2-Dichloroethane	BQL	0.0572	50	5/4/2010
cis-1,2-Dichloroethene	BQL	0.0572	50	5/4/2010
trans-1,2-dichloroethene	BQL	0.0572	50	5/4/2010
1,2-Dichloropropane	BQL	0.0572	50	5/4/2010
1,3-Dichloropropane	BQL	0.0572	50	5/4/2010
2,2-Dichloropropane	BQL	0.0572	50	5/4/2010
1,1-Dichloropropene	BQL	0.0572	50	5/4/2010
cis-1,3-Dichloropropene	BQL	0.0572	50	5/4/2010
trans-1,3-Dichloropropene	BQL	0.0572	50	5/4/2010
Dichlorodifluoromethane	BQL	0.286	- 50	5/4/2010
Diisopropyl ether (DIPE)	BQL	0.0572	50	5/4/2010
Ethylbenzene	BQL	0.0572	50	5/4/2010
Hexachlorobutadiene	BQL	0.0572	50	5/4/2010
2-Hexanone	BQL	0.286	50	5/4/2010
lodomethane	BQL	0.0572	50	5/4/2010
lsopropylbenzene	BQL	0.0572	50	5/4/2010

Client Sample ID: SB-20 (12-14) Client Project ID: NCDOT Lab Sample ID: G1037-69-27D Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 4/20/2010 15:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 6.03 g %Solids: 72.4

	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0572		50	5/4/2010
Methylene chloride	BQL	0.286		50	5/4/2010
4-Methyl-2-pentanone	BQL	0.286		50	5/4/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0572		50	5/4/2010
Naphthalene	BQL	0.0572		50	5/4/2010
n-Propyl benzene	BQL	0.0572		50	5/4/2010
Styrene	BQL	0.0572		50	5/4/2010
1,1,1,2-Tetrachloroethane	BQL	0.0572		50	5/4/2010
1,1,2,2-Tetrachloroethane	BQL	0.0572		50	5/4/2010
Tetrachloroethene	0.692	0.0572		50	5/4/2010
Toluene	BQL	0.0572		50	5/4/2010
1,2,3-Trichlorobenzene	BQL	0.0572		50	5/4/2010
1,2,4-Trichlorobenzene	BQL	0.0572		50	5/4/2010
Trichloroethene	BQL	0.0572		50	5/4/2010
1,1,1-Trichloroethane	BQL	0.0572		50	5/4/2010
1,1,2-Trichloroethane	BQL	0.0572		50	5/4/2010
Trichlorofluoromethane	BQL	0.0572		50	5/4/2010
1,2,3-Trichloropropane	BQL	0.0572		50	5/4/2010
1,2,4-Trimethylbenzene	BQL	0.0572		50	5/4/2010
1,3,5-Trimethylbenzene	BQL	0.0572		50	5/4/2010
Vinyl chloride	BQL	0.0572		50	5/4/2010
m-,p-Xylene	BQL	0.114		50	5/4/2010
o-Xylene	BQL	0.0572		50	5/4/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0316	105	
Toluene-d8		0.03	0.0276	92	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: _______

4-Bromofluorobenzene

Reviewed By: ______

0.03

0.0286

95

Client Sample ID: SB-21 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-28A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 16:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 71.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0653	1	4/29/2010
Benzene	BQL	0.00653	1	4/29/2010
Bromobenzene	BQL	0.00653	1	4/29/2010
Bromochloromethane	BQL	0.00653	1	4/29/2010
Bromodichloromethane	BQL	0.00653	1	4/29/2010
Bromoform	BQL	0.00653	1	4/29/2010
Bromomethane	BQL	0.00653	1	4/29/2010
2-Butanone	BQL	0.0326	1	4/29/2010
n-Butylbenzene	BQL	0.00653	1	4/29/2010
sec-Butylbenzene	BQL	0.00653	1	4/29/2010
tert-Butylbenzene	BQL	0.00653	1	4/29/2010
Carbon disulfide	BQL	0.00653	. <b>1</b>	4/29/2010
Carbon tetrachloride	BQL	0.00653	1	4/29/2010
Chlorobenzene	BQL	0.00653	1	4/29/2010
Chloroethane	BQL	0.00653	1	4/29 <b>/</b> 2010
Chloroform	BQL	0.00653	1	4/29/2010
Chloromethane	BQL	0.00653	1	4/29/2010
2-Chlorotoluene	BQL	0.00653	1	4/29/2010
4-Chiorotoluene	BQL	0.00653	1	4/29/2010
Dibromochloromethane	BQL	0.00653	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0326	1	4/29/2010
Dibromomethane	BQL	0.00653	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00653	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00653	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00653	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00653	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0326	1	4/29/2010
1,1-Dichloroethane	BQL	0.00653	1	4/29/2010
1,1-Dichloroethene	BQL	0.00653	1	4/29/2010
1,2-Dichloroethane	BQL	0.00653	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00653	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00653	1	4/29/2010
1,2-Dichloropropane	BQL	0.00653	1	4/29/2010
1,3-Dichloropropane	BQL	0.00653	1	4/29/2010
2,2-Dichloropropane	BQL	0.00653	1	4/29/2010
1,1-Dichloropropene	BQL	0.00653	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00653	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00653	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00653	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00653	· <b>1</b>	4/29/2010
Ethylbenzene	BQL	0.00653	1	4/29/2010
Hexachlorobutadiene	BQL	0.00653	1	4/29/2010
2-Hexanone	BQL	0.0163	1	4/29/2010
lodomethane	BQL	0.00653	1	4/29/2010

Client Sample ID: SB-21 (14-16) Client Project ID: NCDOT Lab Sample ID G1037-69-28A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 16:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.36 g %Solids: 71.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
lsopropylbenzene	BQL	0.00653		1	4/29/2010
4-Isopropyltoluene	BQL	0.00653		1	4/29/2010
Methylene chloride	BQL	0.0261		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0163		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00653		1	4/29/2010
Naphthalene	BQL	0.00653		1	4/29/2010
n-Propyl benzene	BQL	0.00653		1	4/29/2010
Styrene	BQL	0.00653		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00653		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00653		1	4/29/2010
Tetrachloroethene	BQL	0.00653		1	4/29/2010
Toluene	BQL	0.00653		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00653		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00653		1	4/29/2010
Trichloroethene	BQL	0.00653		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00653		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00653		1	4/29/2010
Trichlorofluoromethane	BQL	0.00653		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00653		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00653		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00653		1	4/29/2010
Vinyl chloride	BQL	0.00653		1	4/29/2010
m-,p-Xylene	BQL	0.0131		1	4/29/2010
o-Xylene	BQL	0.00653		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.05	0.064	128	

1,2-Dichloroethane-d4	0.05	0.064	
Toluene-d8	0.05	0.0467	
4-Bromofluorobenzene	0.05	0.0418	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

OVO Analyst:

Reviewed By:

93 84

Client Sample ID: SB-22 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-29A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 16:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.34 g %Solids: 73.6

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0635	1	4/29/2010
Benzene	BQL	0.00635	1	4/29/2010
Bromobenzene	BQL	0.00635	1	4/29/2010
Bromochloromethane	BQL	0.00635	1	4/29/2010
Bromodichloromethane	BQL	0.00635	1	4/29/2010
Bromoform	BQL	0.00635	1	4/29/2010
Bromomethane	BQL	0.00635	1	4/29/2010
2-Butanone	BQL	0.0317	1	4/29/2010
n-Butylbenzene	BQL	0.00635	1	4/29/2010
sec-Butylbenzene	0.0480	<b>)</b> 0.00635	1	4/29/2010
tert-Butylbenzene	BQL	0.00635	1	4/29/2010
Carbon disulfide	BQL	0.00635	1	4/29/2010
Carbon tetrachloride	BQL	0.00635	1	4/29/2010
Chlorobenzene	BQL	0.00635	1	4/29/2010
Chloroethane	BQL	0.00635	1	4/29/2010
Chloroform	BQL	0.00635	1	4/29/2010
Chloromethane	BQL	0.00635	1	4/29/2010
2-Chlorotoluene	BQL	0.00635	1	4/29/2010
4-Chlorotoluene	BQL	0.00635	1	4/29/2010
Dibromochloromethane	BQL	0.00635	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0317	1	4/29/2010
Dibromomethane	BQL	0.00635	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00635	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00635	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00635	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00635	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0317	1	4/29/2010
1,1-Dichloroethane	BQL	0.00635	1	4/29/2010
1,1-Dichloroethene	BQL	0.00635	1	4/29/2010
1,2-Dichloroethane	BQL	0.00635	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00635	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00635	1	4/29/2010
1,2-Dichloropropane	BQL	0.00635	1	4/29/2010
1,3-Dichloropropane	BQL	0.00635	1	4/29/2010
2,2-Dichloropropane	BQL	0.00635	1	4/29/2010
1,1-Dichloropropene	BQL	0.00635	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00635	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00635	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00635	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00635	1	4/29/2010
Ethylbenzene	BQL	0.00635	1	4/29/2010
Hexachlorobutadiene	BQL	0.00635	1	4/29/2010
2-Hexanone	BQL	0.0159	1	4/29/2010
lodomethane	BQL	0.00635	1	4/29/2010

Client Sample ID: SB-22 (6-8) Client Project ID: NCDOT Lab Sample ID G1037-69-29A Lab Project ID: G1037-69 Report Basis: Dry Weight

Analyzed By: CLP Date Collected: 04-20-2010 16:30 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.34 g %Solids: 73.6

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	BQL	0.00635		1	4/29/2010
4-Isopropyltoluene	BQL	0.00635		1	4/29/2010
Methylene chloride	BQL	0.0254		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0159		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00635		1	4/29/2010
Naphthalene	BQL	0.00635		1	4/29/2010
n-Propyl benzene	BQL	0.00635		1	4/29/2010
Styrene	BQL	0.00635		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00635		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00635		1	4/29/2010
Tetrachloroethene	BQL	0.00635		1	4/29/2010
Toluene	BQL	0.00635		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00635		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00635		1	4/29/2010
Trichloroethene	BQL	0.00635		1	4/29/2010
1,1,1-Trichloroethane	BQL	0.00635		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00635		1	4/29/2010
Trichlorofluoromethane	BQL	0.00635		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00635		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00635		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00635		1	4/29/2010
Vinyl chloride	BQL	0.00635		1	4/29/2010
m-,p-Xylene	BQL	0.0127		1	4/29/2010
o-Xylene	BQL	0.00635		1	4/29/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.05	0.0618	124	
Toluene-d8	0.05	0.0499	100	
4-Bromofluorobenzene	0.05	0.0481	96	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

DVG Analyst:

Reviewed By:

Client Sample ID: SB-22 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-30A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 17:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.53 g %Solids: 75.5

Report Name	Result	Quantitation	Dilution	Date
Compound	MG/KG	Limit MG/KG	Factor	Analyzed
Acetone	BQL	0.0599	1	4/29/2010
Benzene	BQL	0.00599	1	4/29/2010
Bromobenzene	BQL	0.00599	. 1	4/29/2010
Bromochloromethane	BQL	0.00599	1	4/29/2010
Bromodichloromethane	BQL	0.00599	1	4/29/2010
Bromoform	BQL	0.00599	1	4/29/2010
Bromomethane	BQL	0.00599	1	4/29/2010
2-Butanone	BQL	0.0300	1	4/29/2010
n-Butylbenzene	BQL	0.00599	1	4/29/2010
sec-Butylbenzene	0.028		1	4/29/2010
tert-Butylbenzene	BQL	0.00599	1	4/29/2010
Carbon disulfide	BQL	0.00599	1	4/29/2010
Carbon tetrachloride	BQL	0.00599	1	4/29/2010
Chlorobenzene	BQL	0.00599	1	4/29/2010
Chloroethane	BQL	0.00599	1	4/29/2010
Chloroform	BQL	0.00599	1	4/29/2010
Chloromethane	BQL	0.00599	1	4/29/2010
2-Chlorotoluene	BQL	0.00599	1	4/29/2010
4-Chlorotoluene	BQL	0.00599	1	4/29/2010
Dibromochloromethane	BQL	0.00599	1	4/29/2010
1,2-Dibromo-3-chloropropane	BQL	0.0300	1	4/29/2010
Dibromomethane	BQL	0.00599	1	4/29/2010
1,2-Dibromoethane (EDB)	BQL	0.00599	1	4/29/2010
1,2-Dichlorobenzene	BQL	0.00599	1	4/29/2010
1,3-Dichlorobenzene	BQL	0.00599	1	4/29/2010
1,4-Dichlorobenzene	BQL	0.00599	1	4/29/2010
trans-1,4-Dichloro-2-butene	BQL	0.0300	1	4/29/2010
1,1-Dichloroethane	BQL	0.00599	1	4/29/2010
1,1-Dichloroethene	BQL	0.00599	1	4/29/2010
1,2-Dichloroethane	BQL	0.00599	1	4/29/2010
cis-1,2-Dichloroethene	BQL	0.00599	1	4/29/2010
trans-1,2-dichloroethene	BQL	0.00599	1	4/29/2010
1,2-Dichloropropane	BQL	0.00599	1	4/29/2010
1,3-Dichloropropane	BQL	0.00599	1	4/29/2010
2,2-Dichloropropane	BQL	0.00599	1	4/29/2010
1,1-Dichloropropene	BQL	0.00599	1	4/29/2010
cis-1,3-Dichloropropene	BQL	0.00599	1	4/29/2010
trans-1,3-Dichloropropene	BQL	0.00599	1	4/29/2010
Dichlorodifluoromethane	BQL	0.00599	1	4/29/2010
Diisopropyl ether (DIPE)	BQL	0.00599	1	4/29/2010
Ethylbenzene	BQL	0.00599	1	4/29/2010
Hexachlorobutadiene	BQL	0.00599	1	4/29/2010
2-Hexanone	BQL	0.0150	1	4/29/2010
lodomethane	BQL	0.00599	1	4/29/2010

Client Sample ID: SB-22 (10-12) Client Project ID: NCDOT Lab Sample ID G1037-69-30A Lab Project ID: G1037-69 Report Basis: Dry Weight Analyzed By: CLP Date Collected: 04-20-2010 17:00 Date Received: 4/23/2010 Matrix: Soil Sample Amount: 5.53 g %Solids: 75.5

Report Name	Result	Quantitation		Dilution	Date
Compound	MG/KG	Limit MG/KG		Factor	Analyzed
Isopropylbenzene	0.00745	0.00599		. 1	4/29/2010
4-Isopropyltoluene	BQL	0.00599		1	4/29/2010
Methylene chloride	BQL	0.0240		1	4/29/2010
4-Methyl-2-pentanone	BQL	0.0150		1	4/29/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00599		1	4/29/2010
Naphthalene	0.0234	0.00599		1	4/29/2010
n-Propyl benzene	BQL	0.00599		1	4/29/2010
Styrene	BQL	0.00599		1	4/29/2010
1,1,1,2-Tetrachloroethane	BQL	0.00599		1	4/29/2010
1,1,2,2-Tetrachloroethane	BQL	0.00599		1	4/29/2010
Tetrachloroethene	BQL	0.00599		1	4/29/2010
Toluene	BQL	0.00599		1	4/29/2010
1,2,3-Trichlorobenzene	BQL	0.00599		1	4/29/2010
1,2,4-Trichlorobenzene	BQL	0.00599		1	<b>4/</b> 29/2010
Trichloroethene	0.00950	0.00599		1	<b>4/29/2</b> 010
1,1,1-Trichloroethane	BQL	0.00599		1	4/29/2010
1,1,2-Trichloroethane	BQL	0.00599		1	4/29/2010
Trichlorofluoromethane	BQL	0.00599		1	4/29/2010
1,2,3-Trichloropropane	BQL	0.00599		1	4/29/2010
1,2,4-Trimethylbenzene	BQL	0.00599		1	4/29/2010
1,3,5-Trimethylbenzene	BQL	0.00599		1	4/29/2010
Vinyl chloride	BQL	0.00599		1	4/29/2010
m-,p-Xylene	BQL	0.0120		1	4/29/2010
o-Xylene	BQL	0.00599		1	4/29/2010
1.2 Disblarasthans d4		Spike Added	Spike Result	Percent Recovered	
1.2-Dichloroethane-d4		0.05	0.0702	140	

Addea	Result	Recovere
0.05	0.0702	140
0.05	0.0482	96
0.05	0.0441	88
	0.05 0.05	0.05 0.0702 0.05 0.0482

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

PVO Analyst:

Reviewed By:



# SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

Ē														ſ
لــــ(		AFCOM					アンシン		22				<u>ر،</u> 2	
_	CONTACT:	M. Dail	PHONE NO:	ö			F	וֿכ	19-170			End		
	PROJECT:	NCDOT	SITE/PWSID# :	SID# :				Щ.,	rreservatives Used Analysis		+			
1	REPORTS TO:		EMAIL:				υc		Required	/	_	_	/	
	いない?	_	Micheel.	Michelida, Baccon, con	ر. ۲۰		)z+	GRAB	3/	/	/			
	INVOICE TO:		QUOTE #:				< −	MI=		<u> </u>	<u> </u>		_	
-@			P.O. #:					Multi Incremental			_	/	_	
	LAB NO.	SAMPLE IDENTIFICATION	ICATION	DATE	TIME	MATRIX/ MATRIX CODE		Samples	/ / ~	/			REMARKS/ LOC ID	S
		SB-1(8-10	(	0//1/h	ဝိရီစစ	Ś	9	C	X					55
		SB-2 (10-12)	(2)	-	0915	S	5	ς γ	$\mid$					Nor
		58-3 (6-8)			0930	S	5	ر ا	X					th 7
		5B-4 (4-6)		_	094 <i>5</i>	\$	S	Ċ	X					۸me
		58-4 (12-18)	8) 12-14		1000	Ś	5	6	 X					erica
		5B-4 (20-23	ر ما ر		1015	S	5	Ĝ	X					a, Ir
		53-5614-16	الم		0501		s	с, С	X				R5-10	IC.
		58-6 (12-14	( ) (		40.000	15 5	5	9	X					
		SB-7 (8-10)	C		<del>'i'30</del> //	00 S	5	6	X					
		53-7 (14-16)	()	>	1115	\$	5	ھ ]	 X				No samada	2
	Collected/Reli	Collected/Relinquished By:(1)	Date	Time	Received By	, <b>X</b> :		<b>`</b>	DOD Project? YES	on N	Special Deliverable Requirements:	rable Require		
	r() M	/	01/22/10	0400	Jor	S	ľ		Cooler ID					
	Relinquished By: (2)	By: (2)	Date (/		Received By	X		_	Requested Turnaround Time and-or Special Instructions:	Time and or Speci	al Instructions			
Page	1/ and 1. (3)		0//62/1	1010	Bacchicador			,						
_	nalianhilian	D(c) · Ka	nale	) - Allill	Leceived	·~								
_									Samples Received Cold?	i VES NO	Cha	in of Custody	Chain of Custody Seal: (Circle)	
	Relinquished By: (4)	By: (4)	Date	Time	Received F	Received For Laboratory By:	y By:	1	Cooler Temperature °C:	ler TB 2,5,70 c		INTACT BROKEN	(EN ABSEN)	
														1

White - Retained by Lab Pink - Retained by Client

http://www.sgs.com/terms and conditions.htm

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

# SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

À Fra.M					SGS Re	SGS Reference #:				5	2
		ċ							bage	:/	
	PHONE NO:	ö					eservatives				
	SITE/PWSID#:	SID# :				SAMPLE U	Used				
	EMAIL:	xe   . de. 10	MALL: Michel, du l'Ocecon. co'	<	UOZH					<u> </u>	
	QUOTE #:				< −	= N	/ / / / 0/_			_	
	P.O. #:					Multi Incremental	/ / / 0, /	<u> </u>	<u> </u>		
SAMPLE IDENTIFICATION	ATION	DATE	TIME	MATRIX/ MATRIX CODE		Samples	( / / S)	<u> </u>	/	<u> </u>	REMARKS/ LOC ID
( <b>(B</b> - / <b>B</b> )		01/61/h	ú 3 ô	S	5	0	X				
(14-16)	Ć,	9//61/h	١١٢ح	5	5	ر ک					
53-8 (18-20.	رہ د	01/61/h	1200	S	5	6					5-11
(12-14		4/16/10	1215	S		6	X				
01-8)01		alleilte	1230	S	5 2	c.	X				
61-51)	H	01/61/h1	10530	S	s	6	V				
53-12 (4-6	(	4/20/10	0 001	Ś	5	6	X				
13(14-16	(	,	C 101	Ś	5	9					
21-01)	(		0011	Ś	2	9	X			Å,	2-12
(16-18	$\langle$	$\uparrow$	1110	S	5	ر م	X				
Collected/Relinquished By:(1)	Date	Time	Received By	Ķ		₹) <u> </u>	DOD Project? YES NO	Spe	Special Deliverable Requirements:	Requirement	s:
	4/22/H	042	Mat	À		Ĩ					
	Date U	Time	Received By				Requested Turnaround Time and-or Special Instructions:	nd-or Special Ir	nstructions:		
2	olkelia		Jack	ľ		١					
V	Date	Time C	Received By	la.							
\$							Samples Received Cold?	YES) NO	Chain of (	Chain of Custody Seal: (Circle)	: (Circle)
	Date	Time	Received For Laboratory By:	or Laborator	ry By:	-	Cooler Temperature℃: <u>~~~~~~~</u>	TB 3'C	INTACT	BROKEN(	ABSENT
□ 200 W. Potter Drive <b>Anchorage, AK 99518</b> Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive <b>Wilmington. NC 28405</b> Tel: (910) 350-1903 Fax: (910) 350-1557	907) 562-2343 (910) 350-1903	Fax: (907) 561 Fax: (910) 35	1-5301 0-1557			http://	http://www.sgs.com/terms and conditions.htm	.htm			White - Retained by Lab Pink - Retained by Client



# SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

CLIENT		AFrad					SGS Re	SGS Reference #:	#		c	لا	
CONTACT:	ł `		PHONE NO:	ö						page			
	2	1 1 91	SITE/DIM/SID# -	. HOIN				P SAMPLE U	Preservatives Used				
		NCDOT		. #1				_			$\left  \right $		Τ
REPO	REPORTS TO:		EMAIL: Mr. Lu	EMAIL: My: Lunel eda: 1 Parcen. com	מכלה כיש	C	uoz+	COMP GRAB GRAB					
INVOI	INVOICE TO:		QUOTE #:				- ►		7 a/ / / /		<u> </u>	_	
-0			P.O. #:			• •		MI= Multi Incremental		/ /			
LAB NO.	Ō	SAMPLE IDENTIFICATION	ATION	DATE	TIME	MATRIX/ MATRIX CODE		Samples	/   / ×	/		REMARKS/ LOC ID	S
		28-15 (12-14	(1)	4/20/10/130	1130	S	ۍ	0					<b>5</b> 5
		23-10 (4-2)	$\langle \cdot \rangle$		1220	S	۲	é,	X			-	Nor
		58-17 (20-22)	22)		0 <i>20</i> 0	S	5	د ب					th A
		58-18 ( &-10			1400	S	ى ك	Q.	7				me
		SB-19 (20-22	2)		1430	S	5	Ċ					rica
_		53-20 (6-2)	()		1500	S	5	6 -	+			RS-13	a, Ir
		23-20 (12-14,	(+)		1530	S	5	6					IC.
		58-21 (14-16)	ل ا	_	0011	S	5	6 -					
		513-22 (6-8)	(۶)		1630	S	2	Ś					
-G		513-52 C10-	10-12)	<del>)</del>	1760	S	ۍ ۲	ر ک	X		N	l samble	
	cted/Relin	Collected/Relinquished By:(1)	Date	Time	Received By:	( خ			DOD Project? YES NO	Special Deliverable Requirements:	Requirem	ients:	
£,	J. C		hrs/h	Dapo	A / a	X JA	$\zeta$		Cooler ID				
	Relinquished By: (2)	iy: (2)	Date		Received By:		A		Requested Turnaround Time and-or Special Instructions:	ial Instructions:			
	E D	$\mathcal{X}$	alez 11		Jun								
e 65	RelinquisNed By: (3)	iy: (3)' 🗸	Date	Time	Received By:	y: 6							
	2				_			0,	Samples Received Cold? (ES ) NO		Custody 5	Chain of Custody Seal: (Circle)	
Relinc	Relinquished By: (4)	y: (4)	Date	Time	Received F	Received For Laboratory By	y By:		Cooler TB Temperature °C: 5, 2, 5, 3 [°] C		BROKEN	EN ABSENT	
C 200 W. F	Potter Drive siness Drive	□ 200 W. Potter Drive <b>Anchorage, AK 99518</b> Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive <b>Wilmington, NC 28405</b> Tel: (910) 350-1903 Fax: (910) 350-1557	(907) 562-2343 (910) 350-1903	Fax: (907) 561 Fax: (910) 350	-5301 )-1557			http://	http://www.sgs.com/terms and conditions.htm			White - Retained by Lab Pink - Retained by Client	/ Lab



Matt Brennan AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-70

Client Project: NCDOT-Pittsboro

Dear Matt Brennan,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

Mar 7.2010 Date Project Manager Barbara Hager



ANALYTICAL ENVIRONMENTAL SERVICES, INC.

May 11, 2010

Barbara A. Hager SGS North America, Inc. 5500 Business Dr. Willmington NC 28405

TEL: (910) 350-1903 FAX:

RE: G1037-70

Dear Barbara A. Hager:

Order No: 1005450

Analytical Environmental Services, Inc. received 21 samples on 5/6/2010 10:40:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water,

soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/09-06/30/10.

-North Carolina Certification number 562 for analysis of Surface Water, Groundwater, Effluent, effective until 12/31/10.

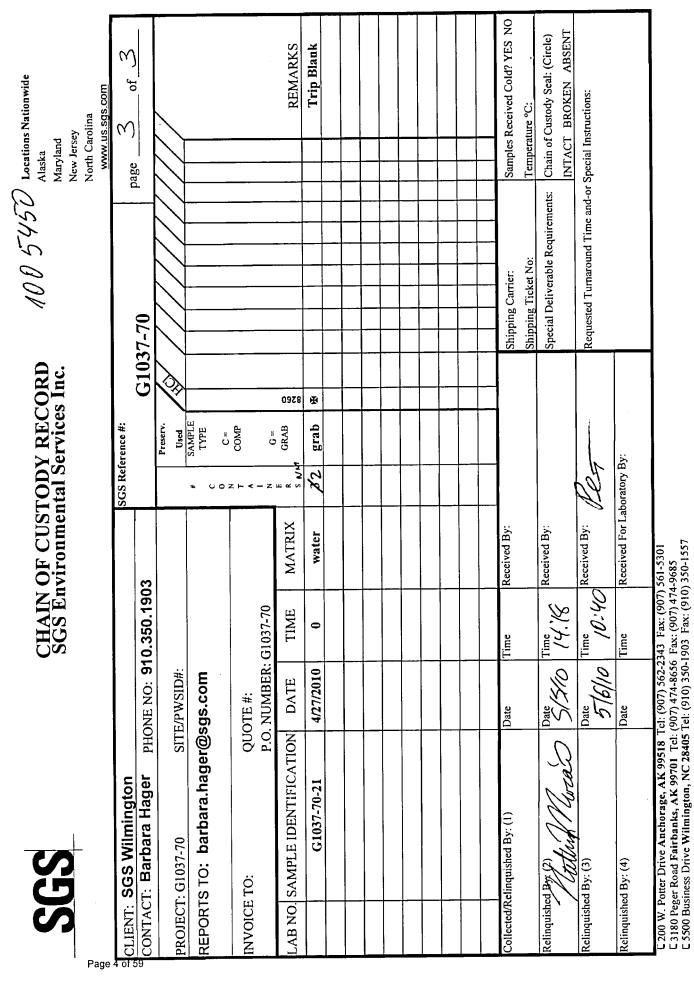
-South Carolina Environmental Laboratory Certification number 98016002 effective until 12/31/10.

South Carolina Environmental Laboratory Certification number 98016003 effective until 6/30/10.

These results relate only to the items tested. This report may only be reproduced in full and with

Sometane

James Forrest Project Manager


CLIENT: SGS Wilmington         CCLIENT: SGS Wilmington       CLIENT: SGS Wilmington         FROJECT: Barbara Hager       PHONE NO: 910.350.1903         PROJECT: G1037-70       SITE/PWSID#:         PROJECT: G1037-70       SITE/PWSID#:         INVOICE TO:       Darbara.hager@sgs.com         INVOICE TO:       QUOTE #:         PROJECT: G1037-70-1       4726/2010         INVOICE TO:       QUOTE #:         PROJECT: G1037-70-1       1350         WATRIX       QUOTE #:         C1037-70-1       4726/2010         INVOICE TO:       C1037-70-1         INVOICE TO:       4726/2010         INVOICE TO:       1435         MATRIX       C1037-70-2         INVOICE TO:       4726/2010         INVOICE TO:       1435         INVOICE TO:       4726/2010         INVOICE TO:       1435         INVOICE TO:       4726/2010         INVOICE TO:       1100         INVOICE TO:       1100         INVOICE TO:       1100         INVOICE TO:       1100         INVOICE TO:       1110         INVOICE TO:       1110         INVOICE TO:       1110         I		OES CANANA 37-70 P 37-70 P Shipping Carrier: Shipping Carrier: Shipping Ticket No: Special Deliverable Requirements:	Maryland New Jersey North Carolina www.us.sgs.com pageof
Relinquished By: (4) Date Time Received For Laboratory By:	Laboratory By	Summany Keprt + Excl * short holding time *	nt + Excl EDD me *
E 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 E 3180 Peoer Road Fairhanks, AK 99701 Tel: (907) 474-8656 Fax: (907) 474-9685		כ	

### SGS North America, Inc.

Page 3 of 60

SGSS ELENT: SGS Wilmington ELENT: SGS Wilmington EONTACT: Barbara Hager PROJECT: G1037-70 REPORTS TO: barbara.hager@sgs.com INVOICE TO: P.O. NUMBER P.O. NUMBER P.O. NUMBER P.O. NUMBER P.O. NUMBER P.O. NUMBER A.2772010 G1037-70-14 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 G1037-70-15 A.2772010 A.2772010 Collected/Relinquished By: (1) Relinquished By: (2) Relinquished By: (3) Relinquished By: (3) Date A.2772010 Collected/Relinquished By: (1) Collected/Relinquished By: (1) Collected/Relinquished By: (1) Relinquished By: (3) Date A.2772010		CHAI SGS I SGS I       PHONE NO:     910.350.1       SITE/PWSID#:     0.350.1       COSGSS.com     0.001       QUOTE #:     10037-70       QUOTE #:     11ME       QUOTE #:     14/27/2010       QN     DATE       TIME     14/27/2010       4/27/2010     1555       4/27/2010     1555       4/27/2010     1055       4/27/2010     1055       4/27/2010     1055       1155     4/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1155     1/27/2010       1000     955       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000       1155     1/1000	CHAIN C SGS Env C SGS Env C SGS Env C 310.350.1903 910.350.1903 8: G1037-70 11ME 0 1515 0 1555 0 155	CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.       SGS Reference #:       0.350.1903       SGS Reference #:       0.350.1903       SGS Reference #:       OUTODY RECORD       OUSTODY RECORD       OUSTODY RECORD       OUTOSTODY RECORD       OU		CODY REC       Ital Service       Ital Service <th>CORD S Inc. G1037-70 G1037-70 A A A A A A A A A A A A A A A A A A A</th> <th>1005450 Locations Nationv Alaska Maryland New Jersey North Carolina www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con North Carolina www.us.sgs.con North Carolina Maryland North Carolina Maryland New Jersey New Je</th> <th>Locations Nationwide Alaska Maryland North Carolina www.us.sgs.com pageof</th> <th>S ARKS H? YES NO - (Circle) ABSENT</th>	CORD S Inc. G1037-70 G1037-70 A A A A A A A A A A A A A A A A A A A	1005450 Locations Nationv Alaska Maryland New Jersey North Carolina www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con www.us.sgs.con North Carolina www.us.sgs.con North Carolina Maryland North Carolina Maryland New Jersey New Je	Locations Nationwide Alaska Maryland North Carolina www.us.sgs.com pageof	S ARKS H? YES NO - (Circle) ABSENT
Relinquished By: (4)		5/6//0 Date	6/10 /0:40	Received For Laboratory By:	oratory B	<del>،</del>				
C 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 C 3180 Peger Road Fairbanks, AK 99701 Tel: (907) 474-8656 Fax: (907) 474-9685 C 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557	e, AK 99518 T LK 99701 Tel: on, NC 28405	cel: (907) 562-2 (907) 474-8656 Tel: (910) 350-1	343 Fax: (907) Fax: (907) 474 1903 Fax: (910)	561-5301 -9685 350-1557						

Page 4 of 60



#### SGS North America, Inc.

#### Analytical Environmental Services, Inc

Date: 13-May-10

Client:SGS North America, Inc.Project:G1037-70Lab ID:1005450

**Case Narrative** 

Sample Receiving Nonconformance:

One vial was received broken for each of samples 1005450-004A and -016A. The laboratory proceeded with analysis using the remaining vials for each samples.

Volatile Organic Compounds Analysis by Method 8260B:

Percent recoveries for the internal standard compounds Pentafluorobenzene and 1,4-Dichlorobenzene-d4 on samples 1005450-004A, -005A, -006A, -007A, -008A, -010A, -011A, -012A, -013A, -014A, -015A, -016A, -017A, -018A, -019A, and -020A were outside control limits biased low due to suspected matrix interference.

Percent recovery for the internal standard compound Pentafluorobenzene on sample 1005450-002A was outside control limits biased low due to suspected matrix interference.

Project Name: G10	8 North America, Inc. 137-70 5450-001					ample II on Date:		/2010	)-1 ) 1:50:00 PM	
Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
/olatile Organic C	ompounds by GC/MS	SW8260B			(	SW5030	)B)			
1,1,1,2-Tetrachloro	bethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1,1-Trichloroetha		BRL		0.094	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1,2,2-Tetrachloro		BRL		0.51	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1,2-Trichloroeth		BRL		0.33	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1-Dichloroethan		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,1-Dichloroethen		BRL		0.30	5.0	ug/L	129176	ì	05/09/2010 14:37	JT
1,1-Dichloroprope		BRL		0.49	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,3-Trichlorober		BRL		0.43	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,3-Trichloropro		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,4-Trichlorober		BRL		0.46	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2,4-Trimethylbe		BRL		0.34	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dibromo-3-ch		BRL		0.31	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dibromoethan		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dichlorobenze		BRL		0.36	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dichloroethan		BRL		0.16	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,2-Dichloropropa		BRL		0.48	5.0	ug/L	129176	1	05/09/2010 14:37	JT
		BRL		0.18	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,3,5-Trimethylbe		BRL		0.24	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,3-Dichlorobenze		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,3-Dichloropropa		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 14:37	JT
1,4-Dichlorobenze		BRL		0.38	5.0	ug/L	129176	1	05/09/2010 14:37	JT
2,2-Dichloropropa	ine	BRL		1.7	50	ug/L	129176	1	05/09/2010 14:37	JT
2-Butanone		BRL		0.27	5.0	ug/L	129176	1	05/09/2010 14:37	JT
2-Chlorotoluene		BRL		0.61	10	ug/L	129176	1	05/09/2010 14:37	JT
2-Hexanone		BRL		0.01	5.0	ug/L	129176	1	05/09/2010 14:37	JT
4-Chlorotoluene					5.0	ug/L	129176	1	05/09/2010 14:37	JT
4-Isopropyltoluen		BRL		0.26	10	ug/L	129176	1	05/09/2010 14:37	JT
4-Methyl-2-penta	none	BRL		0.39	50	ug/L	129176	1	05/09/2010 14:37	JT
Acetone		BRL		5.0		-	129176	1	05/09/2010 14:37	JT
Benzene		BRL		0.21	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Bromobenzene		BRL		0.28	5.0	ug/L			05/09/2010 14:37	
Bromochlorometh	nane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 14:37	
Bromodichlorom	ethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 14:37	
Bromoform		BRL		0.70	5.0	ug/L	129176	1	05/09/2010 14:37	
Bromomethane		BRL		0.49	5.0	ug/L	129176	1		
Carbon disulfide		BRL		0.41	5.0	ug/L	129176	1	05/09/2010 14:37	
Carbon tetrachlor	ide	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 14:37	
Chlorobenzene		BRL		0.11	5.0	ug/L	129176	1	05/09/2010 14:37	
Chloroethane		BRL		0.39	10	ug/L	129176	1	05/09/2010 14:37	
Chloroform		BRL		0.30	5.0	ug/L	129176	1	05/09/2010 14:37	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

#### SGS North America, Inc.

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-001					ample I on Date:		/2010	9-1 9 1:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			6	SW503(	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 14:37	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 14:37	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 14:37	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 14:37	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 14:37	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 14:37	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 14:37	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 14:37	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 14:37	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 14:37	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 14:37	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 14:37	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	ł	05/09/2010 14:37	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 14:37	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 14:37	JT
Surr: 4-Bromofluorobenzene	78.6		0	60.1-127	%REC	129176	1	05/09/2010 14:37	JT
Surr: Dibromofluoromethane	100		0	79.6-126	%REC	129176	1	05/09/2010 14:37	JT
Surr: Toluene-d8	86.4		0	78-116	%REC	129176	1	05/09/2010 14:37	JT

Qualifiers: 
• Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-002				Client S Collecti Matrix:		/2010	0-2 0 1:30:00 PM		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
/olatile Organic Compounds by GC/MS S	W8260B			(	SW5030	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dibromo-3-chloropropane	BRL		0,31	5,0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:06	Л
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 15:06	л
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:06	JT
	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:06	TL
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:06	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L ug/L	129176	1	05/09/2010 15:06	TL
2,2-Dichloropropane	BRL		1.7	50	ug/L ug/L	129176	1	05/09/2010 15:06	JT
2-Butanone	BRL		0.27	5.0		129176	1	05/09/2010 15:06	JT
2-Chlorotoluene					ug/L				
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 15:06	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 15:06	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:06	JT
4-Methyl-2-pentanone	BRL	,	0.39	10	ug/L	129176	1	05/09/2010 15:06	JT
Acetone	21	J	5.0	50	ug/L	129176	1	05/09/2010 15:06	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 15:06	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

#### SGS North America, Inc.

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-002				Client Sample ID:G1037-70-2Collection Date:4/26/2010 1:30:00 PMMatrix:Aqueous					
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:06	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 15:06	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:06	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 15:06	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 15:06	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:06	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 15:06	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:06	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:06	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:06	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 15:06	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:06	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 15:06	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 15:06	TL
Trichloroethene	BRL		0.23	. 5.0	ug/L	129176	1	05/09/2010 15:06	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:06	Τl
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 15:06	Τl
Surr: 4-Bromofluorobenzene	78.3		0	60.1-127	%REC	129176	1	05/09/2010 15:06	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 15:06	JT
Surr: Toluene-d8	86.3		0	78-116	%REC	129176	1	05/09/2010 15:06	JT

Qualifiers:

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

٠

#### SGS North America, Inc.

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-003		48 mw .3			Client Sample ID: Collection Date: Matrix:			0-3 0 2:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
/olatile Organic Compounds by GC/MS	SW8260B			(	SW503(	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,1-Trichloroethane	2.0	J	0.094	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1-Dichloroethane	6.5		0.29	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1-Dichloroethene	7.1		0.30	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:34	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 15:34	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 15:34	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 15:34	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 15:34	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 15:34	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 15:34	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:34	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 15:34	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 15:34	JT
Benzene	BRL		0.21	5.0	ug/L	129176		05/09/2010 15:34	JT
Bromobenzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Bromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:34	JT
	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:34	TL
Bromoform Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Carbon disulfide	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Carbon tetrachloride	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 15:34	JT
	BRL		0.25	5.0	ug/L ug/L	129176	1	05/09/2010 15:34	JT
Chlorobenzene Chloroethane	BRL		0.11	5.0 10	ug/L ug/L	129176	1	05/09/2010 15:34	JT JT
Chloroethane Chloroform	BRL BRL		0.39	5.0	ug/L ug/L	129176	1	05/09/2010 15:34	JT

Qualifiers: * Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-003				Client S Collecti Matrix:	4/26	G1037-70-3 4/26/2010 2:35:00 PM Aqueous			
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(5	SW503(	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:34	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 15:34	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	ΤL
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 15:34	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:34	ΤL
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 15:34	ΤL
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 15:34	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 15:34	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 15:34	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 15:34	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 15:34	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 15:34	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 15:34	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Tetrachloroethene	5.0		0.51	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 15:34	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 15:34	JT
Trichloroethene	3.5	J	0.23	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 15:34	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 15:34	ΤL
Surr: 4-Bromofluorobenzene	75.8		0	60.1-127	%REC	129176	1	05/09/2010 15:34	ΤL
Surr: Dibromofluoromethane	103		0	79.6-126	%REC	129176	1	05/09/2010 15:34	JT
Surr: Toluene-d8	87.4		0	78-116	%REC	129176	1	05/09/2010 15:34	JT

Qualifiers: *	Value exceeds maximum	contaminant level
---------------	-----------------------	-------------------

BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-004					Client Sample ID: Collection Date: Matrix:		37-7( /201( eous	0-4 0 3:50:00 PM	
Inalyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(\$	SW5030	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 16:03	JT
I,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 16:03	JT
I,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 16:03	Л
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:03	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:03	JT
	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 16:03	JT
2,2-Dichloropropane 2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 16:03	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 16:03	JT
2-Chlorotoluene 2-Hexanone	BRL		0.27	10	ug/L	129176	1	05/09/2010 16:03	JT
4-Chlorotoluene	BRL		0.01	5.0	ug/L	129176	1	05/09/2010 16:03	JT
	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 16:03	JT
4-Isopropyltoluene	BRL		0.20	10	ug/L	129176	1	05/09/2010 16:03	JT
4-Methyl-2-pentanone	BRL		5.0	50	ug/L	129176	1	05/09/2010 16:03	TL
Acetone	BRL		0.21	5.0	ug/L ug/L	129176	1	05/09/2010 16:03	TL
Benzene						129176		05/09/2010 16:03	
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	TL TL
Bromochloromethane	BRL		0.66	5.0	ug/L		1		
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 16:03	TL TI
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 16:03	JT IT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 16:03	JT

Qualifiers: Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-004					Sample I ion Date :	: 4/26	G1037-70-4 4/26/2010 3:50:00 PM Aqueous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503(	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:03	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 16:03	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:03	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 16:03	ΤL
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 16:03	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 16:03	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:03	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 16:03	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:03	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:03	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:03	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 16:03	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 16:03	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 16:03	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:03	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 16:03	JT
Surr: 4-Bromofluorobenzene	75.8		0	60.1-127	%REC	129176	1	05/09/2010 16:03	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	t	05/09/2010 16:03	JT
Surr: Toluene-d8	87.3		0	78-116	%REC	129176	1	05/09/2010 16:03	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-005				Collecti	Client Sample ID: Collection Date: Matrix:		37-7( /201( eous	0 2:45:00 PM	-
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(5	SW503(	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1-Dichloroethane	BRL		0,29	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:32	TL
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:32	JT
I,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 16:32	JT
	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,3,5-Trimethylbenzene	BRL		0.13	5.0	ug/L	129176	1	05/09/2010 16:32	TL
1,3-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:32	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 16:32	TL
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L ug/L	129176	1	05/09/2010 16:32	JT
2,2-Dichloropropane	BRL			5.0 50	ug/L	129176	1	05/09/2010 16:32	JT.
2-Butanone			1.7		ug/L	129176	1	05/09/2010 16:32	JT
2-Chlorotoluene	BRL		0.27	5.0					JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 16:32	
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 16:32 05/09/2010 16:32	JT IT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1		JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 16:32	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 16:32	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 16:32	TL
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	TL
Bromochloromethane	BRL		0,66	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 16:32	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-005					Sample I ion Date :				
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(	SW503	0 <b>B</b> )			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:32	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 16:32	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 16:32	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Iodomethane	BRL		0.33	10	ug/L	129176	I	05/09/2010 16:32	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 16:32	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 16:32	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 16:32	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 16:32	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 16:32	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 16:32	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 16:32	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 16:32	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 16:32	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 16:32	Л
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 16:32	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 16:32	JT
Surr: 4-Bromofluorobenzene	76.5		0	60.1-127	%REC	129176	1	05/09/2010 16:32	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 16:32	JT
Surr: Toluene-d8	88.4		0	78-116	%REC	129176	1	05/09/2010 16:32	JT

Qualifiers: * Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

				4/26	G1037-70-6 4/26/2010 4:35:00 PM Aqueous			
Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
SW8260B			(5	SW503(	)B)			
BRL		0.37	5.0	ug/L	129176	ł	05/09/2010 17:01	JT
BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.29	5.0	ug/L	129176	I	05/09/2010 17:01	JT
BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:01	JT
BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:01	JT
			5.0	ug/L	129176	1	05/09/2010 17:01	JT
			5.0	ug/L	129176	1	05/09/2010 17:01	JT
			5.0	ug/L	129176	1	05/09/2010 17:01	JT
				ug/L	129176	1	05/09/2010 17:01	JT
				ug/L	129176	1	05/09/2010 17:01	JT
				ug/L	129176	1	05/09/2010 17:01	JT
						1	05/09/2010 17:01	JT
						1	05/09/2010 17:01	JT
						1	05/09/2010 17:01	JT
								JT
							05/09/2010 17:01	JT
								JT
								JT
								JT
				-				JT
								JT
								JT
				-				Л
				-				TL
								л
								TL
								л
								II
				-				JI
								11 1
				-				11 1
								11 J1
BRL		0.39	10	ug/∟	129176	1	05/09/2010 17:01	Lf L
	SW8260B BRL BRL BRL BRL BRL BRL BRL BRL	SW8260B BRL BRL BRL BRL BRL BRL BRL BRL BRL BR	SW8260B         BRL       0.37         BRL       0.094         BRL       0.51         BRL       0.33         BRL       0.29         BRL       0.30         BRL       0.49         BRL       0.43         BRL       0.43         BRL       0.43         BRL       0.44         BRL       0.43         BRL       0.44         BRL       0.31         BRL       0.34         BRL       0.31         BRL       0.29         BRL       0.31         BRL       0.32         BRL       0.16         BRL       0.16         BRL       0.16         BRL       0.18         BRL       0.18         BRL       0.32         BRL       0.32         BRL       0.32         BRL       0.32         BRL       0.27         BRL       0.27         BRL       0.27         BRL       0.26         BRL       0.27         BRL       0.21	Result         Qual         MDL         Reporting Limit           SW8260B         0.37         5.0           BRL         0.37         5.0           BRL         0.094         5.0           BRL         0.51         5.0           BRL         0.33         5.0           BRL         0.29         5.0           BRL         0.49         5.0           BRL         0.49         5.0           BRL         0.49         5.0           BRL         0.41         5.0           BRL         0.43         5.0           BRL         0.43         5.0           BRL         0.46         5.0           BRL         0.46         5.0           BRL         0.31         5.0           BRL         0.34         5.0           BRL         0.36         5.0           BRL         0.16         5.0           BRL         0.18         5.0           BRL         0.18         5.0           BRL         0.22         5.0           BRL         0.32         5.0           BRL         0.27         5.0	Result         Qual         MDL         Reporting Limit         Units           SW3260B         0.37         5.0 $ug/L$ BRL         0.37         5.0 $ug/L$ BRL         0.094         5.0 $ug/L$ BRL         0.51         5.0 $ug/L$ BRL         0.33         5.0 $ug/L$ BRL         0.29         5.0 $ug/L$ BRL         0.30         5.0 $ug/L$ BRL         0.32         5.0 $ug/L$ BRL         0.43         5.0 $ug/L$ BRL         0.43         5.0 $ug/L$ BRL         0.43         5.0 $ug/L$ BRL         0.31         5.0 $ug/L$ BRL         0.36         5.0 $ug/L$ BRL         0.16         5.0 $ug/L$ BRL         0.18         5.0 $ug/L$ BRL         0.18         5.0 $ug/L$ BRL         0.32         5.0 $ug/L$ BRL         0.32         5.0	ResultQualMDLReporting LimitUnitsBatch1DSW8260B <td< td=""><td>AreaultQualMDLReporting LimitUnitsBquebulDFSW8260B0.375.0ug/L1291761BRL0.0945.0ug/L1291761BRL0.515.0ug/L1291761BRL0.515.0ug/L1291761BRL0.335.0ug/L1291761BRL0.305.0ug/L1291761BRL0.305.0ug/L1291761BRL0.305.0ug/L1291761BRL0.315.0ug/L1291761BRL0.435.0ug/L1291761BRL0.435.0ug/L1291761BRL0.315.0ug/L1291761BRL0.325.0ug/L1291761BRL0.315.0ug/L1291761BRL0.325.0ug/L1291761BRL0.365.0ug/L1291761BRL0.325.0ug/L1291761BRL0.335.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.335.0ug/L129176&lt;</td><td>Matrix:AqueusResultQualMDLReporting LimitUnitsBatchIDDFDate AnalyzedSW 3260BSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS<!--</td--></td></td<>	AreaultQualMDLReporting LimitUnitsBquebulDFSW8260B0.375.0ug/L1291761BRL0.0945.0ug/L1291761BRL0.515.0ug/L1291761BRL0.515.0ug/L1291761BRL0.335.0ug/L1291761BRL0.305.0ug/L1291761BRL0.305.0ug/L1291761BRL0.305.0ug/L1291761BRL0.315.0ug/L1291761BRL0.435.0ug/L1291761BRL0.435.0ug/L1291761BRL0.315.0ug/L1291761BRL0.325.0ug/L1291761BRL0.315.0ug/L1291761BRL0.325.0ug/L1291761BRL0.365.0ug/L1291761BRL0.325.0ug/L1291761BRL0.335.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.325.0ug/L1291761BRL0.335.0ug/L129176<	Matrix:AqueusResultQualMDLReporting LimitUnitsBatchIDDFDate AnalyzedSW 3260BSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS </td

Qualifiers: • Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-006					Sample I ion Date: :		/2010	0-6 0 4:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503(	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:01	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:01	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:01	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:01	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:01	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:01	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:01	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:01	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:01	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:01	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:01	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:01	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:01	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:01	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:01	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:01	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:01	JT
Surr: 4-Bromofluorobenzene	* 75.8		0	60,1-127	%REC	129176	1	05/09/2010 17:01	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 17:01	JT
Surr: Toluene-d8	90.3		0	78-116	%REC	129176	1	05/09/2010 17:01	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-007					ample II on Date:		/2010	)-7 ) 5:10:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS S	W8260B			(1	SW5030	B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:29	JT
I,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
1,2,3-Trichloropropane	BRL		0,32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176		05/09/2010 17:29	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176		05/09/2010 17:29	JŢ
	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,3,5-Trimethylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,3-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:29	JT
2,2-Dichloropropane					-	129176	1	05/09/2010 17:29	TL
2-Butanone	BRL		1.7	50	ug/L	129176	י 1	05/09/2010 17:29	TL
2-Chlorotoluene	BRL		0.27	5.0	ug/L			05/09/2010 17:29	
2-Hexanone	BRL		0.61	10	ug/L	129176	1		JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:29	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:29	JT TT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:29	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 17:29	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 17:29	TL
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:29	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 17:29	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:29	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Analytical Environmental Services, In	c E	BØ	1-0-	12610	Da	te:	11-May-10			
Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-007					Sample I ion Date: :			0-7 0 5:10:00 PM		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys	
Volatile Organic Compounds by GC/MS	SW8260B	SW8260B (SW5030B)								
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:29	JT	
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	ΤL	
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:29	JT	
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:29	JT	
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:29	JT	
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:29	JT	
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:29	л	
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:29	Л	
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:29	Л	
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:29	Л	
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:29	Τſ	
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:29	TL	
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:29	TL	
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:29	JT	
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:29	JT	
Surr: 4-Bromofluorobenzene	76.1		0	60.1-127	%REC	129176	1	05/09/2010 17:29	Τſ	
Surr: Dibromofluoromethane	105		0	79.6-126	%REC	129176	1	05/09/2010 17:29	JT	
Surr: Toluene-d8	88.2		0	78-116	%REC	129176	1	05/09/2010 17:29	TL	

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Project Name:	SGS North America, Inc. G1037-70 1005450-008					ample I on Date:		37-7( /201( eous		
Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organi	c Compounds by GC/MS S	W8260B			(5	SW5030	<b>IB</b> )			
1,1,1,2-Tetrach	loroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	Л
1,1,1-Trichloro		BRL		0.094	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1,2,2-Tetrach		BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1,2-Trichloro		BRL		0.33	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1-Dichloroet		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:58	Л
1,1-Dichloroet		BRL		0.30	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,1-Dichloropr		BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,3-Trichloro		BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,3-Trichloro		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,4-Trichloro		BRL		0.46	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2,4-Trimethy		BRL		0.34	5.0	ug/L	129176	1	05/09/2010 17:58	JТ
	-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dibromoet		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichlorobe		BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichloroet		BRL		0.16	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,2-Dichloropr		BRL		0.48	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,3,5-Trimethy	-	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,3-Dichlorobe		BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:58	Л
1,3-Dichloropr		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
1,4-Dichlorobe		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2,2-Dichloropr		BRL		0.38	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2-Butanone	opuie	BRL		1.7	50	ug/L	129176	1	05/09/2010 17:58	JT
2-Chlorotoluer	1e	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:58	JT
2-Hexanone		BRL		0.61	10	ug/L	129176	1	05/09/2010 17:58	JT
4-Chlorotoluen	i A	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 17:58	JT
4-Isopropyltoli		BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:58	JT
4-Methyl-2-per		BRL		0.39	10	ug/L	129176	1	05/09/2010 17:58	JT
	manone	BRL		5.0	50	ug/L	129176	1	05/09/2010 17:58	JT
Acetone		BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Benzene Bromobenzene		BRL		0.21	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromochlorom		BRL		0.66	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromodichloro		BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromoform	memale	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Bromomethane	s	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Carbon disulfic		BRL		0.49	5.0	ug/L	129176	1	05/09/2010 17:58	TL
		BRL		0.41	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Carbon tetrach		BRL		0.23	5.0 5.0	ug/L	129176	1	05/09/2010 17:58	JT
Chlorobenzene Chloroethane		BRL		0.39	5.0 10	ug/L	129176	1	05/09/2010 17:58	Л
Chloroethane		BRL		0.37	10	•B D	129176	1	05/09/2010 17:58	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-008				Collecti	Client Sample ID: Collection Date: Matrix:			)-8 )	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503(	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:58	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 17:58	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 17:58	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 17:58	JŢ
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 17:58	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 17:58	JT
Isopropylenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 17:58	Τſ
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 17:58	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 17:58	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 17:58	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:58	ΤL
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 17:58	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 17:58	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 17:58	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 17:58	Л
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 17:58	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 17:58	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 17:58	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 17:58	JT
Surr: 4-Bromofluorobenzene	75.2		0	60.1-127	%REC	129176	1	05/09/2010 17:58	JT
Surr: Dibromofluoromethane	106		0	79.6-126	%REC	129176	1	05/09/2010 17:58	JT
Surr: Toluene-d8	88.7		0	78-116	%REC	129176	1	05/09/2010 17:58	JT

Qualifiers: Value exceeds maximum contaminant level

.

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, Inc	10	17.00	)-1B						
Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-009					ample I on Date:		/201	0-9 0 11:20:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
/olatile Organic Compounds by GC/MS S	W8260B			(	SW503(	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 19:52	Τl
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 19:52	Τl
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 19:52	ΤL
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 19:52	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 19:52	Τl
	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 19:52	Л
1,4-Dichlorobenzene	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 19:52	TL
2,2-Dichloropropane	BRL		1.7	50	ug/L	129176	1	05/09/2010 19:52	JT
2-Butanone	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 19:52	JT
2-Chlorotoluene	BRL		0.61	10	ug/L	129176	1	05/09/2010 19:52	Л
2-Hexanone	BRL		0.01	5.0	ug/L	129176	1	05/09/2010 19:52	Л
4-Chlorotoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 19:52	JT
4-Isopropyltoluene	BRL		0.39	10	ug/L	129176	1	05/09/2010 19:52	Л
4-Methyl-2-pentanone	BRL		5.0	50	ug/L	129176	1	05/09/2010 19:52	JT
Acetone	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 19:52	л
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 19:52	л
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Bromochloromethane				5.0	ug/L	129176	1	05/09/2010 19:52	JT
Bromodichloromethane	BRL		0.22 0.70	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Bromoform	BRL			5.0	ug/L ug/L	129176	1	05/09/2010 19:52	JT
Bromomethane	BRL		0.49	5.0	ug/L ug/L	129176	1	05/09/2010 19:52	TL
Carbon disulfide	BRL		0.41		-	129176	1	05/09/2010 19:52	TL
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 19:52	TL TL
Chlorobenzene	BRL		0.11	5.0	ug/L				TL TL
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 19:52	71

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-009					Sample I ion Date :	: 4/27	G1037-70-9 4/27/2010 11:20:00 AM Aqueous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analy
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503	0 <b>B</b> )			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 19:52	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 19:52	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 19:52	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 19:52	JŢ
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 19:52	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 19:52	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 19:52	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 19:52	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 19:52	Л
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 19:52	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 19:52	Л
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 19:52	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 19:52	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 19:52	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 19:52	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 19:52	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 19:52	JT
Surr: 4-Bromofluorobenzene	75.2		0	60,1-127	%REC	129176	1	05/09/2010 19:52	JT
Surr: Dibromofluoromethane	102		0	79.6-126	%REC	129176	1	05/09/2010 19:52	JT
Surr: Toluene-d8	86.1		0	78-116	%REC	129176	1	05/09/2010 19:52	JT

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Project Name:         G1037-70           Lab ID:         1005450-010				Client S Collection Matrix:	: G1037-70-10 4/27/2010 12:30:00 PM Aqueous				
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(5	SW5030	B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	Л
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dibromo-3-chloropropane	BRL		0,31	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:19	JT
,	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:19	JT
1,4-Dichlorobenzene	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 20:19	Τl
2,2-Dichloropropane	BRL		1.7	50	ug/L	129176	1	05/09/2010 20:19	JT
2-Butanone	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:19	Τl
2-Chlorotoluene	BRL		0.61	10	ug/L	129176	1	05/09/2010 20:19	JT
2-Hexanone	BRL		0.01	5.0	ug/L	129176	1	05/09/2010 20:19	Л
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:19	Л
4-Isopropyltoluene			0.20	10	ug/L	129176	1	05/09/2010 20:19	JT
4-Methyl-2-pentanone	BRL			50	ug/L	129176	1	05/09/2010 20:19	JT
Acetone	BRL		5.0	5.0	ug/L	129176	1	05/09/2010 20:19	JT
Benzene	BRL		0.21		ug/L ug/L	129176	1	05/09/2010 20:19	JT
Bromobenzene	BRL		0.28	5.0	-	129176	1	05/09/2010 20:19	TL
Bromochloromethane	BRL		0.66	5.0	ug/L			05/09/2010 20:19	TL
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1		TL
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 20:19	TL
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:19	
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 20:19	JT IT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 20:19	JT T
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:19	JT TI
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:19	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-010					Sample I ion Date :	: 4/27	37-7( /201) eous	0-10 0 12:30:00 PM				
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys			
Volatile Organic Compounds by GC/MS	SW8260B			(SW5030B)								
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:19	JT			
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	TL			
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:19	Л			
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 20:19	TL			
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 20:19	JT			
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 20:19	JT			
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	I	05/09/2010 20:19	JT			
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 20:19	JT			
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:19	Л			
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 20:19	Л			
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 20:19	JT			
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:19	JT			
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 20:19	JT			
Surr: 4-Bromofluorobenzene	74,7		0	60.1-127	%REC	129176	1	05/09/2010 20:19	JT			
Surr: Dibromofluoromethane	108		0	79.6-126	%REC	129176	1	05/09/2010 20:19	JT			
Surr: Toluene-d8	90.2		0	78-116	%REC	129176	1	05/09/2010 20:19	JT			

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

.

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-011					ample I on Date:			)-11 ) 4:05:00 PM			
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys		
olatile Organic Compounds by GC/MS	SW8260B			(SW5030B)							
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2,3-Trichlorobenzene	BRL		0.43	5,0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 20:48	л		
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 20:48	Л		
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:48	Л		
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 20:48	л		
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 20:48	л		
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 20:48	JT		
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 20:48	Л		
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 20:48	л		
Bromobenzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Bromochloromethane	BRL		0.20	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Bromoform	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Bromonorm Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Carbon disulfide	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 20:48	JT		
Carbon tetrachloride Chlorobenzene	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 20:48	Л		
	BRL		0.11	3.0 10	ug/L	129176	1	05/09/2010 20:48	Л		
Chloroethane Chloroform	BRL		0.07	5.0	ug/L	129176	1	05/09/2010 20:48	Л		

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-011					Sample I ion Date :			0-11 0 4:05:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW503	0 <b>B</b> )			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:48	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 20:48	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 20:48	TL
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	TL
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 20:48	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 20:48	ΤL
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 20:48	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 20:48	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 20:48	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 20:48	Τľ
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 20:48	ΤL
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 20:48	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:48	JŢ
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 20:48	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 20:48	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Toluene	BRL		0,26	5.0	ug/L	129176	1	05/09/2010 20:48	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 20:48	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 20:48	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 20:48	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 20:48	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 20:48	JT
Surr: 4-Bromofluorobenzene	74.7		0	60.1-127	%REC	129176	1	05/09/2010 20:48	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176	1	05/09/2010 20:48	TL
Surr: Toluene-d8	90.7		0	78-116	%REC	129176	1	05/09/2010 20:48	ΤL

Qualifiers: * Val	e exceeds maximum contaminant level
-------------------	-------------------------------------

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-012					ample I on Date:			0-12 0 3:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW5030	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 21:17	JT
I, I, 2, 2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 21:17	ΤL
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,3,5-Trimethylbenzene	BRL		0,18	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:17	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 21:17	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 21:17	JT
2-Butanone 2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:17	ΤL
	BRL		0.61	10	ug/L	129176	1	05/09/2010 21:17	JT
2-Hexanone	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:17	JT
4-Chlorotoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:17	JT
4-Isopropyltoluene	BRL		0.20	10	ug/L	129176		05/09/2010 21:17	JT
4-Methyl-2-pentanone	9.8	J	5.0	50	- <i>3</i> – ug/L	129176	1	05/09/2010 21:17	JT
Acetone	BRL	,	0.21	5.0	ug/L	129176	1	05/09/2010 21:17	Л
Benzene	BRL		0.28	5.0	- <i>8 –</i> ug/L	129176		05/09/2010 21:17	JT
Bromobenzene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:17	Л
Bromochloromethane	BRL		0.00	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Bromoform	BRL		0.49	5.0	ug/L	129176	•	05/09/2010 21:17	Л
Bromomethane	BRL		0.49	5.0	ug/L ug/L	129176	1	05/09/2010 21:17	JT
Carbon disulfide					ug/L	129176	1	05/09/2010 21:17	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 21:17	Л
Chlorobenzene	BRL		0.11	5.0	ug/L ug/L	129176 129176	1	05/09/2010 21:17	JT
Chloroethane	BRL		0.39		-		1	05/09/2010 21:17	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	I	05/05/2010 21.17	71

- BR1. Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-012					Sample I on Date		/2010	)-12 ) 3:50:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(	SW503(	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:17	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 21:17	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:17	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 21:17	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 21:17	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:17	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 21:17	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:17	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:17	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 21:17	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 21:17	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 21:17	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 21:17	JT
Trichloroethene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:17	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 21:17	JT
Surr: 4-Bromofluorobenzene	76.9		0	60.1-127	%REC	129176	1	05/09/2010 21:17	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176	1	05/09/2010 21:17	JT
Surr: Toluene-d8	87.5		0	78-116	%REC	129176	1	05/09/2010 21:17	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit

.

- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-013					ample II on Date:			)-13 ) 2:58:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(5	SW5030	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 21:45	Л
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 21:45	JT
2,2-Dichloropropane	BRL		0,38	5.0	ug/L	129176	1	05/09/2010 21:45	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 21:45	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:45	Л
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/09/2010 21:45	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 21:45	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:45	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 21:45	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/09/2010 21:45	JT
Benzene	BRL		0.21	5.0	ug/L	129176		05/09/2010 21:45	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176		05/09/2010 21:45	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176		05/09/2010 21:45	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 21:45	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176		05/09/2010 21:45	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176		05/09/2010 21:45	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176		05/09/2010 21:45	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176		05/09/2010 21:45	JT
Chloroethane	BRL		0.39	10	ug/L	129176		05/09/2010 21:45	JT
Chloroform	BRL		0.30	5.0	ug/L	129176		05/09/2010 21:45	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-013					Sample I ion Date :	: 4/27	37-7 /201 eous	0-13 0 2:58:00 PM				
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys			
Volatile Organic Compounds by GC/MS	SW8260B		(SW5030B)									
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:45	л			
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Dibromomethane	BRL		0.37	5.0	ug/L	129176	I	05/09/2010 21:45	JT			
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 21:45	JT			
Ethylbenzene	0.46	J	0.19	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 21:45	Л			
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 21:45	л			
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 21:45	JT			
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 21:45	Л			
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
o-Xylene	3.0	J	0.11	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 21:45	ΤĽ			
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 21:45	JT			
Trichloroethene	2.2	J	0.23	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 21:45	JT			
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 21:45	JT			
Surr: 4-Bromofluorobenzene	82.4		0	60.1-127	%REC	129176	1	05/09/2010 21:45	JT			
Surr: Dibromofluoromethane	108		0	79.6-126	%REC	129176	1	05/09/2010 21:45	JT			
Surr: Toluene-d8	88.3		0	78-116	%REC	129176	1	05/09/2010 21:45	JT			

#### Qualifiers:

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

Value exceeds maximum contaminant level

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

				Client Sample ID: Collection Date: Matrix:		eous	0 3:15:00 PM	
Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
W8260B			6	SW5030	B)			
BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.094	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.51	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.33	5.0	ug/L	129176	1	05/09/2010 22:14	JT
3.0	J	0.29	5.0	ug/L	129176	1	05/09/2010 22:14	JT
9.6		0.30	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:14	JT
BRL		0.32	5.0			1	05/09/2010 22:14	JT
				-				JT
				-		-		JT
				-				JT
				-				JT
								JT
				-				JT
								JT
								JT
				-				JT
				-		-		JT
								JT
								JT
				-				JT
				-				JT
				-				JT
				-				JT
								JT
								JT
								· JT
								JT
								JT
				-				JT
								JT
								JT
								JT
				ug/L		1		JT
		0.25	5.0	ug/L		1		JT
		0.11	5.0	ug/L	129176	1	05/09/2010 22:14	JT
		0.39	10	ug/L	129176	1	05/09/2010 22:14	JT
	BRL BRL 3.0 9.6 BRL BRL	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	BRL       0.37         BRL       0.094         BRL       0.31         BRL       0.33         3.0       J       0.29         9.6       0.30         BRL       0.49         BRL       0.43         BRL       0.43         BRL       0.32         BRL       0.34         BRL       0.31         BRL       0.34         BRL       0.31         BRL       0.36         BRL       0.36         BRL       0.16         BRL       0.16         BRL       0.16         BRL       0.32         BRL       0.31         BRL       0.32         BRL       0.31         BRL       0.32         BRL       0.31         BRL       0.32         BRL       0.27         BRL       0.26         BRL       0.21 </td <td>BRL       0.37       5.0         BRL       0.51       5.0         BRL       0.33       5.0         BRL       0.33       5.0         3.0       J       0.29       5.0         9.6       0.30       5.0         BRL       0.49       5.0         BRL       0.43       5.0         BRL       0.43       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.36       5.0         BRL       0.36       5.0         BRL       0.16       5.0         BRL       0.16       5.0         BRL       0.16       5.0         BRL       0.18       5.0         BRL       0.18       5.0         BRL       0.32       5.0         BRL       0.32       5.0         BRL       0.38       5.0         BRL       0.27       5.0         BRL       0.26       5.0         BRL       0.21       5.0</td> <td>BRL         0.37         5.0         ug/L           BRL         0.094         5.0         ug/L           BRL         0.51         5.0         ug/L           BRL         0.33         5.0         ug/L           3.0         J         0.29         5.0         ug/L           9.6         0.30         5.0         ug/L           BRL         0.49         5.0         ug/L           BRL         0.43         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.36         5.0         ug/L           BRL         0.16         5.0         ug/L           BRL         0.18         5.0         ug/L           BRL         0.18         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL</td> <td>BRL       0.37       5.0       ug/L       129176         BRL       0.51       5.0       ug/L       129176         BRL       0.33       5.0       ug/L       129176         3.0       J       0.29       5.0       ug/L       129176         9.6       0.30       5.0       ug/L       129176         BRL       0.49       5.0       ug/L       129176         BRL       0.43       5.0       ug/L       129176         BRL       0.43       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176         BRL       0.31       5.0       ug/L       129176         BRL       0.34       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176         BRL       0.16       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176</td> <td>BRL       0.37       5.0       ug/L       129176       1         BRL       0.51       5.0       ug/L       129176       1         BRL       0.33       5.0       ug/L       129176       1         3.0       J       0.29       5.0       ug/L       129176       1         9.6       0.30       5.0       ug/L       129176       1         BRL       0.49       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.32       5.0       ug/L       129176       1         BRL       0.34       5.0       ug/L       129176       1         BRL       0.36       5.0       ug/L       129176</td> <td>BRL         0.37         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.51         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.33         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.33         5.0         ug/L         129176         1         0.509/2010 22:14           9.6         0.30         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.49         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.43         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.32         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.34         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.34         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.36         5.0         ug/L         129176         1         0.509/2010 22:14           BRL</td>	BRL       0.37       5.0         BRL       0.51       5.0         BRL       0.33       5.0         BRL       0.33       5.0         3.0       J       0.29       5.0         9.6       0.30       5.0         BRL       0.49       5.0         BRL       0.43       5.0         BRL       0.43       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.34       5.0         BRL       0.36       5.0         BRL       0.36       5.0         BRL       0.16       5.0         BRL       0.16       5.0         BRL       0.16       5.0         BRL       0.18       5.0         BRL       0.18       5.0         BRL       0.32       5.0         BRL       0.32       5.0         BRL       0.38       5.0         BRL       0.27       5.0         BRL       0.26       5.0         BRL       0.21       5.0	BRL         0.37         5.0         ug/L           BRL         0.094         5.0         ug/L           BRL         0.51         5.0         ug/L           BRL         0.33         5.0         ug/L           3.0         J         0.29         5.0         ug/L           9.6         0.30         5.0         ug/L           BRL         0.49         5.0         ug/L           BRL         0.43         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.34         5.0         ug/L           BRL         0.36         5.0         ug/L           BRL         0.16         5.0         ug/L           BRL         0.18         5.0         ug/L           BRL         0.18         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL         0.32         5.0         ug/L           BRL	BRL       0.37       5.0       ug/L       129176         BRL       0.51       5.0       ug/L       129176         BRL       0.33       5.0       ug/L       129176         3.0       J       0.29       5.0       ug/L       129176         9.6       0.30       5.0       ug/L       129176         BRL       0.49       5.0       ug/L       129176         BRL       0.43       5.0       ug/L       129176         BRL       0.43       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176         BRL       0.31       5.0       ug/L       129176         BRL       0.34       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.36       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176         BRL       0.16       5.0       ug/L       129176         BRL       0.32       5.0       ug/L       129176	BRL       0.37       5.0       ug/L       129176       1         BRL       0.51       5.0       ug/L       129176       1         BRL       0.33       5.0       ug/L       129176       1         3.0       J       0.29       5.0       ug/L       129176       1         9.6       0.30       5.0       ug/L       129176       1         BRL       0.49       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.43       5.0       ug/L       129176       1         BRL       0.32       5.0       ug/L       129176       1         BRL       0.34       5.0       ug/L       129176       1         BRL       0.36       5.0       ug/L       129176	BRL         0.37         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.51         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.33         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.33         5.0         ug/L         129176         1         0.509/2010 22:14           9.6         0.30         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.49         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.43         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.32         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.34         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.34         5.0         ug/L         129176         1         0.509/2010 22:14           BRL         0.36         5.0         ug/L         129176         1         0.509/2010 22:14           BRL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

BRL Not detected at MDL

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-014					Sample I tion Date ::	: 4/27	G1037-70-14 4/27/2010 3:15:00 PM Aqueous		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	(SW503)	0 <b>B</b> )			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:14	JT
cis-1,2-Dichloroethene	3,4	J	0.35	5.0	ug/L	129176	1	05/09/2010 22:14	л
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 22:14	л
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	л
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:14	л
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 22:14	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 22:14	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:14	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 22:14	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:14	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:14	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:14	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176		05/09/2010 22:14	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176		05/09/2010 22:14	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 22:14	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Tetrachloroethene	3.5	J	0.51	5.0	ug/L	129176	1	05/09/2010 22:14	Л
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/09/2010 22:14	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:14	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/09/2010 22:14	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/09/2010 22:14	JT
Trichloroethene	15		0.23	5.0	ug/L	129176		05/09/2010 22:14	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 22:14	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/09/2010 22:14	JT
Surr: 4-Bromofluorobenzene	75.5		0	60.1-127	%REC	129176	1	05/09/2010 22:14	JT
Surr: Dibromofluoromethane	112		0	79.6-126	%REC	129176	1	05/09/2010 22:14	JT
Surr: Toluene-d8	88.9		0	78-116	%REC	129176	1	05/09/2010 22:14	JT

Qualifiers:

- BRL Not detected at MDL
- II Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

Value exceeds maximum contaminant level

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

.

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-015					ample I on Date:	: 4/27	37-7( 7/201) eous	0 12:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
olatile Organic Compounds by GC/MS	SW8260B			(1	SW503(	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129176		05/09/2010 22:43	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129176	1	05/09/2010 22:43	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 22:43	Л
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	л
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 22:43	л
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/09/2010 22:43	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/09/2010 22:43	л
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:43	л
2-Hexanone	BRL		0.27	5.0 10	ug/L	129176	1	05/09/2010 22:43	JT
4-Chlorotoluene	BRL		0.01	5.0	ug/L	129176	1	05/09/2010 22:43	JT
4-Isopropyltoluene	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 22:43	JT
	BRL		0.20	3.0 10	ug/L	129176		05/09/2010 22:43	JT
4-Methyl-2-pentanone					ug/L ug/L		1		TL TL
Acetone	BRL BRL		5.0	50		129176	1	05/09/2010 22:43	
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromobenzene			0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176		05/09/2010 22:43	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Chloroethane	BRL		0.39	10	ug/L	129176		05/09/2010 22:43 05/09/2010 22:43	JT

Qualifiers: * Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-015					Sample I tion Date <:	: 4/27	37-7 /201 eous	0-15 0 12:35:00 PM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	(SW503	0B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:43	JT
cis-1,2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/09/2010 22:43	TL
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/09/2010 22:43	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:43	TL
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 22:43	JT
lodomethane	BRL		0.33	10	ug/L	129176	1	05/09/2010 22:43	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/09/2010 22:43	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 22:43	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/09/2010 22:43	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 22:43	Л
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 22:43	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 22:43	л
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/09/2010 22:43	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 22:43	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/09/2010 22:43	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176		05/09/2010 22:43	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176		05/09/2010 22:43	JT
Toluene	BRL		0.26	5.0	ug/L	129176		05/09/2010 22:43	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176		05/09/2010 22:43	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176		05/09/2010 22:43	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176		05/09/2010 22:43	JT
TrichIoroethene	BRL		0.23	5.0	ug/L	129176		05/09/2010 22:43	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176		05/09/2010 22:43	JT
Vinyl chloride	BRL		0.38	2.0	սց/Լ	129176		05/09/2010 22:43	JT
Surr: 4-Bromofluorobenzene	73.5		0	60.1-127	%REC	129176		05/09/2010 22:43	JT
Surr: Dibromofluoromethane	109		0	79.6-126	%REC	129176		05/09/2010 22;43	JT
Surr: Toluene-d8	89.8		0	78-116	%REC	129176		05/09/2010 22:43	JT

#### Qualifiers:

Value exceeds maximum contaminant level
 BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank .

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client: Project Name: Lab ID:	SGS North America, Inc. G1037-70 1005450-016					ample I on Date:		/201	0 10:55:00 AM	
Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
/olatile Organi	ic Compounds by GC/MS	SW8260B			(	SW503(	)B)			
1,1,1,2-Tetrach	hloroethane	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,1-Trichloro		BRL		0.094	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,2,2-Tetrach		BRL		0.51	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1,2-Trichloro		BRL		0.33	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichloroet		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichloroet		BRL		0.30	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,1-Dichlorop		BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,3-Trichloro		BRL		0.43	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,3-Trichloro		BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,4-Trichloro		BRL		0.46	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2,4-Trimethy		BRL		0.34	5.0	ug/L	129176	1	05/09/2010 23:12	JT
	3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dibromoet		BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dichlorobe		BRL		0.36	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dichloroet		BRL		0.16	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,2-Dichlorop		BRL		0.48	5.0	ug/L	129176	1	05/09/2010 23:12	JT
		BRL		0.18	5.0	ug/L	129176	1	05/09/2010 23:12	TL
1,3,5-Trimethy		BRL		0.13	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,3-Dichlorobe		BRL		0.24	5.0	ug/L	129176	1	05/09/2010 23:12	JT.
1,3-Dichlorop	-	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:12	JT
1,4-Dichlorobe						-	129176	1	05/09/2010 23:12	JT
2,2-Dichlorop	ropane	BRL		0.38	5.0	ug/L			05/09/2010 23:12	TL
2-Butanone		BRL		1.7	50	ug/L	129176	1		
2-Chlorotoluer	ne	BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:12	JT
2-Hexanone		BRL		0.61	10	ug/L	129176	1	05/09/2010 23:12	JT
4-Chlorotoluer		BRL		0.27	5.0	ug/L	129176	1	05/09/2010 23:12	JT
4-Isopropyltol		BRL		0.26	5.0	ug/L	129176	1	05/09/2010 23:12	JT
4-Methyl-2-pe	entanone	BRL		0.39	10	ug/L	129176	1	05/09/2010 23:12	JT
Acetone		BRL		5.0	50	ug/L	129176	1	05/09/2010 23:12	JT
Benzene		BRL		0.21	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromobenzene		BRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromochloron	nethane	BRL		0.66	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromodichloro	omethane	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromoform		BRL		0.70	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Bromomethan	e	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Carbon disulfi	de	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Carbon tetrach	nloride	BRL		0.25	5.0	ug/L	129176	1	05/09/2010 23:12	JT
Chlorobenzene	e	BRL		0.11	5.0	ug/L	129176	l	05/09/2010 23:12	JT
Chloroethane		BRL		0.39	10	ug/L	129176	1	05/09/2010 23:12	JT
Chloroform		BRL		0.30	5.0	ug/L	129176	1	05/09/2010 23:12	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client: SGS North America, Inc.				Client	Sample		1027		
Project Name: G1037-70					sample tion Da			70-17 10 11:55:00 AM	
Lab ID: 1005450-017				Matri		•••	queou		
Analyses	Result	Qual	MDL	Reporting Limit	Units	s BatchIl	D D	F Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B				 (SW50.				
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0		•			
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1-Dichloroethane	BRL		0.29		ug/L	129176	1	05/09/2010 23:41	JT
1,1-Dichloroethene	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,2,3-Trichlorobenzene	BRL		0.49	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,2,3-Trichloropropane	BRL		0.43	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,2,4-Trichlorobenzene	BRL		0.32	5,0	ug/L	129176	1	05/09/2010 23:41	JT
1,2,4-Trimethylbenzene	BRL			5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,2-Dibromo-3-chloropropane	BRL		0.34	5.0	ug/L	129176	I	05/09/2010 23:41	JT
1,2-Dibromoethane	BRL		0.31	5.0	ug/L	129176	·1	05/09/2010 23:41	JT
1,2-Dichlorobenzene	BRL		0.29	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,2-Dichloroethane	BRL		0.36	5.0	ug/L	129176		05/09/2010 23:41	JT
1,2-Dichloropropane	BRL		0.16 0.48	5.0	ug/L	129176		05/09/2010 23:41	JT
1,3,5-Trimethylbenzene	2.6	J	0.48	5.0	ug/L	129176		05/09/2010 23:41	JT
1,3-Dichlorobenzene	BRL	5	0.18	5.0	ug/L	129176		05/09/2010 23:41	JT
1,3-Dichloropropane	BRL		0.24	5.0	ug/L	129176	1	05/09/2010 23:41	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/09/2010 23:41	JT
2,2-Dichloropropane	BRL		0.32	5.0	ug/L	129176		05/09/2010 23:41	JT
2-Butanone	BRL			5.0	ug/L	129176		05/09/2010 23:41	JT
2-Chlorotoluene	BRL		1.7	50	ug/L	129176		05/09/2010 23:41	JT
2-Hexanone	BRL		0.27	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
4-Chlorotoluene	BRL		0.61	10	ug/L	129176	1 (	05/09/2010 23:41	JT
4-Isopropyltoluene	BRL		0.27	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
4-Methyl-2-pentanone	BRL		0.26	5.0	ug/L	129176		05/09/2010 23:41	JT
Acetone	BRL		0.39	10	ug/L	129176	1 (	05/09/2010 23:41	JT
Benzene	BRL		5.0	50	ug/L	129176	1 0	05/09/2010 23:41	JT
Bromobenzene	BRL		0.21		ug/L	129176		05/09/2010 23:41	JT
Bromochloromethane			0.28		ug/L	129176	1 0	5/09/2010 23:41	JT
Bromodichloromethane	BRL		0.66		ug/L	129176	1 0	5/09/2010 23:41	JT
Bromoform	BRL		0.22		ug/L	129176	1 0	5/09/2010 23:41	JT
Bromomethane	BRL		0.70		ug/L		1 0	5/09/2010 23:41	JT
Carbon disulfide	BRL		0.49			129176	1 0	5/09/2010 23:41	JT
Carbon tetrachloride	BRL		0.41			129176	1 0	5/09/2010 23:41	JT
Chlorobenzene	BRL		).25			129176	1 0	5/09/2010 23:41	JT
Chloroethane	BRL		).11			129176	1 0:	5/09/2010 23:41	JT
Chloroform	BRL		.39		ıg/L	129176	1 05	5/09/2010 23:41	JT
	BRL	0	.30	5.0 u	ıg∕L	129176	1 05	5/09/2010 23:41	JT

BRL Not detected at MDL

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

Estimated value detected below Reporting Limit I

Greater than Result value >

Less than Result value <

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Page 38 of 59

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-017					t Sample ction Dat ix:	e: 4/2		70-17 0 11:55:00 AM	
Analyses	Result	Qual	MDL	Reportin Limit	g Units	BatchID	DI	Date Analyzed	 Analys
Volatile Organic Compounds by GC/MS	SW8260B				(SW503	(AR)			
Chloromethane	BRL		0.41	10					
cis-1,2-Dichloroethene	BRL		0.41	5.0	ug/L	129176	1	05/09/2010 23:41	JT
cis-1,3-Dichloropropene	BRL		0.33		ug/L	129176	1	05/09/2010 23:41	JT
Dibromochloromethane	BRL		0.74	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Dibromomethane	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Dichlorodifluoromethane	BRL			5.0	ug/L	129176	1	05/09/2010 23:41	JT
Ethylbenzene	BRL		0.41	10	ug/L	129176	1	05/09/2010 23:41	JT
Hexachlorobutadiene	BRL		0.19	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Iodomethane	BRL		0.93	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Isopropyl ether	BRL		0.33	10	ug/L	129176	1	05/09/2010 23:41	JT
Isopropylbenzene			0.78	10	ug/L	129176	1	05/09/2010 23:41	JТ
m,p-Xylene	1.9	J	0.19	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Methyl tert-butyl ether	BRL		0.25	10	ug/L	129176	1	05/09/2010 23:41	JT
Methylene chloride	BRL		0.37	5.0	ug/L	129176	1	05/09/2010 23:41	JT
n-Butylbenzene	BRL		0.36	5.0	ug/L	129176	1	05/09/2010 23:41	JT
n-Propylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/09/2010 23:41	JT
Naphthalene	BRL		0.23	5.0	ug/L	129176	1	05/09/2010 23:41	Л
o-Xylene	BRL		0.28	5.0	ug/L	129176	1	05/09/2010 23:41	JT
sec-Butylbenzene	BRL		0.11	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
Styrene	2.7	J	0.28	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
tert-Butylbenzene	BRL		0.10	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
Tetrachloroethene	BRL		0.24	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
Toluene	BRL		0.51	5.0	ug/L	129176	1 (	)5/09/2010 23:41	Л
	BRL		0.26	5.0	ug/L	129176	1 (	05/09/2010 23:41	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176		5/09/2010 23:41	ΤL
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1 0	5/09/2010 23:41	JT
trans-1,4-Dichloro-2-butene Trichloroethene	BRL		3.1	10	ug/L	129176	1 0	5/09/2010 23:41	JT
	BRL		0.23	5.0	ug/L	129176		5/09/2010 23:41	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176		5/09/2010 23:41	TL
Vinyl chloride	BRL		0.38	2.0	ug/L	129176		5/09/2010 23:41	JT
Surr: 4-Bromofluorobenzene	79.5		0	60.1-127	%REC	129176		5/09/2010 23:41	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176		5/09/2010 23:41	JT
Surr: Toluene-d8	89.1		0	78-116	%REC	129176		5/09/2010 23:41	JT

#### Qualifiers:

* Value exceeds maximum contaminant level

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-018					t Sample ction Dat x:	te: 4/2	1037-7 27/201 Jueous	0 10:50:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Unit:	BatchII	 D DF	Date Analyzed	 Analys
Volatile Organic Compounds by GC/MS	SW8260B		· · · · · · · · · · · · · · · · · · ·		(SW50)				
1,1,1,2-Tetrachloroethane	BRL		0.37						
1,1,1-Trichloroethane	10		0.094	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1,2,2-Tetrachloroethane	BRL		0.094	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1,2-Trichloroethane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloroethane	4,7	J		5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloroethene	48	J	0.29	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,1-Dichloropropene	BRL		0.30	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,3-Trichlorobenzene	BRL		0.49	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,3-Trichloropropane	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,4-Trichlorobenzene			0.32	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2,4-Trimethylbenzene	BRL BRL		0.46	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2-Dibromo-3-chloropropane			0.34	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2-Dibromoethane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2-Dichlorobenzene	BRL		0.29	5.0	ug/L	129176	1	05/10/2010 00:09	JT
1,2-Dichloroethane	BRL		0.36	5.0	ug/L	129176	1 (	05/10/2010 00:09	JT
1,2-Dichloropropane	BRL		0.16	5.0	ug/L	129176	1 (	05/10/2010 00:09	JT
1,3,5-Trimethylbenzene	BRL		0.48	5.0	ug/L	129176	1 (	05/10/2010 00:09	л
1,3-Dichlorobenzene	BRL		0.18	5.0	ug/L	129176	1 (	05/10/2010 00:09	JT
1,3-Dichloropropane	BRL		0.24	5.0	ug/L	129176		05/10/2010 00:09	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176		5/10/2010 00:09	Л
2,2-Dichloropropane	BRL		0.32	5.0	ug/L	129176		5/10/2010 00:09	Л
2-Butanone	BRL		0.38	5.0	ug/L	129176		5/10/2010 00:09	JT
2-Chlorotoluene	BRL		1.7	50	ug/L	129176		5/10/2010 00:09	JT
2-Hexanone	BRL		0.27	5.0	ug/L	129176		5/10/2010 00:09	Л
4-Chlorotoluene	BRL		0.61	10	ug/L	129176		5/10/2010 00:09	JT
	BRL		0.27	5.0	ug/L	129176		5/10/2010 00:09	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176		5/10/2010 00:09	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176		5/10/2010 00:09	JT
Acetone	BRL		5.0	50	ug/L	129176		5/10/2010 00:09	JT
Benzene	BRL	1	0.21	5.0	ug/L	129176		5/10/2010 00:09	JT
Bromobenzene	BRL		0.28	5.0	ug/L			5/10/2010 00:09	JT
Bromochloromethane	BRL	(	0.66	5.0	ug/L			5/10/2010 00:09	JT
Bromodichloromethane	BRL	(	0.22	5.0	ug/L			/10/2010 00:09	
Bromoform	BRL	(	0.70	5.0	ug/L			/10/2010 00:09	JT
Bromomethane	BRL	(	).49					/10/2010 00:09	JT IT
Carbon disulfide	BRL	(	).41					/10/2010 00:09	JT
Carbon tetrachloride	BRL	C	).25		-			/10/2010 00:09	JT
Chlorobenzene	BRL		).11					/10/2010 00:09	JT
Chloroethane	BRL		.39						JT
Chloroform	BRL		.30			129176 1 129176 1		/10/2010 00:09 /10/2010 00:09	TL TL

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-018					nt Sample ection Dat 'ix:	e: 4/		70-18 10 10:50:00 AM Is	
Analyses	Result	Qual	MDL	Reportin Limit	g Units	BatchI	D D	F Date Analyzed	 Analys
/olatile Organic Compounds by GC/MS	SW8260B				(SW503				
Chloromethane	BRL		0.41						
cis-1,2-Dichloroethene	3.4	J	0.41	10	ug/L	129176	1	05/10/2010 00:09	JT
cis-1,3-Dichloropropene	BRL	J	0.35	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dibromochloromethane	BRL		0.74	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dibromomethane	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Dichlorodifluoromethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Ethylbenzene	BRL		0.41	10	ug/L	129176	1	05/10/2010 00:09	JT
Hexachlorobutadiene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Iodomethane	BRL		0.93	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Isopropyl ether	BRL		0.33	10	ug/L	129176	1	05/10/2010 00:09	JT
Isopropylbenzene	BRL		0.78	10	ug/L	129176	1	05/10/2010 00:09	Л
m,p-Xylene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Methyl tert-butyl ether	BRL		0.25	10	ug/L	129176	1	05/10/2010 00:09	JT
Methylene chloride	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:09	JT
n-Butylbenzene	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 00:09	JT
n-Propylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Naphthalene	BRL		0.23	5.0	ug/L	129176	1	05/10/2010 00:09	JT
o-Xylene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:09	JT
sec-Butylbenzene	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 00:09	ΤL
Styrene	BRL BRL		0.28	5.0	ug/L	129176	I	05/10/2010 00:09	Л
tert-Butylbenzene	BRL		0.10	5.0	ug/L	129176	1	05/10/2010 00:09	Л
Tetrachloroethene	9.5		0.24	5.0	ug/L	129176	1	05/10/2010 00:09	JT
Toluene			0.51	5.0	ug/L	129176	1	05/10/2010 00:09	JT
trans-1,2-Dichloroethene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 00:09	JT
trans-1,3-Dichloropropene	BRL		0.43	5.0	ug/L	129176	1 (	05/10/2010 00:09	JT
rans-1,4-Dichloro-2-butene	BRL		0.58	5.0	ug/L	129176	1 (	05/10/2010 00:09	JT
Frichloroethene	BRL		3.1	10	ug/L	129176	1 (	05/10/2010 00:09	JT
richlorofluoromethane	150 BBI		0.23	5.0	ug/L	129176	1 (	)5/10/2010 00:09	JT
Vinyl chloride	BRL		0.31	5.0	ug/L	129176	1 (	)5/10/2010 00:09	JT
Surr: 4-Bromofluorobenzene	BRL	(	0.38	2.0	ug/L	129176	1 0	05/10/2010 00:09	JT
Surr: Dibromofluoromethane	76.3		0			129176	1 0	5/10/2010 00:09	JT
Sur: Toluene-d8	113		0	79.6-126	%REC	129176		5/10/2010 00:09	JT
	92.3		0	78-116	%REC	129176	1 0	5/10/2010 00:09	JT

#### Qualifiers:

Value exceeds maximum contaminant level
BRL Not detected at MDL

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:SGS North America, Inc.Project Name:G1037-70Lab ID:1005450-019					Sample I ion Date			0 9:55:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS S	W8260B			(	SW503(	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,1,1-Trichloroethane	4.9	J	0.094	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129176	1	05/10/2010 00:37	л
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,1-Dichloroethane	5.7		0.29	5,0	ug/L	129176	1	05/10/2010 00:37	JT
1,1-Dichloroethene	22		0.30	5.0	ug/L	129176	1	05/10/2010 00:37	Л
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2,3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:37	
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129176			JT IT
1,2-Dichlorobenzene	BRL		0.29	5.0			1	05/10/2010 00:37	JT
1,2-Dichloroethane	BRL		0.30		ug/L	129176	1	05/10/2010 00:37	JT
	BRL			5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,3,5-Trimethylbenzene			0.18	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:37	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129176	1	05/10/2010 00:37	JT
2,2-Dichloropropane	BRL		0.38	5.0	ug/L	129176	1	05/10/2010 00:37	JT
2-Butanone	BRL		1.7	50	ug/L	129176	1	05/10/2010 00:37	JT
2-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:37	JT
2-Hexanone	BRL		0.61	10	ug/L	129176	1	05/10/2010 00:37	JT
4-Chlorotoluene	BRL		0.27	5.0	ug/L	129176	1	05/10/2010 00:37	JT
4-Isopropyltoluene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 00:37	JT
4-Methyl-2-pentanone	BRL		0.39	10	ug/L	129176	1	05/10/2010 00:37	JT
Acetone	BRL		5.0	50	ug/L	129176	1	05/10/2010 00:37	JT
Benzene	BRL		0.21	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromochloromethane	BRL		0.66	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromodichloromethane	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromoform	BRL		0.70	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Bromomethane	BRL		0.49	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Carbon disulfide	BRL		0.41	5.0	ug/L	129176	I	05/10/2010 00:37	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Chlorobenzene	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Chloroethane	BRL		0.39	10	ug/L	129176	1	05/10/2010 00:37	JT
Chloroform	BRL		0.30	5.0	ug/L	129176	1	05/10/2010 00:37	JT

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-019				Client S Collectie Matrix:	on Date:			0-19 0 9:55:00 AM	
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(5	SW5030	)B)			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 00:37	Л
cis-1,2-Dichloroethene	7.4		0.35	5.0	ug/L	129176	1	05/10/2010 00:37	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 00:37	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Iodomethane	BRL		0.33	10	ug/L	129176	1	05/10/2010 00:37	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/10/2010 00:37	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 00:37	Τľ
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/10/2010 00:37	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 00:37	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 00:37	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:37	JT
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 00:37	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/10/2010 00:37	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/10/2010 00:37	ΤL
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 00:37	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 00:37	JΤ
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/10/2010 00:37	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/10/2010 00:37	JT
Trichloroethene	42		0.23	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 00:37	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/10/2010 00:37	JT
Surr: 4-Bromofluorobenzene	77.7		0	60.1-127	%REC	129176	1	05/10/2010 00:37	JT
Surr: Dibromofluoromethane	111		0	79.6-126	%REC	129176	1	05/10/2010 00:37	JT
Surr: Toluene-d8	92.9		0	78-116	%REC	129176	1	05/10/2010 00:37	JT

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-020				ample I on Date:		/2010	)-20 ) 10:00:00 AM	
Analyses	Result Qu	al MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B		(	SW503	)B)			
1,1,1,2-Tetrachloroethane	BRL	0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,1,1-Trichloroethane	BRL	0.094	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,1,2,2-Tetrachloroethane	BRL	0.51	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,1,2-Trichloroethane	BRL	0.33	5.0	ug/L	129176	1	05/10/2010 01:06	Л
1,1-Dichloroethane	BRL	0.29	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,1-Dichloroethene	BRL	0.30	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,1-Dichloropropene	BRL	0.49	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2,3-Trichlorobenzene	BRL	0.43	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2,3-Trichloropropane	BRL	0,32	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2,4-Trichlorobenzene	BRL	0.46	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2,4-Trimethylbenzene	BRL	0.34	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2-Dibromo-3-chloropropane	BRL	0.31	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2-Dibromoethane	BRL	0.29	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2-Dichlorobenzene	BRL	0.36	5.0	ug/L	129176	1	05/10/2010 01:06	JT
	BRL	0.16	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2-Dichloroethane	BRL	0.48	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,2-Dichloropropane	BRL	0.18	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,3,5-Trimethylbenzene	BRL	0.24	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,3-Dichlorobenzene	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,3-Dichloropropane	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT
1,4-Dichlorobenzene	BRL	0.32	5.0	ug/L	129176	1	05/10/2010 01:06	JT
2,2-Dichloropropane	BRL	1.7	50	ug/L	129176	1	05/10/2010 01:06	ΤL
2-Butanone	BRL	0.27	5.0	ug/L	129176	1	05/10/2010 01:06	JT
2-Chlorotoluene	BRL	0.27	10	ug/L	129176	1	05/10/2010 01:06	TL
2-Hexanone		0.01	5.0	ug/L	129176	1	05/10/2010 01:06	JT
4-Chlorotoluene	BRL		5.0	ug/L	129176	1	05/10/2010 01:06	JT
4-Isopropyltoluene	BRL	0.26	3.0 10	ug/L	129176	1	05/10/2010 01:06	TL
4-Methyl-2-pentanone	BRL	0.39		ug/L	129176	1	05/10/2010 01:06	TL
Acetone	BRL	5.0	50	ug/L ug/L	129176	1	05/10/2010 01:06	л
Benzene	BRL	0.21	5.0		129176		05/10/2010 01:00	JT
Bromobenzene	BRL	0.28	5.0	ug/L	129176	1 1	05/10/2010 01:06	
Bromochloromethane	BRL	0.66	5.0	ug/L			05/10/2010 01:06	
Bromodichloromethane	BRL	0.22	5.0	ug/L	129176	1	05/10/2010 01:06	
Bromoform	BRL	0.70	5.0	ug/L	129176	1	05/10/2010 01:00	
Bromomethane	BRL	0.49	5.0	ug/L	129176	1		
Carbon disulfide	BRL	0.41	5.0	ug/L	129176	1	05/10/2010 01:06	
Carbon tetrachloride	BRL	0.25	5.0	ug/L	129176	1	05/10/2010 01:06	
Chlorobenzene	BRL	0.11	5.0	ug/L	129176	1	05/10/2010 01:06	
Chloroethane	BRL	0.39	10	ug/L	129176	1	05/10/2010 01:06	
Chloroform	BRL	0.30	5.0	ug/L	129176	1	05/10/2010 01:06	J

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Analytical Environmental Services, In         Client:       SGS North America, Inc.         Project Name:       G1037-70         Lab ID:       1005450-020			•		Sample II ion Date:		/2010	)-20 ) 10:00:00 AM	
Analyses	Result	Qual	MDL	Reporting	Units			Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B		-	()	SW5030	<b>B</b> )			
Chloromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 01:06	JT
cis-1.2-Dichloroethene	BRL		0.35	5.0	ug/L	129176	1	05/10/2010 01:06	JT
cis-1,3-Dichloropropene	BRL		0.74	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dibromochloromethane	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dibromomethane	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Dichlorodifluoromethane	BRL		0.41	10	ug/L	129176	1	05/10/2010 01:06	JT
Ethylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Hexachlorobutadiene	BRL		0.93	5.0	ug/L	129176	1	05/10/2010 01:06	JT
lodomethane	BRL		0.33	10	ug/L	129176	1	05/10/2010 01:06	JT
Isopropyl ether	BRL		0.78	10	ug/L	129176	1	05/10/2010 01:06	JT
Isopropylbenzene	BRL		0.19	5.0	ug/L	129176	1	05/10/2010 01:06	JT
m,p-Xylene	BRL		0.25	10	ug/L	129176	1	05/10/2010 01:06	JT
Methyl tert-butyl ether	BRL		0.37	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Methylene chloride	BRL		0.36	5.0	ug/L	129176	1	05/10/2010 01:06	JT
n-Butylbenzene	BRL		0.22	5.0	ug/L	129176	1	05/10/2010 01:06	JT
n-Propylbenzene	BRL		0.23	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Naphthalene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	ΤL
o-Xylene	BRL		0.11	5.0	ug/L	129176	1	05/10/2010 01:06	JT
sec-Butylbenzene	BRL		0.28	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Styrene	BRL		0.10	5.0	ug/L	129176	1	05/10/2010 01:06	JT
tert-Butylbenzene	BRL		0.24	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Tetrachloroethene	BRL		0.51	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Toluene	BRL		0.26	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans-1,2-Dichloroethene	BRL		0.43	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans-1,3-Dichloropropene	BRL		0.58	5.0	ug/L	129176	1	05/10/2010 01:06	JT
trans-1,4-Dichloro-2-butene	BRL		3.1	10	ug/L	129176	1	05/10/2010 01:06	JT
Trichloroethene	2.0	J	0.23	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Trichlorofluoromethane	BRL		0.31	5.0	ug/L	129176	1	05/10/2010 01:06	JT
Vinyl chloride	BRL		0.38	2.0	ug/L	129176	1	05/10/2010 01.06	JT
Surr: 4-Bromofluorobenzene	73.8		0	60.1-127	%REC	129176	1	05/10/2010 01:06	JT
Surr: Dibromofluoromethane	110		0	79.6-126	%REC	129176	1	05/10/2010 01:06	JT
Surr: Toluene-d8	89.3		0	78-116	%REC	129176	1	05/10/2010 01:06	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

- E Estimated value above quantitation range
- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

Client:         SGS North America, Inc.           Project Name:         G1037-70           Lab ID:         1005450-021					ample II on Date:		/2010		
Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	SW8260B			(	SW5030	)B)			
1,1,1,2-Tetrachloroethane	BRL		0.37	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,1,1-Trichloroethane	BRL		0.094	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,1,2,2-Tetrachloroethane	BRL		0.51	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,1,2-Trichloroethane	BRL		0.33	5.0	ug/L	129148	1	05/10/2010 17:35	ΤL
1,1-Dichloroethane	BRL		0.29	5.0	ug/L	129148	1	05/10/2010 17:35	ΤL
1,1-Dichloroethene	BRL		0.30	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,1-Dichloropropene	BRL		0.49	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1.2.3-Trichlorobenzene	BRL		0.43	5.0	ug/L	129148	1	05/10/2010 17:35	ΤL
1,2,3-Trichloropropane	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	Τι
1,2,4-Trichlorobenzene	BRL		0.46	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2,4-Trimethylbenzene	BRL		0.34	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2-Dibromo-3-chloropropane	BRL		0.31	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2-Dibromoethane	BRL		0.29	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2-Dichlorobenzene	BRL		0.36	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2-Dichloroethane	BRL		0.16	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,2-Dichloropropane	BRL		0.48	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,3,5-Trimethylbenzene	BRL		0.18	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,3-Dichlorobenzene	BRL		0.24	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,3-Dichloropropane	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	JT
1,4-Dichlorobenzene	BRL		0.32	5.0	ug/L	129148	1	05/10/2010 17:35	JT
-	BRL		0.38	5.0	ug/L	129148	1	05/10/2010 17:35	JT
2,2-Dichloropropane	BRL		1.7	50	ug/L	129148	1	05/10/2010 17:35	JT
2-Butanone	BRL		0.27	5.0	ug/L	129148	1	05/10/2010 17:35	JT
2-Chlorotoluene	BRL		0.61	10	ug/L	129148	1	05/10/2010 17:35	JT
2-Hexanone	BRL		0.27	5.0	ug/L	129148	1	05/10/2010 17:35	JT
4-Chlorotoluene	BRL		0.26	5.0	ug/L	129148	1	05/10/2010 17:35	JT
4-Isopropyltoluene	BRL		0.39	10	ug/L	129148	1	05/10/2010 17:35	JT
4-Methyl-2-pentanone	21	J	5.0	50	ug/L	129148	1	05/10/2010 17:35	JT
Acetone	BRL	,	0.21	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Benzene	BRL		0.21	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromobenzene	BRL		0.28	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromochloromethane	BRL		0.00	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromodichloromethane			0.22	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromoform	BRL		0.70	5.0	ug/L	129148	1	05/10/2010 17:35	JT
Bromomethane	BRL			5.0	ug/L ug/L	129148	1	05/10/2010 17:35	JT
Carbon disulfide	BRL		0.41		ug/L ug/L	129148	1	05/10/2010 17:35	JT
Carbon tetrachloride	BRL		0.25	5.0	ug/L ug/L	129148	1	05/10/2010 17:35	JT
Chlorobenzene	BRL		0.11	5.0		129148	1	05/10/2010 17:35	
Chloroethane	BRL		0.39	10	ug/L	127140	1	05/10/2010 17:35	JT

- BRL Not detected at MDL
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated value above quantitation range

- S Spike Recovery outside limits due to matrix
- J Estimated value detected below Reporting Limit
- > Greater than Result value
- < Less than Result value

# Analytical Environmental Services, Inc.

#### Sample/Cooler Receipt Checklist

Client SGS		1005450 Work Order Number
	, ,	
Checklist completed by5 SignatureDate	16/10	
Carrier name: FedEx UPS Courier Client US	S Mail Othe	r
Shipping container/cooler in good condition?	Yes 🧹	No Not Present
Custody seals intact on shipping container/cooler?	Yes	No Not Present
Custody seals intact on sample bottles?	Yes	No Not Present
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes 🖌	No
Cooler #1 3.72 Cooler #2 Cooler #3	Cooler #4	Cooler#5 Cooler #6
Chain of custody present?	Yes _	
Chain of custody signed when relinquished and received?	Yes _	No
Chain of custody agrees with sample labels?	Yes _	No
Samples in proper container/bottle?	Yes _	No
Sample containers intact?	Yes _	No _
Sufficient sample volume for indicated test?	Yes _	No
All samples received within holding time?	Yes _	No
Was TAT marked on the COC?	Yes	No
Proceed with Standard TAT as per project history?	Yes _	No Not Applicable
Water - VOA vials have zero headspace? No VOA vials s	ubmitted	Yes No
Water - pH acceptable upon receipt?	Yes _	No Not Applicable
Adjusted?	Che	ecked by
Sample Condition: Good Other(Explain) 4V	no prok	un ving
(For diffusive samples or AlHA lead) Is a known blank inclu	ded? Yes	s No

#### See Case Narrative for resolution of the Non-Conformance.

* Samples do not have to comply with the given range for certain parameters.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklist

.

11-May-10	
Date:	

Analytical Environmental Services, Inc

Client: Project: Lab Order:	SGS North America, Inc. G1037-70 1005450				Dates Report	eport	
Lab Sample ID	Client Sample ID	<b>Collection Date</b>	Matríx	Test Name	TCLP Date	Prep Date	Analysis Date
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	TCL VOLATILE ORGANICS		05/07/2010	05/07/2010
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-001A	G1037-70-1	4/26/2010 1:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-002A	G1037-70-2	4/26/2010 1:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-002A	G1037-70-2	4/26/2010 1:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-003A	G1037-70-3	4/26/2010 2:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-003A	G1037-70-3	4/26/2010 2:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-004A	G1037-70-4	4/26/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-004A	G1037-70-4	4/26/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-005A	G1037-70-5	4/26/2010 2:45:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-005A	G1037-70-5	4/26/2010 2:45:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-006A	G1037-70-6	4/26/2010 4:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-006A	G1037-70-6	4/26/2010 4:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-007A	G1037-70-7	4/26/2010 5:10:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-007A	G1037-70-7	4/26/2010 5:10:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-008A	G1037-70-8	4/27/2010 12:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/07/2010	05/07/2010
1005450-008A	G1037-70-8	4/27/2010 12:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-009A	G1037-70-9	4/27/2010 11:20:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-010A	G1037-70-10	4/27/2010 12:30:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-011A	G1037-70-11	4/27/2010 4:05:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-012A	G1037-70-12	4/27/2010 3:50:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-013A	G1037-70-13	4/27/2010 2:58:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-014A	G1037-70-14	4/27/2010 3:15:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-015A	G1037-70-15	4/27/2010 12:35:00PM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-016A	G1037-70-16	4/27/2010 10:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-017A	G1037-70-17	4/27/2010 11:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/09/2010
1005450-018A	G1037-70-18	4/27/2010 10:50:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010
1005450-019A	G1037-70-19	4/27/2010 9:55:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010
1005450-020A	G1037-70-20	4/27/2010 10:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/09/2010	05/10/2010

# SGS North America, Inc.

Client: Project: Lab Order:	SGS North America, Inc. G1037-70 1005450				Dates Report	eport	
Lab Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
1005450-021A	G1037-70-21	4/27/2010 12:00:00AM	Aqueous	Volatile Organic Compounds by GC/MS		05/08/2010	05/10/2010

Analytical Environmental Services, Inc

Date: 11-May-10

59-70       Units:       Units:         750       TestCode:       Volatile Organic Compounds by GC/MS SW92401B       BatchII         Result       RPT Limit       SPK value       SPK Ref Val       %REC       I         BRL       5.0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< th=""><th>BatchID:           Prep Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Prep Date:         05/08/201           Analysis Date:         05/08/201           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0</th><th>129148         0       Run No:       171295         0       Seq No:       3557472         %RPD       RPD Limit       Qual         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0</th></td<>	BatchID:           Prep Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Analysis Date:         05/08/201           Prep Date:         05/08/201           Analysis Date:         05/08/201           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0	129148         0       Run No:       171295         0       Seq No:       3557472         %RPD       RPD Limit       Qual         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0
D:MB-129148Client ID:Units:ype:MBLKTestCode:Volatite Organic Compounds by GCMSSW3260BBatchlype:ResultRPT LimitSPK Ref Val $^{\circ}$ Ref CtrachlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000hlorocthaneBRL5.0000orotheneBRL5.0000orotheneBRL5.0000orotheneBRL5.0000norothaneBRL5.0000norothaneBRL5.0000norothaneBRL5.0000norothaneBRL5.00000norothaneBRL5.00000norothaneBRL5.00000norothaneBRL5.00000norothaneBRL5.00000norothaneBRL5.00 </th <th>Prep Date:         05/08/20           Analysis Date:         05/08/20           High Limit         RPD Ref Val           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0</th> <th>Run No: 171295 Seq No: 355747 RPD Limit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	Prep Date:         05/08/20           Analysis Date:         05/08/20           High Limit         RPD Ref Val           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0	Run No: 171295 Seq No: 355747 RPD Limit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Result         RPT Limit         SPK value         SPK Ref Val         %REC           BRL         5.0         0         0         0         0           BRL         5.0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	High Limit RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RPD Limit 0 0 0 0 0 0 0 0 0 0 0 0
BRL         5.0         0         0         0         0           BRL         5.0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0 <td< th=""><th></th><th></th></td<>		
BRL         5.0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		
BRL         5.0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		
nc         BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td>		
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td>		
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td>		
BRL       5.0       0       0       0       0         BRL       5.0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <		
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td>		
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td>		
BRL         5.0         0         0         0           BRL         5.0         0         0         0         0           BRL         5.0         0         0         0         0         0           BRL         5.0         0         0         0         0         0         0         0		
BRL       5.0       0       0       0         BRL       5.0       0       0       0       0	0 0 0 0 0	
BRL       5.0       0       0         BRL       5.0       0       0       0         BRL       5.0       0       0       0       0         BRL       5.0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0         BRL       5.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0000	
BRL       5.0       0       0       0         BRL       5.0       0       0       0       0       0         BRL       5.0       0       0       0       0       0         BRL       5.0       0       0       0       0       0	000	
BRL         5.0         0         0         0           BRL         5.0         0         0         0         0	0 0	
BRL         5.0         0         0         0           BRL         5.0         0         0         0         0	0	
BRL         5.0         0         0         0           ine         BRL         5.0         0         0         0           BRL         5.0         0         0         0         0           BRL         5.0         0         0         0         0           BRL         5.0         0         0         0         0		
ine BRL 5.0 0 0 0 BRL 5.0 0 0 BRL 5.0 0 0 0 BRL 5.0 0 0 0 0	0 0 0	
BRL 5.0 0 0 0 BRL 5.0 0 0 0	0 0 0	0
BRL 5.0 0 0 0	0 0 0	0
	0 0 0	
1,4-Dichlorobenzene BRL 5.0 0 0 0 0	0 0 0	
2,2-Dichloropropane BRL 5.0 0 0 0 0	0 0 0	
2-Butanone BRL 50 0 0 0 0	0 0 0	0
2-Chlorotoluene BRL 5.0 0 0 0	0 0 0	0
2-Hexanone BRL 10 0 0 0 0	0 0 0	0 (
4-Chlorotoluene BRL 5.0 0 0 0	0 0 0	
4-Isopropyltoluene BRL 5.0 0 0 0	0 0 0	
4-Methyl-2-pentanone BRL 10 0 0 0	0 0	0
Oualifiers: > Greater than Result value < Less than Result value < Less than Result value	B Analyte detected in the associated method blank	thod blank
BRI.	H Holding times for preparation or analysis exceeded	
		VSIS exceeded

Page 51 of 59

Project Name: 01037-70 Workorder: 1005450								BatchID:	: 129148	
Sample ID: MB-129148 SampleType: MBLK	Client ID: TestCode:	Client ID: TestCode: Volatile Organic Compounds by GC/MS SW8260B	unds by GC/MS	SW8260B	Units: Batchl	Units: ug/L BatchID: 129148	Prep	Prep Date:         05/08/2010           Analysis Date:         05/08/2010		Run No: 171295 Seq No: 3557472
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Acetone	BRL	50	0	0	0	0	0	0	0	0
Benzene	BRL	5.0	0	0	0	0	0	0	0	0
Bromohenzene	BRL	5.0	0	0	0	0	0	0	0	0
Bromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Bromoform	BRL	5.0	0	0	0	0	0	0	0	0
Bromomethane	BRL	5.0	0	0	0	0	0	0	0	0
Carbon disulfide	BRL	5.0	0	0	0	0	0	0	0	0
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
Chloroethane	BRL	10	0	0	0	0	0	0	0	0
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0
Chloromethane	BRL	10	0	0	0	0	0	0	0	0
cis-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
cis-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Dibromomethane	BRL	5.0	0	0	0	0	0	0	0	0
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	
Hexachlorobutadiene	4.020	5.0	0	0	0	0	0	0	0	0
lodomethane	BRL	10	0	0	0	0	0	0	0	0
lsopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
m,p-Xylene	BRL	10	0	0	0	0	0	0	0	0
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	0
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0
n-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
n-Propylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
Oublificare > Greater than Result value	value		< Les	Less than Result value			B	Analyte detected in the associated method blank	ociated method bl	ank
RRI				Estimated (value above quantitation range)	tation range)		Н	Holding times for preparation or analysis exceeded	on or analysis ex	ceeded
4	Estimated value detected below Renorting Limit	e Limit		Analyte not NELAC certified			Я	RPD outside limits due to matrix	matrix	

Date: 11-May-10

Analytical Environmental Services, Inc

Page 52 of 59

Name inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- inter- i	Climati SCS North America Inc	merica Inc			1			VIVN			MARV	REPORT
L13145         Client ID: TeadCod:         Drints         WpL         Prep Dut: India         050853010         Ran Nor. Bar Marysis Dur.         650853010         Ran Nor. Sad No.           IL11         TeadCod:         Variato Organic Componed by CCD/S SYR200         SWE         LONIX         Marysis Dur.         650853010         Ran Nor.           IL11         SWL         5/0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	t Name: rder:	AIIICI 144, 1114.						ANAL	Bai	tchID: 125	148	
Result         RTI-Init.         SYK-value         SYK KerVal         SMEC         Low Limit.         RPD Ref Val         SMCD and Val         SMCD an	Sample ID: MB-129148 SampleType: MBLK	Client ID: TestCode:	Volatile Organic Compou	inds by GC/MS S	W8260B	Uni Bate	ts: ug/L chID: 129148	Prep Anai		05/08/2010 05/08/2010	Run No Seq No:	: 171295 3557472
BR1         5,0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th>Analyte</th> <th>Result</th> <th>RPT Limit</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th>Low Limit</th> <th>High Limit</th> <th>RPD Ref</th> <th></th> <th></th> <th>O Limit Qual</th>	Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref			O Limit Qual
BRL         50         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Nanhthalene	BRL	5.0	0	0	0	0	0	0	0		0
BRL         50         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	o-Xvlene	BRL	5.0	0	0	0	0	0	0	0	_	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	sec-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0		0
BRL         50         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Styrene</td> <td>BRL</td> <td>5.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>_</td> <td>0</td>	Styrene	BRL	5.0	0	0	0	0	0	0	9	_	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-Butylbenzene	BRL	5.0	0	0	0	0	0	0	5	_	0
BRL         50         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Tetrachloroethene</td> <td>BRL</td> <td>5.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> <td>_</td> <td>0</td>	Tetrachloroethene	BRL	5.0	0	0	0	0	0	0	5	_	0
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Toluenc</td> <td>BRL</td> <td>5.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>J</td> <td>_</td> <td>0</td>	Toluenc	BRL	5.0	0	0	0	0	0	0	J	_	0
e         BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>trans-1,2-Dichloroethene</td> <td>BRL</td> <td>5.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>_</td> <td>0</td>	trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	_	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	_	0
BRL         5.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>trans-1,4-Dichloro-2-butene</td> <td>BRL</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>J</td> <td>_</td> <td>0</td>	trans-1,4-Dichloro-2-butene	BRL	10	0	0	0	0	0	0	J	_	0
BRL         5,0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Trichloroethene</td> <td>BRL</td> <td>5.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>J</td> <td>_</td> <td>0</td>	Trichloroethene	BRL	5.0	0	0	0	0	0	0	J	_	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	_ _	_	0
fluotobenzene         46.64         0         50         0         93.3         60.1         127         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	Vinyl chloride	BRL	2.0	0	0	0	0	0	0	<u> </u>	_	0
filtoromethane55.60050011179.61260000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <td>Surr: 4-Bromofluorobenzene</td> <td>46.64</td> <td>0</td> <td>50</td> <td>0</td> <td>93.3</td> <td>60.1</td> <td>127</td> <td>0</td> <td><u> </u></td> <td>_</td> <td>0</td>	Surr: 4-Bromofluorobenzene	46.64	0	50	0	93.3	60.1	127	0	<u> </u>	_	0
d845.61050091.27811.60000000AB-129148Client ID:TestCode:Volatile Organic Compounds by GCMS SW3260BUnits:ug/LPrep Date:65/10/2010Seq No:AB-129148TestCode:Volatile Organic Compounds by GCMS SW3260BUnits:ug/LPrep Date:65/10/2010Seq No:AB-129148TestCode:RPT LimitSPK valueSPK valueSPK kef Val%RECLow LimitHigh LimitRPD Ref Yal%RPDRPDMuorobenzene41.490000000000Muorobenzene41.49050012179.61270000Muorobenzene60.31050012179.61260000Muorobenzene51.020500102781160000Muorobenzene60.310500102781160000Grant Plant51.0205001027811600000Muorobenzene60.3105001027811600000Jack of the state o	Surr: Dibromofluoromethane	55.60	0	50	0	111	9.62	126	0	)	_	0
IDENTICATION       IDENTICATION <t< td=""><td>Surr: Toluene-d8</td><td>45.61</td><td>0</td><td>50</td><td>0</td><td>91.2</td><td>78</td><td>116</td><td>0</td><td><u> </u></td><td>-</td><td>0</td></t<>	Surr: Toluene-d8	45.61	0	50	0	91.2	78	116	0	<u> </u>	-	0
MBLK       TestCode:       Value Corpanic Compounds by GC/MS SW8260B       BatchID:       129148       Analysis Date:       65/10/2010       Seq No:         Result       RPT Limit       RPT Limit       SPK kef Val       %REC       Low Limit       High Limit       RPD Ref Val       %RPD       RPD         Inuorobenzene       44.49       0       50       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Sample ID: MB-129148	Client ID:				Uni		Prei	p Date:	05/08/2010	Run No	
ResultRPT LimitSPK red ValueSPK Ref Val $\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensurema$	SampleType: MBLK	TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Bat	chID: 129148	Ana	alysis Date:	05/10/2010	Seq No	: 3560411
BRL         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit		RPD Ref			RPD Limit Qual
Inducrobenzene         44.49         0         50         0         89         60.1         127         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>Isopropyl ether</td> <td>BRL</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>)</td> <td>0</td> <td>0</td>	Isopropyl ether	BRL	10	0	0	0	0	0	0	)	0	0
Dipromofluoromethane     60.31     0     50     0     121     79.6     126     0     0       olucne-d8     51.02     0     50     0     102     78     116     0     0       >     Teater than Result value     1     1     116     0     0     0       >     Teater than Result value      Less than Result value     1     8     Analyte detected in the associated method blank       PRL     Below reporting limit     N     Analyte not NELAC certified     N     N     Network outside limits due to matrix       Rn1 in Room in Limit     Spike Recovery outside limits due to matrix     Spike Recovery outside limits due to matrix     N     N	Surr: 4-Bromofluorobenzene	44.49	0	50	0	89	60.1	127	0	)	0	0
oluene-d8     51.02     0     50     0     102     78     116     0     0     0       >     Greater than Result value      Less than Result value      Analyte detected in the associated method blank       >     Greater than Result value      Less than Result value     B     Analyte detected in the associated method blank       BRL     Below reporting limit     N     Analyte not NELAC certified     H     Holding times for preparation or analysis exceededd       Rn1 in Rnortine Limit     N     Analyte not NELAC certified     R     RPD outside limits due to matrix	Surr: Dibromofluoromethane	60.31	0	50	0	121	79.6	126	0	)	0	0
>       Greater than Result value        Less than Result value       B         BRL       Below reporting limit       E       E stimated (value above quantitation range)       H         J       Estimated value detected below Reporting Limit       N       Analyte not NELAC certified       R         Real in Reporting Limit       S       Spike Recovery outside limits due to matrix	Surr: Toluene-d8	51.02	0	50	0	102	78	116	0	-	0	0
>     Greater than Result value     <												
Below reporting limit     E     E stimated (value above quantitation range)     H       Estimated value detected below Reporting Limit     N     Analyte not NELAC certified     R       im Recovery outside limits     S     Spike Recovery outside limits due to matrix	^	value		< Les	than Rcsult value				Analyte detected	in the associated me	thod blank	
detected below Reporting Limit N Analyte not NELAC certified R S Spike Recovery outside limits due to matrix		uit.			ated (value above quantita	ition range)			Holding times for	r preparation or anal	ysis exceeded	
s		stected below Reporting	g Limit		Ate not NELAC certified			R	RPD outside lim.	its due to matrix		
	Rpt Lim Reporting Limit				Recovery outside limits d	ue to matrix						

Page 52 of 60

Page 53 of 59

Analytical Environmental Services, Inc	ervices, Inc								Date:	11-May-10	-10
1	nerica, Inc.						ANALY	TICAL	QC SUM	MARY	ANALYTICAL QC SUMMARY REPORT
Project Name: G1037-70 Workorder: 1005450								Ba	BatchID: 129148	148	
Sample ID: LCS-129148 Sample Type: LCS	Client ID: TestCode: 1	Client ID: TestCode: Volatile Organic Compounds by GC/MS_SW8260B	inds by GC/MS S	\$\V8260B	Units: Batchl	Units: ug/L BatchID: 129148	Prep	Prep Date: Analysis Date:	05/08/2010 05/08/2010	Run No: Seq No:	: 171295 : 3557470
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual
1.1-Dichloroethenc	48.61	5.0	50	0	97.2	61.4	146	0	0		0
Benzene	46.97	5.0	50	0	93.9	72.8	131	0	0		0
Chlorobenzene	45.94	5.0	50	0	91.9	76	123	0	0		0
Toluene	48.78	5.0	50	0	97.6	74.7	128	0	0		0
Trichloroethene	56.98	5.0	50	0	114	74.4	130	0	0		0
Surr: 4-Bromofluorobenzene	52.49	0	50	0	105	60.1	127	0	0		0
Surr. Dibromofluoromethane	57.19	0	50	0	114	79.6	126	0	0		0
Surr: Toluene-d8	53.11	0	50	0	106	78	116	0	0		0
Sample ID: 1005016-007AMS	Client ID:				Units:	ts: ug/L	Prep	Prep Date:	05/08/2010	Run No:	0: 171295
SampleType: MS	TestCode:	TestCode: Volatile Organic Compounds by GC/MS SW3260B	ands by GC/MS	SW8260B	Bat	BatchID: 129148	Ana	Analysis Date:	05/08/2010	Seq No:	): <b>3557631</b>
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual
1 1-Dicklorvethene	9292	500	5000	0	154	48.8	172	0	0		0
1,1-Divinoiovinuito Renzene	5035	500	5000	0	101	64.5	143	0	0		0
Chlorobenzene	4573	500	5000	0	91.5	74.5	129	0	0		0
Toluene	4967	500	5000	0	99.3	62	145	0	0		0
Trichloroethene	5997	500	5000	829.0	103	70.3	140	0	0	_	0
Surr: 4-Bromofluorobenzene	4577	0	5000	0	91.5	60.1	127	0	0		0
Surr: Dibromofluoromethane	5443	0	5000	0	109	79.6	126	0	0		0
Surr: Toluene-d8	4660	0	5000	0	93.2	78	116	0	0	_	0
Sample ID: 1005016-007AMSD	Client ID:				n	Units: ug/L	Pre	Prep Date:	05/08/2010	Run N	
SampleType: MSD	TestCode:	Volatile Organic Compou	unds by GC/MS SW8260B	SW8260B	Bat	BatchID: 129148	Ans	Analysis Date:	05/08/2010	Seq No:	o: <b>3557632</b>
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual
1.1-Dichloroethene	7611	500	5000	0	152	48.8	172	7676	0.85	35	21.6
Benzene	4828	500	5000	0	9.96	64.5	143	5035	4.2	5	18.3
Contraction Description			< Less	Less than Result value			B	Analyte detected	Analyte detected in the associated method blank	thod blank	
BRL				Estimated (value above quantitation range)	tation range)		н	Holding times fo	Holding times for preparation or analysis exceeded	sis exceeded	
	cted below Reporting	Limit	N Anal	Analyte not NELAC certified			R	RPD outside limits due to matrix	its due to matrix		
Rpt Lim Reporting Limit			S Spike	Spike Recovery outside limits due to matrix	due to matrix						

Page 53 of 60

Page 54 of 59

	SGS North America, Inc.						ANALY	TICAL Q	C SUMM	ANALYTICAL QC SUMMARY REPORT
Project Name: G1037-70 Workorder: 1005450	0 0							Batch	BatchID: 129148	
Sample ID: 1005016-007AMSD SampleType: MSD		Client ID: TestCode: Volatile Organic Compounds by GC/MS SW8260B	unds by GC/MS S	W8260B	Units: Batchl	Units: ug/L BatchID: 129148	Prep	Prcp Date:         05/08/2010           Analysis Date:         05/08/2010		Run No: 171295 Seq No: 3557632
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	Low Limit High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	4779	500	5000	0	95.6	74.5	129	4573	4.41	19.2
Toluene	4875	500	5000	0	97.5	62	145	4967	1.87	21.2
Trichloroethene	5948	500	5000	829.0	102	70.3	140	5997	0.82	20.3
Surr: 4-Bromofluorobenzene		0	5000	0	92.9	60.1	127	4577	0	0
Surr: Dibromofluoromethane		0	5000	0	110	79.6	126	5443	0	0
Surr Toluene-d8		0	2000	0	92.2	78	116	4660	0	0
Zurr Toluene-dX	4003	0	nnnc	>	1	2			,	•

Holding times for preparation or analysis exceeded Analyte detected in the associated method blank
 H Holding times for preparation or analysis exceede
 R RPD outside limits due to matrix Estimated (value above quantitation range) Spike Recovery outside limits due to matrix Analyte not NELAC certified Less than Result value ш zs v

> Below reporting limit BRL

Greater than Result value

٨

Qualifiers:

Estimated value detected below Reporting Limit -

Rpt Lim Reporting Limit

Page 55 of 59

## SGS North America, Inc.

Project Name: G1037-70 Workorder: 1005450 Sample ID: MB-129176 Client ID: SampleType: MBLK TcstCode: Analyte Result						ANAL			ANALY IICAL UC SUMIMARY REFURI
							Batc	BatchID: 129176	9
	Client ID: TcstCode: Volatile Organic Compounds by GC/MS SW8260B	nds by GC/MS_SV	V8260B	Units: Batch	Units: ug/L BatchID: 129176	Pre	Prep Date: 05 Analysis Date: 05	05/09/2010 05/09/2010	Run No: 171307 Seq No: 3557837
	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	al %RPD	RPD Limit Qual
1.1.1.2-Tetrachlorocthanc BRL	5.0	0	0	0	0	0	0	0	0
	5.0	0	0	0	0	0	0	0	0
1,1,2,2-Tetrachloroethane BRL	5.0	0	0	0	0	0	0	0	0
1,1,2-Trichloroethane BRL	5.0	0	0	0	0	0	0	0	0
I, I-Dichloroethane BRL	5.0	0	0	0	0	0	0	0	0
I, I-Dichloroethene BRL	5.0	0	0	0	0	0	0	0	0
I, I-Dichloropropene BRL	5.0	0	0	0	0	0	0	0	0
1,2,3-Trichlorobenzene BRL	5.0	0	0	0	0	0	0	0	0
1,2,3-Trichloropropane BRL	5.0	0	0	0	0	0	0	0	0
1,2,4-Trichlorobenzene BRL	5.0	0	0	0	0	0	0	0	0
I,2,4-Trimethylbenzene BRL	5.0	0	0	0	0	0	0	0	0
I,2-Dibromo-3-chloropropane BRL	5.0	0	0	0	0	0	0	0	0
I,2-Dibromoethanc BRL	5.0	0	0	0	0	0	0	0	0
I,2-Dichlorobenzene BRL	5.0	0	0	0	0	0	0	0	0
I,2-Dichloroethane BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dichloropropane BRL	5.0	0	0	0	0	0	0	0	0
1,3,5-Trimethylbenzene BRL	5.0	0	0	0	0	0	0	0	0
1,3-Dichlorobenzene BRL	5.0	0	0	0	0	0	0	0	0
1,3-Dichloropropane BRL	5.0	0	0	0	0	0	0	0	0
1,4-Dichlorobenzene BRL	5.0	0	0	0	0	0	0	0	0
2,2-Dichloropropane BRL	5.0	0	0	0	0	0	0	0	0
2-Butanone BRL	50	0	0	0	0	0	0	0	0
2-Chlorotoluene BRL	5.0	0	0	0	0	0	0	0	0
2-Hexanone BRL	10	0	0	0	0	0	0	0	0
4-Chlorotoluene BRL	5.0	0	0	0	0	0	0	0	0
4-lsopropyltoluenc BRL	5.0	0	0	0	0	0	0	0	0
4-Methyl-2-pentanone BRL	10	0	0	0	0	0	0	0	0
Oualifiers: > Greater than Result value		< Less th	Less than Result value			æ	Analyte detected in the associated method blank	he associated methoo	i blank
BRL			Estimated (value above quantitation range)	ttion range)		Н	Holding times for pr	Holding times for preparation or analysis exceeded	exceeded
	ting Limit	N Analyt	Analyte not NELAC certified			R	RPD outside limits due to matrix	lue to matrix	

Page 56 of 59

Project Name:     G1037-70       Workorder:     1005450       Sample ID:     MB-129176       Client ID:     Client ID:       Sample Type:     MBLK       TestCode:     Volatile Organic Compounds by GC/MS SW8260B       Analyte     Result       Result     RPT Limit       Analyte     BRL       Solution     0						ANAL	<b>VTICAL</b>	QC SUM	ANALYTICAL QC SUMMARY REPORT	RT
: ID: MB-129176 :Type: MBLK e							Ba	BatchID: 129176	76	
e Result BRL	Jrganic Compour	ids by GC/MS_S	W8260B	Units: Batchl	Units: ug/L BatchID: 129176	Prej	Prep Date: Analysis Date:	05/09/2010 05/09/2010	Run No: 171307 Seq No: 3557837	
	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD	RPD Limit	Qual
	50	0	0	0	0	0	0	0	0	
	5.0	0	0	0	0	0	0	0	0	
nzene	5.0	0	0	0	0	0	0	0	0	
ethane	5.0	0	0	0	0	0	0	0	0	
Bromodichloromethane BRL	5.0	0	0	0	0	0	0	0	0	
Bromoform BRL	5.0	0	0	0	0	0	0	0	0	
Inc	5.0	0	0	0	0	0	0	0	0	
G	5.0	0	0	0	0	0	0	0	0	
Carbon tetrachloride BRL	5.0	0	0	0	0	0	0	0	0	
Chlorobenzene BRL	5.0	0	0	0	0	0	0	0	0	
Chloroethane BRL	10	0	0	0	0	0	0	0	0	
Chloroform BRL	5.0	0	0	0	0	0	0	0	0 0	
Chloromethane BRL	10	0	0	0	0	0	0	0	0 0	
cis-1,2-Dichloroethene BRL	5.0	0	0	0	0	0	0	0	0 0	
cis-1,3-Dichloropropene BRL	5.0	0	0	0	0	0	0	0	0	
Dibromochloromethane BRL	5.0	0	0	0	0	0	0	0	0	
Dibromomethane BRL	5.0	0	0	0	0	0	0	0	0	
Dichlorodifluoromethane BRL	10	0	0	0	0	0	0	0	0	
Ethylbenzene BRL	5.0	0	0	0	0	0	0	0	0	
Hexachlorobutadiene BRL	5.0	0	0	0	0	0	0	0	0	
[odomethane BRL	10	0	0	0	0	0	0	0	0	
Isopropyl ether BRL	10	0	0	0	0	0	0	0	0	
Isopropylbenzene BRL	5.0	0	0	0	0	0	0	0	0	
m.p-Xylene BRL	10	0	0	0	0	0	0	0	0	
Methyl tert-butyl ether BRL	5.0	0	0	0	0	0	0	0	0	
Methylene chloride BRL	5.0	0	0	0	0	0	0	0	0	
n-Butylbenzene BRL	5.0	0	0	0	0	0	0	0	0	
0if.e.v. > Greater than Result value		< Less	Less than Result value			в	Analyte detected	Analyte detected in the associated method blank	iod blank	
Ign		E Estim	Estimated (value above quantitation range)	tation range)		Н	Holding times fo	Holding times for preparation or analysis exceeded	sis exceeded	
			Analyte not NELAC certified			R	RPD outside lin	outside limits due to matrix		

Page 57 of 59

											DEBODT	
	merica, Inc.						ANALY	TICAL	QC SUM	MARY	ANALYTICAL QC SUMMARY REPORT	
Vorkorder: 1005450								Bat	BatchID: 129	129176		
Sample ID: MB-129176 SampleType: MBLK	Client 1D: TestCode:	Client 1D: TestCode: Volatile Organic Compounds by GC/MS SW8260B	nds by GC/MS S	W8260B	Units: Batchl	Units: ug/L BatchID: 129176	Prep Analy	Prep Date: ( Analysis Date: (	05/09/2010 05/09/2010	Run No: Seq No:	Run No: 171307 Seq No: 3557837	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual	
n-Pronvlhenzene	BRL	5.0	0	0	0	0	0	0	0		0	
Nanhthalene	BRL	5.0	0	0	0	0	0	0	0		0	
o-Xvlene	BRL	5.0	0	0	0	0	0	0	0		0	
sec-Butylbenzene	BRL	5.0	0	0	0	0	0	0	0		0	
Styrene	BRL	5.0	0	0	0	0	0	0	0		0	
tert-Butvlhenzene	BRL	5.0	0	0	0	0	0	0	0		0	
Tetrachloroethene	BRL	5.0	0	0	0	0	0	0	0		0	
Tohiene	BRL	5.0	0	0	0	0	0	0	0		0	
trans-1_2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0		0	
trans-1.3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0		0	
trans-1.4-Dichloro-2-butene	BRL	10	0	0	0	0	0	0	0		0	
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0		0	
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0		0	
Vinvl chloride	BRL	2.0	0	0	0	0	0	0	0	_	0	
Surr 4-Bromoffuorohenzene	40.12	0	50	0	80.2	60.1	127	0	0	_	0	
Surr: Dihromofluoromethane	51.80	0	50	0	104	79.6	126	0	0	_	0	
Surr: Toluene-d8	42.58	0	50	0	85.2	78	116	0	0	_	0	
Sample ID: LCS-129176 SampleType: LCS	Client ID: TestCode:	Client 1D: TestCode: Volatile Organic Compounds by GC/MS SW8260B	unds by GC/MS	SW8260B	Units: Batchl	Units: ug/L BatchID: 129176		Prep Date: Analysis Date:	05/09/2010 05/09/2010	Run No: Seq No:	Run No: 171307 Seq No: 3557846	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual	
1 1-Dichloroethene	50.85	5.0	50	0	102	61.4	146	0	0	•	0	
Benzene	57.35	5.0	50	0	115	72.8	131	0	0	_	0	
Chlorohenzene	52.80	5.0	50	0	106	76	123	0	0	~	0	
Toluene	56.31	5.0	50	0	113	74.7	128	0	0	-	0	
Trichloroethene	57.09	5.0	50	0	114	74.4	130	0	0	~	0	
Surr: 4-Bromofluorobenzene	53.46	0	50	0	107	60.1	127	0	0		0	1
Qualifiers: > Greater than Result value	value		< Les	Less than Result value				Analyte detected	Analyte detected in the associated method blank	thod blank		
BRL, Below reporting limit	uit		E Estin	Estimated (value above quantitation range)	lation range)			Holding times for	Holding times for preparation or analysis exceeded	ysis exceeded		
J Estimated value det	Estimated value detected below Reporting Limit	ng Limit	N Anal	Analyte not NELAC certified			R	RPD outside limits due to matrix	its due to matrix			
Rpt Lim Reporting Limit			S Spike	Spike Recovery outside limits due to matrix	due to matrix							

Page 57 of 60

Page 58 of 59

.

Analytical Environmental Services, Inc	rvices, Inc								Date:	11-May-10	ay-10	,
Client: SGS North America, Inc.	nerica, Inc.						ANALY	<b>YTICAL</b>	QC SUM	IMAR	ANALYTICAL QC SUMMARY REPORT	<b>F</b> .
Workorder: 1005450								Ba	BatchID: 129	129176		
Sample ID: LCS-129176 SampleType: LCS	Client ID: TestCode:	Client ID: TestCode: Volatile Organic Compounds by GC/MS SW8260B	SWCS &	\$W8260B	Units: Batchl	Units: ug/L BatchID: 129176	Prei	Prep Date: Analysis Date:	05/09/2010 05/09/2010	Run No: Seq No:	Run No: 171307 Seq No: 3557846	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual	
Surr: Dibromofluoromethane	50.04	0	50	0	100	79.6	126	0	0	_	0	
Surr: Toluene-d8	53.41	0	50	0	107	78	116	0	0	-	0	
Sample ID: 1005450-009AMS SampleType: MS	Client ID: 0 TestCode:	Client ID: G1037-70-9 TestCode: Volatile Organic Compounds by GC/MS SW8260B	unds by GC/MS	SW8260B	Units: Batchl	Units: ug/L BatchID: 129176	Prel Ana	Prep Date: Analysis Date:	05/09/2010 05/09/2010	Run No: Seq No:	Run No: 171307 Seq No: 3557847	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	Val %RPD		RPD Limit Qual	
1.1-Dichloroethene	54.92	5.0	50	0	110	48.8	172	0	0	0	0	
Benzene	57.53	5.0	50	0	115	64.5	143	0	0	0	0	
Chlorobenzene	53.57	5.0	50	0	107	74.5	129	0	U	0	0	
Toluene	58.44	5.0	50	0	117	62	145	0	U	0	0	
Trichloroethene	52.73	5.0	50	0	105	70.3	140	0	J	0	0	
Surr: 4-Bromofluorobenzene	52.35	0	50	0	105	60.1	127	0		0	0	
Surr: Dibromofluoromethane	50.88	0	50	0	102	79.6	126	0		0	0	
Surr: Toluene-d8	52.23	0	50	0	104	78	116	0		0	0	
Sample ID: 1005450-009AMSD	Client ID:	Client ID: G1037-70-9			Units:	its: ug/L	Pre	Prep Date:	05/09/2010	Run No:	No: 171307	<u> </u>
SampleType: MSD	TestCode:	TestCode: Volatile Organic Compounds by GC/MS SW8260B	unds by GC/MS	SW8260B	Bat	Batch1D: 129176	An	Analysis Date:	05/09/2010	Seq No:	Vo: 3557848	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	'Val %RPD		RPD Limit Qual	
1.1-Dichlorocthcne	51.41	5.0	50	0	103	48.8	172	54.92		9.6	21.6	
Benzene	54.89	5.0	50	0	110	64.5	143	57.53		4.7	18.3	
Chlorobenzene	53.39	5.0	50	0	107	74.5	129	53.57		0.337	19.2	
Toluene	54.12	5.0	50	0	108	62	145	58.44		7.68	21.2	
Trichloroethene	51.43	5.0	50	0	103	70.3	140	52.73		2.5	20.3	
Surr: 4-Bromofluorobenzene	52.86	0	50	0	106	60.1	127	52.35		0	0	
Surr: Dibromofluoromethane	48.36	0	50	0	96.7	79.6	126	50.88		0	0	
Surr: Toluene-d8	48.82	0	50	0	97.6	78	116	52.23		0	0	
Qualifiers: > Greater than Result value	lue		< Less	Less than Result value			B	Analyte detected	Analyte detected in the associated method blank	ethod blank		I
BRL Below reporting limit			E Estin	Estimated (value above quantitation range)	ation range)		н	Holding times fo	Holding times for preparation or analysis exceeded	lysis exceede	P	
J Estimated value detected below Reporting Limit	cted below Reporting	Limit	N Anal	Analyte not NELAC certified			R	RPD outside limits due to matrix	its due to matrix			
Rpt Lim Reporting Limit			S Spike	Spike Recovery outside limits due to matrix	due to matrix							

Page 58 of 60

Page 59 of 59

C

# SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • Now Jorsey • New York • North Carolina • Ohio • Wost Virginia

www.us.sgs.com

pageof					/ / / REMARKS/		<b>J</b> S	Nor 	th / /		eric	a, II					Special Delivorablo Requirements:		- Materials and	NCZTOOD NODT WBS7	Chain of Custody Seal: (Circite)	INTACT BROKEN ABSENT	White - Retained by Lab Pink - Retained by Client
G1037-70	Usod Usod	Analysis Analysis Bequired / O / O / O	3/2/ // //				M	2	3	3		2	0	m	~	3 /     _	DOD Project? YES NO Special De	Cooler ID	Requested Turnaround Time and or Special Instructions: Notice to Chris Proples, NCD	UNIT, 1801 Blue Ridse Rd, Rikish, NEZTOOU	Samples Received Cold?	Cooler TB Temperature℃: <u> </u>	http://www.sgs.com/terms and conditions.htm
SGS Reference #:	# SAMPLE		T C C=	S. is A Mi=	ы 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: v	ب م	3 Ú	3 6	3 G	3	36	ઝ	( 3 G	36	3 9 8	<b>`</b>	Preautin, "			aree (	Laboratory By:	http:/
	719.872-6600		NAN @ AFLOIN. COM	* LOUT WBS # 34613,3.	INTERN T	TIME MATRIX CODE	1350 FW	1330 (FN	1435	N2 0531	0 SHH	1635 W	<b> </b>	) - Gu	1420 BW	1230	Received By:	/ athon	Received	Received By:	Helin 16	Received For Lab	) 561-5301 ) 350-1557
	PHONE NO: 419		MATTHEN. BRENNAN @ AFLOIN.	QUOTE #:	P.O. #:	ION DATE	ci/nz/h	01/12/1	01/72/10	ei/nz/h	Cilliz/1	c1/ 92/h	21012	olke/h	4/1/10	el/22/12	Date Time	4/2010 910	Date Time	日本 切し し す し し し	0	Date Time	77) 562-2343 Fax: (907 10) 350-1903 Fax: (910
	CONTACT: MATT BRENNAN	00 - L11158000			reopes	SAMPLE IDENTIFICATION	7-MW8H	48 DW-1	4 8 MW - 3	4 & MW-42	48PW-2	485W-01	Ebol- Ouzulo		43 Dw - 1 B	NER-02			EQ.		2		200 W. Potter Drivo Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557
CLIENT: A	CONTACT: MATT	REPORTS TO:	MATT BEENNAN		2 Chris 1	LAB NO.	-	2	٢	5	\$ \$			¢	Ø		5 Collected/Relir	Z	Relinquished B	c abe G abe C	9 of 60	Relinquished By: (4)	□ 200 W. Potter Driv □ 550 Business Driv

Ú	
• ••	

# SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide • Alaska • Maryland • New Jersey • New York • North Carolina • Ohio • West Virginia

www.us.sgs.com

		ж: 3416/ - 3 Верланся Верланся Верланся Верланся Верланся Пата Пата Пата Пата Пата Пата Пата Пат			SGS References # SAMPLE An And Milis And Milis And Milis And Milis And Milis And Milis And And Milis And And And And And And And And And And	COS alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives alives a	Y-70 VES NO Special D VES NO Special D Pund Time and or Special D Pund Time and or Special D	2) 2) Special Tosti	pago 2 of R R Repuirements: Special Deliverable Requirements:	of O Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID Loc ID	SGS North America, Inc.
Relinquished By: (3)	4/29//(	4/29/10 1000	Received by	Man	$\left\langle \right\rangle$	Samples Received Cold?	Cold? (YE&	OZ OZ		Chain of Custody Seal: (Circle)	
Relinquished By: (4)	Date	Time	Received Fo	For Laboratory By	By:	Temperature °C:	Geolegy .	TB	INTACT BR	BROKEN ABSEN	

□ 200 W. Potter Drive **Anchorage, AK 99518** Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive **Wilmington, NC 28405** Tel: (910) 350-1903 Fax: (910) 350-1557

White - Retained by Lab Pink - Retained by Client

http://www.sgs.com/terms and conditions.htm



Matt Brennan AECOM 8540 Colonnade Center Drive Raleigh, NC 27615

Report Number: G1037-82

Client Project: NCDOT Pittsboro #6-48

Dear Matt Brennan,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America, Inc.

6.2010 /Date **Project Manager** Barbara Hager

SGS North America Inc. | Environmental Division 5500 Business Dr., Wilmington, NC 28405 t (910) 350-1903 f (910) 350-1557 www.us.sgs.com

## List of Reporting Abbreviations And Data Qualifiers

- B = Compound also detected in batch blank
- BQL = Below Quantification Limit (RL or MDL)

DF = Dilution Factor

- Dup = Duplicate
- D = Detected, but RPD is > 40% between results in dual column method.
- E = Estimated concentration, exceeds calibration range.
- J = Estimated concentration, below calibration range and above MDL
- LCS(D) = Laboratory Control Spike (Duplicate)
- MDL = Method Detection Limit
- MS(D) = Matrix Spike (Duplicate)
- PQL = Practical Quantitation Limit
- RL/CL = Reporting Limit / Control Limit
- RPD = Relative Percent Difference
- mg/kg = milligram per kilogram, ppm, parts per million
- ug/kg = micrograms per kilogram, ppb, parts per billion
- mg/L = milligram per liter, ppm, parts per million
- ug/L = micrograms per liter, ppb, parts per billion
- % Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

MI34.021808.4

Client Sample ID: 48MW17 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-1A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 11:30 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.0250	1	7/13/2010
Benzene	BQL	0.00100	1	7/13/2010
Bromobenzene	BQL	0.00100	1	7/13/2010
Bromochloromethane	BQL	0.00100	1	7/13/2010
Bromodichloromethane	BQL	0.00100	1	7/13/2010
Bromoform	BQL	0.00100	1	7/13/2010
Bromomethane	BQL	0.00100	1	7/13/2010
2-Butanone	BQL	0.0250	1	7/13/2010
n-Butylbenzene	BQL	0.00100	1	7/13/2010
sec-Butylbenzene	BQL	0.00100	1	7/13/2010
tert-Butylbenzene	BQL	0.00100	1	7/13/2010
Carbon disulfide	BQL	0.00100	. 1	7/13/2010
Carbon tetrachloride	BQL	0.00100	1	7/13/2010
Chlorobenzene	BQL	0.00100	. 1	7/13/2010
Chloroethane	BQL	0.00100	1	7/13/2010
Chloroform	BQL	0.00100	1	7/13/2010
Chloromethane	BQL	0.00100	1	7/13/2010
2-Chlorotoluene	BQL	0.00100	1	7/13/2010
4-Chlorotoluene	BQL	0.00100	· 1	7/13/2010
Dibromochloromethane	BQL	0.00100	1	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.00500	1	7/13/2010
Dibromomethane	BQL	0.00100	1	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.00100	1	7/13/2010
1,2-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,3-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,4-Dichlorobenzene	BQL	0.00100	1	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.00500	1	7/13/2010
1,1-Dichloroethane	BQL	0.00100	1	7/13/2010
1,1-Dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloroethane	BQL	0.00100	1	7/13/2010
cis-1,2-Dichloroethene	BQL	0.00100	1	7/13/2010
trans-1,2-dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,3-Dichloropropane	BQL	0.00100	1	7/13/2010
2,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,1-Dichloropropene	BQL	0.00100	1	7/13/2010
cis-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
trans-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
Dichlorodifluoromethane	BQL	0.00500	1	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.00100	1	7/13/2010
Ethylbenzene	BQL	0.00100	1	7/13/2010
Hexachlorobutadiene	BQL	0.00100	1	7/13/2010
2-Hexanone	BQL	0.00500	1	7/13/2010
lodomethane	BQL	0.00100	1	7/13/2010
Isopropylbenzene	BQL	0.00100	1	7/13/2010

GCMS

Client Sample ID: 48MW17 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-1A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 11:30 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.00100		1	7/13/2010
Methylene chloride	BQL	0.00500		1	7/13/2010
4-Methyl-2-pentanone	BQL	0.00500		1	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00100		1	7/13/2010
Naphthalene	BQL	0.00100		1	7/13/2010
n-Propyl benzene	BQL	0.00100		1	7/13/2010
Styrene	BQL	0.00100		1	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
Tetrachloroethene	BQL	0.00100		1	7/13/2010
Toluene	BQL	0.00100		1	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.00100		1	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.00100		1	7/13/2010
Trichloroethene	BQL	0.00100		1	7/13/2010
1,1,1-Trichloroethane	BQL	0.00100		1	7/13/2010
1,1,2-Trichloroethane	BQL	0.00100		1	7/13/2010
Trichlorofluoromethane	BQL	0.00100		1	7/13/2010
1,2,3-Trichloropropane	BQL	0.00100		1	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.00100		1	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.00100		1	7/13/2010
Vinyl chloride	BQL	0.00100		1	7/13/2010
m-,p-Xylene	BQL	0.00200		. 1	7/13/2010
o-Xylene	BQL	0.00100		1	7/13/2010
		Spike Added	Spike Result	Percent Recovered	

	Added	Result	Recovered	
1,2-Dichloroethane-d4	0.03	0.0293	98	
Toluene-d8	0.03	0.0301	101	
4-Bromofluorobenzene	0.03	0.03	100	

### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: 0V0

Reviewed By: ______

Client Sample ID: 48MW-16 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-2A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 12:35 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	2.00	80	7/13/2010
Benzene	BQL	0.0800	80	7/13/2010
Bromobenzene	BQL	0.0800	80	7/13/2010
Bromochloromethane	BQL	0.0800	80	7/13/2010
Bromodichloromethane	BQL	0.0800	80	7/13/2010
Bromoform	BQL	0.0800	80	7/13/2010
Bromomethane	BQL	0.0800	80	7/13/2010
2-Butanone	BQL	2.00	80	7/13/2010
n-Butylbenzene	BQL	0.0800	80	7/13/2010
sec-Butylbenzene	BQL	0.0800	80	7/13/2010
tert-Butylbenzene	BQL	0.0800	80	7/13/2010
Carbon disulfide	BQL	0.0800	80	7/13/2010
Carbon tetrachloride	BQL	0.0800	80	7/13/2010
Chlorobenzene	BQL	0.0800	80	7/13/2010
Chloroethane	BQL	0.0800	80	7/13/2010
Chloroform	BQL	0.0800	80	7/13/2010
Chloromethane	BQL	0.0800	80	7/13/2010
2-Chlorotoluene	BQL	0.0800	80	7/13/2010
4-Chlorotoluene	BQL	0.0800	80	7/13/2010
Dibromochloromethane	BQL	0.0800	80	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.400	80	7/13/2010
Dibromomethane	BQL	0.0800	80	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0800	80	7/13/2010
1,2-Dichlorobenzene	BQL	0.0800	80	7/13/2010
1,3-Dichlorobenzene	BQL	0.0800	80	7/13/2010
1,4-Dichlorobenzene	BQL	0.0800	80	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.400	80 80	7/13/2010
1,1-Dichloroethane	BQL	0.0800	80	7/13/2010
1,1-Dichloroethene	0.0848	0.0800	80	7/13/2010 7/13/2010
1,2-Dichloroethane	BQL BQL	0.0800	80	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0800 0.0800	80	7/13/2010
trans-1,2-dichloroethene	BQL	0.0800	80	7/13/2010
1,2-Dichloropropane	BQL	0.0800	80	7/13/2010
1,3-Dichloropropane	BQL	0.0800	80	7/13/2010
2,2-Dichloropropane 1,1-Dichloropropene	BQL	0.0800	80	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0800	80	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0800	80	7/13/2010
Dichlorodifluoromethane	BQL	0.400	80	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0800	80	7/13/2010
Ethylbenzene	BQL	0.0800	80	7/13/2010
Hexachlorobutadiene	BQL	0.0800	80	7/13/2010
2-Hexanone	BQL	0.400	80	7/13/2010
lodomethane	BQL	0.0800	80	7/13/2010
Isopropylbenzene	BQL	0.0800	80	7/13/2010
loop op juon zono		0.0000		

GCMS

Client Sample ID: 48MW-16 Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-2A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 12:35 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0800		80	7/13/2010
Methylene chloride	BQL	0.400		80	7/13/2010
4-Methyl-2-pentanone	BQL	0.400		80	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0800		80	7/13/2010
Naphthalene	BQL	0.0800		80	7/13/2010
n-Propyl benzene	BQL	0.0800		80	7/13/2010
Styrene	BQL	0.0800		80	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0800		80	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0800		80	7/13/2010
Tetrachloroethene	BQL	0.0800		80	7/13/2010
Toluene	BQL	0.0800		80	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0800		80	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0800		80	7/13/2010
Trichloroethene	1.06	0.0800		80	7/13/2010
1,1,1-Trichloroethane	BQL	0.0800		80	7/13/2010
1,1,2-Trichloroethane	BQL	0.0800		80	7/13/2010
Trichlorofluoromethane	BQL	0.0800		80	7/13/2010
1,2,3-Trichloropropane	BQL	0.0800		80	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0800		80	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0800		80	7/13/2010
Vinyl chloride	BQL	0.0800		80	7/13/2010
m-,p-Xylene	BQL	0.160		80	7/13/2010
o-Xylene	BQL	0.0800		80	7/13/2010
		Spike Added	Spike Result	Percent Recovered	
1,2-Dichloroethane-d4		0.03	0.0301	100	
Toluene-d8		0.03	0.03	100	
4-Bromofluorobenzene		0.03	0.0303	101	

#### **Comments:**

### Flags:

BQL = Below Quantitation Limits.

Reviewed By:

Client Sample ID: 48DW5 (60 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-3A Lab Project ID: G1037-82

Analyzed By: DVO Date Collected: 7/9/2010 13:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL	0.500	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20	7/13/2010
sec-Butylbenzene	BQL	0.0200	20	7/13/2010
tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform Chloromethane	BQL BQL	0.0200 0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20 20	7/13/2010 7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0302	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20	7/13/2010
1,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,3-Dichloropropane	BQL	0.0200	20	7/13/2010
2,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
Ethylbenzene	BQL	0.0200	20	7/13/2010
Hexachlorobutadiene	BQL	0.0200	20	7/13/2010
2-Hexanone	BQL	0.100	20	7/13/2010
lodomethane	BQL	0.0200	20	7/13/2010
Isopropylbenzene	BQL	0.0200	20	7/13/2010

Client Sample ID: 48DW5 (60 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-3A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.313	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike Added	Spike Result	Percent Recovered	
1,2-Dichloroethane-d4		0.03	0.0299	100	
Toluene-d8		0.03	0.0309	103	
4-Bromofluorobenzene		0.03	0.0301	100	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: _______

Reviewed By:

Client Sample ID: 48DW5 (80 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-4A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:10 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL	0.500	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20	7/13/2010
sec-Butylbenzene	BQL	0.0200	20	7/13/2010
tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform	BQL	0.0200	20	7/13/2010
Chloromethane	BQL	0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20	7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0274	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20 20	7/13/2010
1,2-Dichloropropane	BQL BQL	0.0200	20 20	7/13/2010
1,3-Dichloropropane		0.0200		7/13/2010
2,2-Dichloropropane	BQL BQL	0.0200 0.0200	20 20	7/13/2010 7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Disopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
Ethylbenzene	BQL	0.0200	20	7/13/2010
Hexachlorobutadiene	BQL	0.0200	20	7/13/2010
2-Hexanone	BQL	0.100	20	7/13/2010
lodomethane	BQL	0.0200	20	7/13/2010
Isopropylbenzene	BQL	0.0200	20	7/13/2010
13001003100120110	DQL	0.0200		

GCMS

Client Sample ID: 48DW5 (80 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-4A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:10 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.283	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike	Spike	Percent	
		Added	Result	Recovered	
1,2-Dichloroethane-d4		0.03	0.0297	99	
Toluene-d8		0.03	0.0305	102	

4-Bromofluorobenzene

## Comments:

## Flags:

BQL = Below Quantitation Limits.

Analyst: 0VD

Reviewed By: 70

0.03

0.0302

101

Client Sample ID: 48DW5 (100 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-5A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:20 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.500	20	7/13/2010
Benzene	BQL	0.0200	20	7/13/2010
Bromobenzene	BQL	0.0200	20	7/13/2010
Bromochloromethane	BQL	0.0200	20	7/13/2010
Bromodichloromethane	BQL	0.0200	20	7/13/2010
Bromoform	BQL	0.0200	20	7/13/2010
Bromomethane	BQL	0.0200	20	7/13/2010
2-Butanone	BQL BQL	0.500 0.0200	20	7/13/2010
n-Butylbenzene	BQL	0.0200	20 20	7/13/2010 7/13/2010
sec-Butylbenzene tert-Butylbenzene	BQL	0.0200	20	7/13/2010
Carbon disulfide	BQL	0.0200	20	7/13/2010
Carbon tetrachloride	BQL	0.0200	20	7/13/2010
Chlorobenzene	BQL	0.0200	20	7/13/2010
Chloroethane	BQL	0.0200	20	7/13/2010
Chloroform	BQL	0.0200	20	7/13/2010
Chloromethane	BQL	0.0200	20	7/13/2010
2-Chlorotoluene	BQL	0.0200	20	7/13/2010
4-Chlorotoluene	BQL	0.0200	20	7/13/2010
Dibromochloromethane	BQL	0.0200	20	7/13/2010
1,2-Dibromo-3-chloropropane	BQL	0.100	20	7/13/2010
Dibromomethane	BQL	0.0200	20	7/13/2010
1,2-Dibromoethane (EDB)	BQL	0.0200	20	7/13/2010
1,2-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,3-Dichlorobenzene	BQL	0.0200	20	7/13/2010
1,4-Dichlorobenzene	BQL	0.0200	20	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.100	20	7/13/2010
1,1-Dichloroethane	BQL	0.0200	20	7/13/2010
1,1-Dichloroethene	0.0282	0.0200	20	7/13/2010
1,2-Dichloroethane	BQL	0.0200	20	7/13/2010
cis-1,2-Dichloroethene	BQL	0.0200	20	7/13/2010
trans-1,2-dichloroethene	BQL	0.0200	20	7/13/2010
1,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,3-Dichloropropane	BQL	0.0200	20	7/13/2010
2,2-Dichloropropane	BQL	0.0200	20	7/13/2010
1,1-Dichloropropene	BQL	0.0200	20	7/13/2010
cis-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
trans-1,3-Dichloropropene	BQL	0.0200	20	7/13/2010
Dichlorodifluoromethane	BQL	0.100	20	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.0200	20	7/13/2010
Ethylbenzene	BQL	0.0200	20	7/13/2010
Hexachlorobutadiene	BQL	0.0200	20	7/13/2010
2-Hexanone	BQL	0.100	20	7/13/2010
lodomethane	BQL	0.0200	20	7/13/2010
lsopropylbenzene	BQL	0.0200	20	7/13/2010

GCMS

Client Sample ID: 48DW5 (100 ft Bls) Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-5A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 13:20 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.0200		20	7/13/2010
Methylene chloride	BQL	0.100		20	7/13/2010
4-Methyl-2-pentanone	BQL	0.100		20	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.0200		20	7/13/2010
Naphthalene	BQL	0.0200		20	7/13/2010
n-Propyl benzene	BQL	0.0200		20	7/13/2010
Styrene	BQL	0.0200		20	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.0200		20	7/13/2010
Tetrachloroethene	BQL	0.0200		20	7/13/2010
Toluene	BQL	0.0200		20	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.0200		20	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.0200		20	7/13/2010
Trichloroethene	0.356	0.0200		20	7/13/2010
1,1,1-Trichloroethane	BQL	0.0200		20	7/13/2010
1,1,2-Trichloroethane	BQL	0.0200		20	7/13/2010
Trichlorofluoromethane	BQL	0.0200		20	7/13/2010
1,2,3-Trichloropropane	BQL	0.0200		20	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.0200		20	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.0200		20	7/13/2010
Vinyl chloride	BQL	0.0200		20	7/13/2010
m-,p-Xylene	BQL	0.0400		20	7/13/2010
o-Xylene	BQL	0.0200		20	7/13/2010
		Spike Added	Spike Result	Percent Recovered	
1,2-Dichloroethane-d4		0.03	0.0306	102	
Toluene-d8		0.03	0.0305	102	
4-Bromofluorobenzene		0.03	0.0309	103	

#### Comments:

#### Flags:

BQL = Below Quantitation Limits.

Analyst: <u></u>
<u>
</u>
<u>
</u>
V
U

Reviewed By: <u>379</u>

Client Sample ID: Trip Blank Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-6A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 0:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation	Dilution	Date
Compound	MG/L	Limit MG/L	Factor	Analyzed
Acetone	BQL	0.0250	· 1	7/13/2010
Benzene	BQL	0.00100	1	7/13/2010
Bromobenzene	BQL	0.00100	1	7/13/2010
Bromochloromethane	BQL	0.00100	1	7/13/2010
Bromodichloromethane	BQL	0.00100	1	7/13/2010
Bromoform	BQL	0.00100	1	7/13/2010
Bromomethane	BQL	0.00100	1	7/13/2010
2-Butanone	BQL	0.0250	1	7/13/2010
n-Butylbenzene	BQL	0.00100	1	7/13/2010
sec-Butylbenzene	BQL	0.00100	1	7/13/2010
tert-Butylbenzene	BQL	0.00100	1	7/13/2010
Carbon disulfide	BQL	0.00100	1	7/13/2010
Carbon tetrachloride	BQL	0.00100	1	7/13/2010
Chlorobenzene	BQL	0.00100	1	7/13/2010
Chloroethane	BQL	0.00100	1	7/13/2010
Chloroform	BQL	0.00100	1	7/13/2010
Chloromethane	BQL	0.00100	1	7/13/2010
2-Chlorotoluene	BQL	0.00100	1	7/13/2010
4-Chlorotoluene	BQL	0.00100	1	7/13/2010 7/13/2010
Dibromochloromethane	BQL	0.00100	1	7/13/2010
1,2-Dibromo-3-chloropropane	BQL BQL	0.00500 0.00100	1	7/13/2010
Dibromomethane	BQL	0.00100	1	7/13/2010
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,3-Dichlorobenzene	BQL	0.00100	1	7/13/2010
1,4-Dichlorobenzene	BQL	0.00100	1	7/13/2010
trans-1,4-Dichloro-2-butene	BQL	0.00500	1	7/13/2010
1,1-Dichloroethane	BQL	0.00100	1	7/13/2010
1,1-Dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloroethane	BQL	0.00100	1	7/13/2010
cis-1,2-Dichloroethene	BQL	0.00100	1	7/13/2010
trans-1,2-dichloroethene	BQL	0.00100	1	7/13/2010
1,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,3-Dichloropropane	BQL	0.00100	1	7/13/2010
2,2-Dichloropropane	BQL	0.00100	1	7/13/2010
1,1-Dichloropropene	BQL	0.00100	1	7/13/2010
cis-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
trans-1,3-Dichloropropene	BQL	0.00100	1	7/13/2010
Dichlorodifluoromethane	BQL	0.00500	1	7/13/2010
Diisopropyl ether (DIPE)	BQL	0.00100	1	7/13/2010
Ethylbenzene	BQL	0.00100	1	7/13/2010
Hexachlorobutadiene	BQL	0.00100	1	7/13/2010
2-Hexanone	BQL	0.00500	1	7/13/2010
Iodomethane	BQL	0.00100	1	7/13/2010
lsopropylbenzene	BQL	0.00100	1	7/13/2010

Client Sample ID: Trip Blank Client Project ID: NCDOT Pittsboro #6-48 Lab Sample ID: G1037-82-6A Lab Project ID: G1037-82 Analyzed By: DVO Date Collected: 7/9/2010 0:00 Date Received: 7/12/2010 Matrix: Water Sample Amount: 5 mL

	Result	Quantitation		Dilution	Date
Compound	MG/L	Limit MG/L		Factor	Analyzed
4-Isopropyltoluene	BQL	0.00100		1	7/13/2010
Methylene chloride	BQL	0.00500		1	7/13/2010
4-Methyl-2-pentanone	BQL	0.00500		1	7/13/2010
Methyl-tert-butyl ether (MTBE)	BQL	0.00100		1	7/13/2010
Naphthalene	BQL	0.00100		1	7/13/2010
n-Propyl benzene	BQL	0.00100		1	7/13/2010
Styrene	BQL	0.00100		1	7/13/2010
1,1,1,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
1,1,2,2-Tetrachloroethane	BQL	0.00100		1	7/13/2010
Tetrachloroethene	BQL	0.00100		1	7/13/2010
Toluene	BQL	0.00100		1	7/13/2010
1,2,3-Trichlorobenzene	BQL	0.00100		1	7/13/2010
1,2,4-Trichlorobenzene	BQL	0.00100		1	7/13/2010
Trichloroethene	BQL	0.00100		1	7/13/2010
1,1,1-Trichloroethane	BQL	0.00100		1	7/13/2010
1,1,2-Trichloroethane	BQL	0.00100		· 1	7/13/2010
Trichlorofluoromethane	BQL	0.00100		1	7/13/2010
1,2,3-Trichloropropane	BQL	0.00100		1	7/13/2010
1,2,4-Trimethylbenzene	BQL	0.00100		1	7/13/2010
1,3,5-Trimethylbenzene	BQL	0.00100		1	7/13/2010
Vinyl chloride	BQL	0.00100		1	7/13/2010
m-,p-Xylene	BQL	0.00200		1	7/13/2010
o-Xylene	BQL	0.00100		1	7/13/2010
		Spike Added	Spike Result	Percent Recovered	

 Added
 Result
 Recovered

 1,2-Dichloroethane-d4
 0.03
 0.0294
 98

 Toluene-d8
 0.03
 0.0306
 102

 4-Bromofluorobenzene
 0.03
 0.0293
 98

#### Comments:

### Flags:

BQL = Below Quantitation Limits.

 $\cap VO$ Analyst: ____

Reviewed By: ______

IM lame:	CHAIN OF CUSTODY RECORD		e
45 Bors # 6-43	PizytsBorn, NC	Analysis Requested	Г – Глазис А – Amber Glass 2 – H2SO4, 4° G – Class 3 – H03, 4° V – V/OA //a
Project Number:	Field Logbook No.: L		
ation): OLON	Chain of Custody Tape Nos.: $\mathcal{M}/\mathcal{A}$		6 – Na2S203, 4° 7 – 4° Matrix Codes: DW – Drinking Water S – Soul
Signature:	Send Results/Report to: TAT: Medt. Brennen StacNDAR	8 09	WW - Wastewater SL - Sludge GW - Groundwater SD - Sedment SW - Surdace Water SO - Solid ST - Storm Water A - Air W - Water P - Provinci
Field Sample No./Identification Date Time M	0 ~ < m	<u>۴8</u>	Lab I.D.
-17 7/9/130		3	811 10 s
-16		$\sim$	chor
			#34613,1
0121 1212 120 47 6/5/2 1210	-7 -3 -7 -7		h Ar
>	- 1 - 1		neri
			ca,
			Inc.
Relinquished by (Print Name) (Affiliation) 0. Boulin 2000 Actor M	Received by	Date: 74910 Analytical Laboratory (Destination):	sstination):
	<u>S 2 1</u>		N N
Signature: Control Manufation) Date: 7/1% Signature:	Date: 7/10/10 Received by: (Print Name)(Affiliation) Time: 9 50 Signature:	Date: $7/i2/r$ Time: $0\%W$ UPS FedEx Courier	Temp blank
MSIChain of Custody (COC)/Chain of Custody_AECOM Environment_09 doc	1.3°C	Jos	Z